W. B. Kannel, Lipids, diabetes, and coronary heart disease: insights from the Framingham Study, Am Heart J, vol.110, pp.1100-1107, 1985.

J. Stamler, O. Vaccaro, J. D. Neaton, and D. Wentworth, Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial, Diabetes Care, vol.16, pp.434-478, 1993.

K. E. Shipman, R. C. Strange, and S. Ramachandran, Use of fibrates in the metabolic syndrome: A review, World J Diabetes, vol.7, pp.74-88, 2016.

M. Farnier, Update on the clinical utility of fenofibrate in mixed dyslipidemias: mechanisms of action and rational prescribing, Vasc Health Risk Manag, vol.4, pp.991-1000, 2008.

S. Kersten, Peroxisome proliferator activated receptors and lipoprotein metabolism, PPAR Res, p.132960, 2008.

X. Feng, X. Gao, Y. Jia, H. Zhang, Q. Pan et al.,

. Ppar-?, Agonist Fenofibrate Decreased Serum Irisin Levels in Type 2 Diabetes Patients with Hypertriglyceridemia, PPAR Res, p.924131, 2015.

A. Keech, R. J. Simes, P. Barter, J. Best, R. Scott et al., Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial, Lancet, vol.366, pp.1849-61, 2005.

H. N. Ginsberg, M. B. Elam, L. C. Lovato, . Crouse-jr-3rd, L. A. Leiter et al., Effects of combination lipid therapy in type 2 diabetes mellitus, N Engl J Med, vol.362, pp.1563-74, 2010.

M. Jun, C. Foote, J. Lv, B. Neal, A. Patel et al., Effects of fibrates on cardiovascular outcomes: a systematic review and metaanalysis, Lancet, vol.375, pp.1875-84, 2010.

D. C. Burgess, D. Hunt, L. Li, D. Zannino, E. Williamson et al., Incidence and predictors of silent myocardial infarction in type 2 diabetes and the effect of fenofibrate, p.17

, Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study, Eur Heart J, vol.31, pp.92-101, 2010.

E. Bruckert, J. Labreuche, D. Deplanque, P. J. Touboul, and P. Amarenco, Fibrates effect on cardiovascular risk is greater in patients with high triglyceride levels or atherogenic dyslipidemia profile: a systematic review and meta-analysis, J Cardiovasc Pharmacol, vol.57, pp.267-72, 2011.

M. B. Elam, H. N. Ginsberg, L. C. Lovato, M. Corson, J. Largay et al., Association of Fenofibrate Therapy With Long-term Cardiovascular Risk in Statin-Treated Patients With Type 2 Diabetes, JAMA Cardiol, 2016.

S. M. Lam and . Shui, Lipidomics as a principal tool for advancing research, J Genet Genomics, vol.40, pp.375-90, 2013.

X. Han, Lipidomics for studying metabolism, Nat Rev Endocrinol, vol.12, pp.668-79, 2016.

O. Quehenberger, A. M. Armando, A. H. Brown, S. B. Milne, D. S. Myers et al.,

S. Subramaniam, E. Fahy, and E. A. Dennis, Lipidomics reveals a remarkable diversity of lipids in human plasma, J Lipid Res, vol.51, pp.3299-305, 2010.

M. Croyal, F. Fall, V. Ferchaud-roucher, M. Chétiveaux, Y. Zaïr et al.,

M. and N. E. , Multiplexed peptide analysis for kinetic measurements of major human apolipoproteins by LC/MS/MS, J Lipid Res, vol.57, pp.509-524, 2016.

H. Tavori, D. Christian, J. Minnier, D. Plubell, M. D. Shapiro et al.,

M. Duell, P. B. Lambert, G. Tsimikas, S. Fazio, and S. , PCSK9 Association With Lipoprotein(a), Circ Res, vol.119, pp.29-35, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02429627

G. Lambert, N. Ancellin, F. Charlton, D. Comas, J. Pilot et al., Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment, Clin Chem, vol.54, pp.1038-1083, 2008.

R. Scott, J. Best, P. Forder, M. R. Taskinen, J. Simes et al.,

, Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study, p.18

, baseline characteristics and short-term effects of fenofibrate, vol.64783481

, Cardiovasc Diabetol, vol.4, p.13, 2005.

W. B. Dunn, D. Broadhurst, P. Begley, E. Zelena, S. Francis-mcintyre et al.,

M. Knowles, J. D. Halsall, A. Haselden, J. N. Nicholls, A. W. Wilson et al., Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat Protoc, vol.6, pp.1060-83, 2011.

H. Gallart-ayala, F. Courant, S. Severe, J. P. Antignac, F. Morio et al.,

, Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer, Anal Chim Acta, vol.796, pp.75-83, 2013.

K. Sandra, S. Pereira-ados, G. Vanhoenacker, F. David, and P. Sandra, Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry, J Chromatogr A, vol.1217, pp.4087-99, 2010.

N. A. Mazer, F. Giulianini, N. P. Paynter, P. Jordan, and S. Mora, A comparison of the theoretical relationship between HDL size and the ratio of HDL cholesterol to apolipoprotein A-I with experimental results from the women's health study, Clin Chem, vol.59, pp.949-58, 2013.

J. Boon, A. J. Hoy, R. Stark, R. D. Brown, R. C. Meex et al.,

J. F. Horowitz, B. A. Kingwell, C. R. Bruce, and M. J. Watt, Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance, Diabetes, vol.62, pp.401-411, 2013.

J. M. Haus, S. R. Kashyap, T. Kasumov, R. Zhang, K. R. Kelly et al.,

, Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance, Diabetes, vol.58, pp.337-380, 2009.

J. M. Cheng, M. Suoniemi, I. Kardys, T. Vihervaara, S. P. De-boer et al.,

M. , E. K. Garcia-garcia, H. M. Oemrawsingh, R. M. Regar, E. Koenig et al.,

R. J. Geuns, E. Boersma, and R. Laaksonen, Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study, Atherosclerosis, vol.243, pp.560-566, 2015.

J. Bismuth, P. Lin, Q. Yao, and C. Chen, Ceramide: a common pathway for atherosclerosis?, Atherosclerosis, vol.196, pp.497-504, 2008.

K. Tarasov, K. Ekroos, M. Suoniemi, D. Kauhanen, T. Sylvänne et al.,

I. Berthold, H. K. Kleber, M. E. Laaksonen, R. März, and W. , Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency, J Clin Endocrinol Metab, vol.99, pp.45-52, 2014.

G. M. Deevska, M. Sunkara, A. J. Morris, and M. N. Nikolova-karakashian, Characterization of secretory sphingomyelinase activity, lipoprotein sphingolipid content and LDL aggregation in ldlr-/-mice fed on a high-fat diet, Biosci Rep, vol.32, pp.479-90, 2012.

W. L. Holland, R. A. Miller, Z. V. Wang, K. Sun, B. M. Barth et al., Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin, Nat Med, vol.17, pp.55-63, 2011.

T. Gonzalez, F. Aguilar-salinas, C. A. Tovar, A. R. Torres, and N. , Dietary soy protein reduces cardiac lipid accumulation and the ceramide concentration in high-fat diet-fed rats and ob/ob mice, J Nutr, vol.139, pp.2237-2280, 2009.

T. W. Ng, E. M. Ooi, G. F. Watts, D. C. Chan, P. J. Meikle et al., Association of Plasma Ceramides and Sphingomyelin With VLDL apoB-100 Fractional Catabolic Rate Before and After Rosuvastatin Treatment, J Clin Endocrinol Metab, vol.100, pp.2497-501, 2015.

E. M. Ooi, G. F. Watts, D. C. Chan, M. M. Chen, P. J. Nestel et al., Dosedependent effect of rosuvastatin on VLDL-apolipoprotein C-III kinetics in the metabolic syndrome, Diabetes Care, vol.31, pp.1656-61, 2008.

T. W. Ng, G. F. Watts, M. S. Farvid, D. C. Chan, and P. H. Barrett, Adipocytokines and VLDL metabolism: independent regulatory effects of adiponectin, insulin resistance, and fat compartments on VLDL apolipoprotein B-100 kinetics?, Diabetes, vol.54, pp.795-802, 2005.

G. F. Watts, P. H. Barrett, J. J. Serone, A. P. Chan, D. C. Croft et al., Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome, Diabetes, vol.52, pp.803-814, 2003.

B. Vergès, E. Florentin, S. Baillot-rudoni, S. Monier, J. M. Petit et al., Effects of 20 mg rosuvastatin on VLDL1-, VLDL2-, IDL-and LDL-ApoB kinetics in type 2 diabetes, Diabetologia, vol.51, pp.1382-90, 2008.

K. Ouguerram, T. Magot, Y. Zaïr, J. S. Marchini, B. Charbonnel et al., Effect of atorvastatin on apolipoprotein B100 containing lipoprotein metabolism in type-2 diabetes, J Pharmacol Exp Ther, vol.306, pp.332-339, 2003.

A. Sigruener, M. E. Kleber, S. Heimerl, G. Liebisch, G. Schmitz et al.,

, Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, PLoS One, vol.9, p.85724, 2014.

R. Laaksonen, K. Ekroos, M. Sysi-aho, M. Hilvo, T. Vihervaara et al.,

M. , H. R. März, W. Scharnagl, H. Stojakovic, T. Vlachopoulou et al., Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol, Eur Heart J, vol.37, pp.1967-76, 2016.

. Tc, HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density 3 lipoprotein cholesterol; non-HDL-C, non-HDL cholesterol; TG, triglyceride, p.4