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Abstract—As the solar photovoltaic (PV) share in the elec-
tricity grid is growing year by year, solar irradiance forecasting
is becoming increasingly important. In this work the perfor-
mance of a recursive formulation of ARMA models suitable for
operational context using the Pampa Húmeda region as a case
study is analyzed. Results are promising, as this simple adaptive
algorithm does not require historical data and outperform
persistence at all lead times. The improvement produced by
adding satellite cloudiness data and short-term local variability
as exogenous inputs is also evaluated. It is found that the
spatially averaged satellite albedo is a useful input variable,
improving the forecast performance, while the introduction of
short-term variability produce negligible performance changes
under this kind of models.

Index Terms—Forecasting, solar irradiance, adaptive filters,
satellite images.

I. INTRODUCTION

Solar energy is being increasingly used as a means of
producing electricity [1]. As an example, in 2017, the mile-
stone of having more than 400 GW worldwide installed
solar photovoltaic (PV) capacity was achieved. Due to the
intermittent character of solar energy, increasing the solar
energy share into the electricity grid pose a challenge for
its stability. Grid utilities need accurate forecast at different
granularities and time horizons for an efficient electricity
dispatch [2]. Predicting the solar irradiance at ground level
is the first step for solar PV power forecasting.

There are four main techniques for addressing solar en-
ergy forecast [3]–[5]: Numerical Weather Prediction (NWP)
models [6]–[8], satellite forecast by means of Cloud Motion
Field (CMF) estimation [9], all-sky camera forecast that track
clouds in the very short term [10] and statistical and machine
learning tools, commonly referred as time series forecast
[11]–[14]. In this context, several authors have proposed
forecasting models, such as Neural Networks (NN) [15]–
[19] or different kinds of Auto-Regressive Moving Average
(ARMA) models [20]–[23], being the latter the focus of this
work.

ARMA models are a tool to describe stationary processes
originally proposed by Whittle [24] and popularized by Box
and Jenkins [25]. These models are widely used in economics
and other fields where time series analysis and modeling are
an unavoidable task. General ARMA models can provide
multivariate predictions by modeling each observation as a
vector or an univariate prediction for an unique target variable.

The prediction may have also extra inputs variables, known
as exogenous variables. In order to produce a forecast, the
ARMA models linearly combines past observations and resid-
uals of both endogenous and exogenous variables. Despite
the strong hypothesis that the formal theory holds behind,
such as stationarity and linear relations between the variables,
they proved to be a good forecasting technique in several
fields [26]–[28]. Solar irradiation forecasting have not been
an exception. ARMA models have been used for Global
Horizontal Irradiance (GHI) prediction [3], [12], [20] and
consistently proved to obtain reduced estimation uncertainty
when compared with persistence and climatology forecasting.
They also proved to be competitive versus NN approaches
[29], [30]. An ARMA model can be formulated in many
different ways: as a fixed digital filter, as a Kalman filter,
as an adaptive filter or in a recursive manner.

A comprehensive study of the forecast errors when using
an ARMA model alongside a Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) model is presented
in [20]. Only the solar radiation time-series is used as
input variable. The ARMA models inspected are framed in
the Recursive Least Squares (RLS) technique, which is the
same that we use in this work. A specific model order was
selected for each place and lead time, and the uncertainty of
this approach for each location is reported. In [31] ARMA
models framed in a train-test approach are compared to other
models. In particular, ARMA models are compared to a
NN that includes solar satellite estimates retrieved from the
Helioclim-3 database (version HC3v5). The solar estimates
available in this platform are based on the Heliosat-2 model
[32] and images from the MSG (Meteosat Second Generation)
geostationary satellite administrated by ESA (European Space
Administration). The advantage of including solar satellite
estimates becomes explicit. This is also shown in a similar
but previous work over Gran Canaria Island [33].

In this work, the introduction of two exogenous variables
in ARMA models in a RLS framework for forecasting ground
level solar irradiation at an horizontal plane (GHI), using
the Pampa Húmeda region (south-east of South America)
as a case study, is explored. In particular, the effect of
adding a short-term variability index, calculated from recent
past ground measurements values, and satellite cloudiness
information, obtained from the GOES-East satellite admin-
istrated by NOAA (National Oceanic and Atmospheric Ad-



ministration), is tested. In this case, satellite cloudiness is
included directly without being processed by a solar resource
assessment model. It is found that including cloudiness satel-
lite information significantly improves the performance of
the ARMA-RLS forecast, while short-term local variability
has a negligible influence. A discussion regarding the order
selection of the ARMA filters for GHI forecasting in the
region is provided. It is shown that a fixed order can be used
for all lead times without any relevant performance loss in
comparison to an optimal filter. This reduces the problem
to an appropriate choice of exogenous inputs. These observa-
tions may be extrapolated to others regions or particular sites,
an analysis that, to the best of our knowledge, is not found in
the literature. Finally, the work also seeks to provide a first
in-detail assessment of the forecasting performance of these
kind of methods for the region.

The work is organized as follows: in Section II the data is
presented by describing the equipment, the stations’ character-
istics and the exogenous variables being used. In Section III
the ARMAX model and the RLS algorithm are presented,
with a description of the advantages of this approach. In
Section IV the forecast performance metrics to be used in
evaluation are introduced. A discussion of the order selection
for the ARMA models based only on past ground mea-
surements follows in Section V. In Section VI the results
including the exogenous variables in the ARMAX model are
exhibited. Finally, the work is concluded in Section VII. The
code used for this work is available at https://github.com/
franchesoni/ARMAXrls-solar-irradiance-forecasting.

II. DATA

GHI data recorded in six measuring stations in Uruguay
is used. These stations are representative of the subtropical
climate of the south-east part of South America, known as
Pampa Húmeda. The sites’ locations are presented in Table I.
One of these sites (LE) is located at the Solar Energy Labo-
ratory (LES, http://les.edu.uy) experimental facility, where a
Kipp & Zonen Solys2 ground station records the three main
irradiance components (global, direct and diffuse). The GHI
in this station is recorded using a Kipp & Zonen CMP10
Secondary Standard. The other four stations are located on
field in semi rural environments. They are equipped with First
Class or better pyranometers for the GHI measurement and a
data logger with remote communication. These pyranometers
are calibrated every two years against a Kipp & Zonen
CMP22 Secondary Standard that is kept with traceability
to the World Radiometric Reference in the World Radiation
Center, Davos, Switzerland. At least two years data at a 10
minutes granularity from the period 2015–2017 is considered
for each station.

In this work, the effect of adding short-term local variability
and satellite information to a RLS auto-regressive point
forecast is inspected. The variability index (σ) is computed
from the past ground measurements as the standard deviation
of the last five clear-sky index changes,

Table I
LOCATION OF THE GROUND MEASUREMENT STATIONS.

station station lat. lon. alt. GHI

name code (deg) (deg) (m) (W/m2)

LES facility LE -31.28 -57.92 56 460

Artigas AR -30.40 -56.51 136 451

Las Brujas LB -34.67 -56.34 38 440

Tacuarembó TA -31.71 -55.83 142 444

Rocha RO -34.49 -54.31 20 428

La Estanzuela ZU -34.34 -57.69 70 442

all sites measurements average 444

σ(t) =

√√√√ 1

M

M−1∑
i=0

(
∆kc(t− i)−∆kc

)2
, (1)

with M = 5, where kc is the ratio between the GHI
measurements and the clear sky GHI as estimated by a clear
sky model, ∆kc(t) = kc(t)−kc(t−1) are the changes in this
variable and ∆kc is the average of the M considered changes.
The McClear model [34], publicly available at the SoDa
platform (http://www.soda-pro.com), is used for calculating
the clear-sky index from the GHI time series. In order to
avoid variability issues related to the interface between two
consecutive days, the variability is set to zero at the beginning
of a day and only current day samples are used for its
calculation.

Satellite images are also required. GOES-East’s satellite
Earth Albedo (ρp) averaged in a 10 min × 10 min latitude-
longitude cell is used. The spatial average of the satellite
information is intended to include near future information
of the cloudiness, as it is not only taking into account the
cloudiness over the specific site, but also the surroundings.
The GOES13 satellite operated in the GOES-East position
during the period 2015-2017, providing an irregular time-slot
acquisition for South America. Satellite images for this region
are usually available at a rate of two images per hour, but
periods with hourly or tri-hourly images may occur. The 10-
minutes time resolution for the satellite albedo was obtained
via a linear interpolation. Satellite gaps of more than two
consecutive hours are not interpolated and are removed from
the data set.

III. ARMAX FILTERING

Auto-Regressive (AR) and Moving-Average (MA) models
with Exogenous Variables (ARMAX) describe a process as a
linear combination of past measurements (Xt−i), past errors
(εt−i) and exogenous variables (Et, a vector which may
include past values). If p and q are the orders of the AR
and the MA terms respectively, we have,

Xt =

p∑
i=1

αiXt−i +

q∑
i=1

βiεt−i + γTEt + εt, (2)

https://github.com/franchesoni/ARMAXrls-solar-irradiance-forecasting
https://github.com/franchesoni/ARMAXrls-solar-irradiance-forecasting
http://les.edu.uy
http://www.soda-pro.com


where εt is a deviation from the model at time t, assumed to
be white Gaussian noise. For later forecasting use, the set of
parameters α, β and γ that best fit the data need to be found.
For this the RLS algorithm is used, explained in the following.
The predicted variable is the clear-sky index (Xt = kc(t))
which is then converted to a GHI point forecast using the
McClear clear-sky model. The signals σ(t) and ρp(t) are the
variables inspected for Et.

Recursive Least Squares (RLS) is an optimization algo-
rithm that solves recursively the minimization of a cost
function depending on the weights wn (or α,β,γ, in this
case),

C(wn) =

n∑
i=0

λn−ie2(i), (3)

where e(i) is the forecasting error of observation i. Note that
if the lead time is h, then e(i) = wT

nzi−h−Xi, being zi−h

a vector including all input variables. The factor λ is called
forgetting factor and when it is near 1, it resembles Least
Squares Minimization while allowing the weights to adapt
to the statistical changes of the kc time series. A sketch
of the RLS algorithm is provided in Algorithm 1, where a
big initialization parameter b denotes uncertainty in the first
estimate.

Algorithm 1 Recursive Least Squares Algorithm
h : forecast horizon
p : AR order
q : MA order
Xi : measurement at time i
Ei : exogenous variables at time i
b = 1000 : initialization parameter
λ = 0.999 : forgetting factor

Initialization
ŵ0 ← 0
X̂0 ← 0
P0 ← bI

When new data arrives
Xn ← (Xn, Xn−1, ..., Xn−p+1)

T

en ← X̂n −Xn

zn ←
(
XT

n , e
T
n ,E

T
n

)T
Kn ←

Pn−1zn−h

λ+zT
n−hPn−1zn−h

Pn ← 1
λ

(
Pn−1 −Knz

T
n−hPn−1

)
ŵn ← ŵn−1 +Kn

(
Xn − zTn−hŵn−1

)
X̂n+h ← zTn ŵn

As historical data is not necessary, this adaptive approach is
useful for operational context. It also avoids fixing the weights
(and the optimization challenge this brings). Furthermore, sta-
tistical properties varies between seasons and even days (i.e.
cloudy and clear-sky days), causing short-term adaptability to

be a desirable property. A deduction of RLS algorithm for an
arbitrary lead time is provided in the Appendix A, which is
not easily found in the bibliography.

IV. PERFORMANCE METRICS AND EVALUATION

Results are presented in terms of the standard Mean Bias
Deviation (MBD) and Root Mean Squared Deviation (RMSD)
metrics, as well as the Forecasting Skill (FS) metric [3]. The
MBD and RMSD definitions are,

MBDh =
1

N

∑
i

[
ŷh(i)− yref(i+ h)

]
, (4)

RMSDh =

√
1

N

∑
i

[ŷh(i)− yref(i+ h)]
2
, (5)

where ŷh is the GHI forecast, yref is GHI measurement’s
and h is the forecast horizon. Their relative values, rMBD
and rRMSD respectively, are expressed as percentage of
the average irradiance value (see last column of Table I).
The MBD definition is such that a positive value means
a forecasting overestimation and a negative value means a
forecasting subestimation. The forecasting skill represents the
gain of the forecasting RMSD with respect to the persistence
procedure, and it is defined as,

FS = 1− RMSDm

RMSDp
, (6)

where the subscripts ‘m’ and ‘p’ refers to the model and
persistence respectively. The persistence is calculated by
setting k̂c(t + h) = kc(t), for every h ≥ 1, where k̂c(t + h)
is the forecast of kc(t + h). As explained before, the cor-
responding GHI forecast is inferred by using the clear sky
model estimates.

The results averaged over all the sites, which act as the
mean performance over the region, are presented here. Note
that this is not an assessment in which it is intended to
predict the joint resource for all sites, known as regional
forecast, but rather is the average of the sites performances.
The complete results (the performance metrics) for each
station, model and lead time can be found in the following
link: http://les.edu.uy/pub/ARMAX-RLS.csv. As the filters
are adaptive, no train set is needed. Nevertheless, the first
400 forecasts were ignored in order to avoid including con-
vergence and initialization discussions that are not relevant to
operational performance.

V. ARMA ORDER SELECTION

The orders for the ARMA model have to be selected (p
and q) for each lead time. In this Section, the order selection
is done using only the past ground measurements. ARIMA
models (models that work with the time series derivative)
were also considered, yielding worse results in all the cases,
so the differentiation term (known as d) is ignored in the
following analysis. Information criteria do not always lead to
an acceptable model selection, as was found out in some tests.

http://les.edu.uy/pub/ARMAX-RLS.csv


There is a qualitative approach based on Auto-Correlation
Function (ACF) and Partial ACF plots, but it proved not
suitable for working with these solar data sets (although
the approach is widely used in economics [35]). However, a
grid-search model selection method provided one important
insight: if the irradiance time series is long enough, then
different orders for p ≥ 1 yield a difference always smaller
than 1 % in terms of rRMSD for our data set, as observed
in Fig. 1 (orders for p ≤ 10 are plotted). In Fig. 1 the
performance of different (p, q) ARMA models is shown as a
function of the time horizon and it is observed that the curves
with worse performance correspond to those models with
p = 0. For p > 0 small performance changes are observed for
the different model’s orders. Also, the rRMSD span is reduced
with the time horizon. The rRMSD span is of ' 0.9% for 10
minutes ahead, ' 0.8% for 90 minutes ahead and less than
' 0.4% for 240 minutes ahead. Most of these differences
are concentrated between the p = 1 models and the others,
being the rRMSD surfaces more flat for higher p orders. This
implies that, in practice, the selection of the model order (both
p and q) is not a crucial issue for p ≥ 2. In Fig. 2 a simple
AR model, with p = 5 AR lags (as it was found as a good
trade off filter between accuracy and simplicity for all lead
times), applied to each lead time and location, is compared
to the error found with the optimum (p, q) for each lead time
and location. The difference is negligible.

Figure 1. Performance analysis for different (p, q) ARMA models. Curves
for p ≤ 10 are plotted.

VI. RESULTS WITH EXOGENOUS VARIABLES

Aside from reasonable order selection, the most important
performance changes come from an appropriate choice of
exogenous variables. Intuitively, including the local short-
term variability of the time series would add information
about the current state of the atmosphere; i.e., if the last
conditions were clear/cloudy sky or partially cloudy (which
will exhibit higher variability). Cloudiness measured via
satellite is strongly (negatively) correlated with irradiance
measurements. Assuming an ergodic hypothesis, the average

Figure 2. Performance comparison between a (5, 0) model and an optimum
model which uses the best performing p and q values for each time horizon
and location.

in space of the satellite cloudiness includes information of
the near future irradiation over the site. Given the above, we
implement and compare the following models:

1) Model PGM: is an ARMAX-RLS model that only uses
Past Ground Measurements (PGM).

2) Model PGM-S: is the PGM model including current
time satellite albedo (ρp) as exogenous variable.

3) Model PGM-V: is the PGM model including local
short-term variability (σ) as exogenous variable.

4) Model PGM-SV: is the PGM model including both
exogenous variables (satellite and variability).

The results were obtained for the PGM, PGM-S, PGM-
V and PGM-SV models using a (5, 0) order for the ground
measurements part. Exogenous variables are included at time
t, without neither past values or past errors. Table II presents
the average performance over the region for each model and
the persistence as a function of the time horizon. It shall
be noted that all the models present similar and small bias
(rMBD) and outperform the persistence procedure in terms of
RMSD, yielding positive forecasting skills. The trend of the
RMSD against the forecast horizon is illustrated in Fig. 3.

It is clear that the introduction of the spatially averaged
satellite albedo as an exogenous variable improves the fore-
cast performance. For instance, the PGM model achieves a
minimum forecasting skill of FS = 7.8 % (h = 10 minutes)
and a maximum forecasting skill of FS = 14.8 % (h =
240 minutes) while the PGM-S model obtains a FS = 16.3 %
and FS = 18.2 % for the same time horizons, respectively.
Also, the performance of the PGM-S model peaks at FS =
24.1 % (for h = 30 minutes). The characterization of the
impact of the spatial averaging cell size on the forecasting
performance will be part of future work.

On the other hand, including short-term variability has



Table II
PERFORMANCE METRICS FOR THE ARMAX-RLS ALGORITHM AVERAGED OVER THE FIVE STATIONS.

Persistence PGM PGM-S PGM-V PGM-SV
time MBD RMSD MBD RMSD FS MBD RMSD FS MBD RMSD FS MBD RMSD FS

horizon (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

10 minutes 0.1 20.8 0.2 19.2 7.8 0.3 17.3 16.6 0.2 19.2 7.7 0.3 17.3 16.5
20 minutes 0.1 24.7 0.4 22.3 9.9 0.5 19.1 22.9 0.4 22.3 9.8 0.5 19.1 22.8
30 minutes 0.2 26.7 0.5 24.0 10.2 0.6 20.3 24.1 0.5 24.0 10.1 0.6 20.3 24.0
40 minutes 0.2 28.2 0.6 25.3 10.2 0.7 21.6 23.6 0.6 25.3 10.1 0.7 21.6 23.5
50 minutes 0.3 29.4 0.7 26.4 10.2 0.7 22.8 22.7 0.7 26.5 10.1 0.8 22.8 22.6
60 minutes 0.4 30.5 0.8 27.4 10.1 0.8 23.9 21.7 0.8 27.5 10.0 0.8 23.9 21.6
120 minutes 0.8 36.2 1.2 32.3 10.6 0.9 29.4 18.7 1.2 32.4 10.5 0.9 29.4 18.6
180 minutes 1.2 41.2 1.5 36.1 12.4 0.9 33.7 18.3 1.5 36.1 12.3 0.9 33.7 18.2
240 minutes 1.4 45.7 1.6 38.9 14.8 1.0 37.1 18.8 1.6 39.0 14.7 1.1 37.1 18.8

almost no effect in the model performance, as also shown in
Fig. 3. Thus, variability is not a suitable exogenous variable
to introduce in the ARMAX-RLS models: linearly combining
this variable does not improve the forecast performance.
This does not mean that this variable it is not suitable for
any model, as it may be useful for others machine learning
approaches for point or probabilistic forecast.

Figure 3. rRMSD metric: average performance over all Uruguayan sites.

VII. CONCLUSIONS

The results obtained for GHI forecasting in the Pampa
Húmeda region (south east part of South America) using an
ARMAX Recursive Least Squares technique with past ground
measurements and two different exogenous variables (satellite
albedo and a local short-term variability index) as input
were presented in this work. We found that all the models
tested, whether they include or not exogenous variables,
outperform the classical persistence procedure for the region.
A discussion for the ARMA order selection (p and q) was
provided, and it was found that for p ≥ 2 all the orders yield
to similar performance. Also, it was observed that a fixed

filter for all sites and time horizons can be used in the region
without sacrificing performance. The importance of including
satellite data as predictor is revealed, as it greatly improves
the forecasting performance. However, variability information
was found to be irrelevant to these kind of models, since
negligible changes were found in the model’s performance
due to its introduction. The recommended model for the
region from the ones inspected here is the PGM-S model.

The results presented here comprise a solely homogeneous
subtropical climatic area and should not be incautiously
extrapolated to other sites. In future research these ideas will
continue to be explored over other parts of the world, covering
other climates with different solar resource variability. Also,
as the site’s satellite information prove to be an improvement,
adding the satellite cloudiness in the surroundings of the
site is a promising future work for improving solar forecast.
Combining information and predictors correctly is needed
to improve solar forecasting accuracy and recursive ARMA
models can serve as a good framework for this objective.
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APPENDIX A
DEDUCTION OF RECURSIVE LEAST SQUARES ALGORITHM

FOR ARBITRARY LEAD TIME

Remember the cost function to minimize Eq. (3),

C(wn) =

n∑
i=0

λn−ie2(i), (2)

being e(i) the forecasting error of observation i. Note that if
the lead time is h, then e(i) = wT

nzi−h −Xi, being zi−h a
vector including all input variables.

Differentiating and equaling to zero:

dC(wn)

dwn
=

n∑
i=0

2λn−ie(i)
de(i)
dwn

=
∑
i=0

n2λn−ie(i)zi−h = 0



⇒
n∑
i=0

λn−i(wT
nzi−h −Xi)zi−h = 0

⇒
n∑
i=0

λn−i(wT
nzi−h)zi−h =

n∑
i=0

λn−iXizi−h

that can be shown equivalent to:
n∑
i=0

λn−izi−hz
T
i−h︸ ︷︷ ︸

Θ(n)

wn =

n∑
i=0

λn−iXizi−h︸ ︷︷ ︸
r(n)

,

identifying Θ(n) the weighted sample covariance matrix for z
and being r(n) the estimate of the cross-covariance between
Xn and zn−h. So we have: Θ(n)wn = r(n). Now note that
we could write Θ as a recursion:

Θ(n) = zn−hz
T
n−h + λ

n−1∑
i=0

λn−1−izi−hz
T
i−h︸ ︷︷ ︸

Θ(n−1)

. (7)

Remembering the Woodbury Matrix Identity:

(A+ UCV )
−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1,

and identifying right hand side of Eq. (7) as A+ UCV

A−1 =
1

λ
Θ−1(n−1), U = zn−h, C = I, V = zTn−h,

we can invert Θ(n), obtaining,

Θ−1(n) =
(
λΘ(n− 1) + zn−hz

T
n−h

)−1

= (A+ UCV )−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1

=
1

λ

Pn−1 −
Pn−1zn−h

λ+ zTn−hPn−1zn−h︸ ︷︷ ︸
Kn

zTn−hPn−1

 ,

where Pn−1 = Θ−1(n− 1) and Pn = Θ−1(n).
So we have:

Pn =
1

λ

(
Pn−1 −Knz

T
n−hPn−1

)
.

Playing with Kn:

Kn =
λ−1Pn−1zn−h

1 + λ−1zTn−hPn−1zn−h

⇒ Kn

(
1 + λ−1zTn−hPn−1zn−h

)
= λ−1Pn−1zn−h

⇒ Kn = λ−1
(
Pn−1 −Knz

T
n−hPn−1

)
zn−h

= Pnzn−h

From the definition of r(n):

r(n) =

n∑
i=0

λn−iXizi−h = Xnzn−h+λ

n−1∑
i=0

λn−1−iXizi−h

= λr(n− 1) +Xnzn−h

Recalling Θ(n)wn = r(n) and replacing r(n):

ŵn = Pnr(n)

⇒ ŵn = λPnr(n− 1) + PnXnzn−h

= Pn−1r(n− 1)−Knz
T
n−hPn−1r(n− 1) +XnPnzn−h

= ŵn−1 −Knz
T
n−hŵn−1 +XnKn

= ŵn−1 +Kn

(
Xn − zTn−hŵn−1

)
That is the coefficient update summarized in Algorithm 1.
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