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Economic optimization of micro-grid operations by dynamic 
programming with real energy forecast 

Faly Ramahatana1 and Mathieu David1 
1 PIMENT Laboratory, University of Reunion Island, 117 rue du général ailleret, 
97430 Le Tampon, Réunion (France) 

E-mail: faly.ramahatana-andriamasomanana@univ-reunion.fr  

 
Abstract. Optimal management of micro-grids requires anticipating the supply-demand 
unbalance. This work aims at developing a method to integrate real day-ahead deterministic 
forecasts of photovoltaic (PV) production and of system loads in the management of an ESS 
integrated inside a micro-grid. Dynamic Programming (DP) has been chosen to optimize the cost 
of the micro-grid operation. To test the developed method, a real educational Net Zero Energy 
Building equipped with a PV roof is considered. Compared to a management that does not take 
advantage of forecasts, the developed method allows decreasing the operating cost of the system. 

 Variable   Variable 
Measured and forecasted load (kWh) 𝑬𝑬𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳, 

𝑬𝑬𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 
�

 
 

 Energy transfers with grid (kWh) 𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

Measured and forecasted PV (kWh) 𝑬𝑬𝑷𝑷𝑷𝑷  , 𝑬𝑬𝑷𝑷𝑷𝑷  
�

 
  Global irradiation (kWh/m2) I 

Energy injected to the grid by the ESS (kWh) 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬−𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮  PV surface (60 m2) S 
Energy injected to the grid by the PV (kWh) 𝑬𝑬𝑷𝑷𝑷𝑷−𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮  PV efficiency (10%) 𝜼𝜼𝑷𝑷𝑷𝑷 
Price of purchased electricity (€/kWh) 𝑪𝑪𝟏𝟏  Feed-in tariff (10.85 c€/kWh) 𝑪𝑪𝟐𝟐 
PV temperature coefficient (0.005 °C-1) 𝒄𝒄𝒄𝒄𝑷𝑷𝑷𝑷  Converter efficiency 𝜼𝜼𝒊𝒊𝒊𝒊𝒊𝒊 
State of charge (SOCmin = 40% and SOCmax = 
90%) 

SOC  ESS capacity (30 kWh) 𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓 

ESS charge and discharge energy (kWh) 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬  ESS round-trip efficiency (82%) 𝜼𝜼𝑬𝑬𝑬𝑬𝑬𝑬 
Inverter nominal power (25 kW) 𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓  ESS aging coefficient (2.10-4) Z 
ESS state of health (SOHmin = 70%) SOH  Outdoor temperature (°C) 𝒕𝒕𝟎𝟎 
ESS investment cost (130 €/kWh) BIC  PV production cost (6.90 

c€/kWh) 
𝑪𝑪𝒖𝒖𝑷𝑷𝑷𝑷 

1. Introduction 
Microgrids are rising worldwide because they contribute to better integrate renewables in energy 
systems [1]. A micro-grid is a system with its own generation means such as PV rooftop, loads and 
frequently an energy storage system (ESS). Its architecture aims to improve energy production and 
delivery to load. By their variable nature, intermittent RES such as PV generate fluctuations that 
destabilize supply and demand balance, reduce the power quality and therefore the system reliability. 
The main challenge facing the microgrids is to find the most effective way to manage the generation 
and the load. This work focuses on a centralized microgrid with few controllable devices.  
 Considering non-dispatchable RES such as PV, the use of an ESS allows balancing the supply-
demand of electricity and add flexibility [2] to the system. The objective is to reduce the operation costs 
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and increase the local self-consumption. Regarding recent works [3], the management of the ESS state 
of charge (SOC) is one of the most used methods. Scheduling of the SOC while taking into account the 
future loads and production permits to reach the lowest operating cost. In the state of the art [3], this 
operational problem is commonly dived in two optimization loops: predictive scheduling of the 
production systems (PV and ESS) commitment and real-time control of the system. This work only 
addresses the predictive scheduling step. Most of the works on the topic [3] use unrealistic forecasts 
from perturbed measured  data. The use of the perfect forecasts as input of the optimization process also 
permits to evaluate the maximum expected improvement, as instance they allow decreasing the peak 
demand from the grid and can cut off by 13% the system operating cost of a small microgrid with PV, 
lead-acid batteries and a local electricity demand.  
 This work proposes a strategy based on the integration of operational day-ahead forecasts into the 
optimization process required to generate an optimal scheduling of the ESS. Then, an analysis of the 
contribution of the forecasts on the operation of the microgrid is carried out. DP is used to optimize the 
control of the ESS using operational forecast retrieved from the European Centre of Medium range 
Weather Forecasts (ECMWF) with a 1-hour time step for several days ahead. 
 
2. Methods and tools  
2.1. Load and PV forecasts 
The building load forecasts are based on average weekdays. 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(ℎ,𝐷𝐷)  is the energy consumed by 
the building for the week day D (i.e. Monday to Sunday) and hour h. The forecasted load 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(ℎ,𝐷𝐷) �  
corresponds to the average load of the building over the N weeks of the year as follow: 

𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(ℎ,𝐷𝐷) � =
∑ 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(ℎ,𝐷𝐷) 
𝑁𝑁
𝑖𝑖

𝑁𝑁
 ℎ ∈ (1,⋯ ,24)  𝐷𝐷 ∈ (1,⋯ ,7)  𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁 = 51 (1) 

Using this method, we generate 7 averages weekdays, which are representative of the building schedule 
use during an average week. As a consequence, all forecasted weeks are identical. 
 To forecast the PV output, day-ahead forecasts with a 1-hour granularity of relevant weather 
parameters, i.e. solar irradiance and dry-bulb air temperature are retrieved from the IFS run launched at 
midnight and available at the ECMWF portal. The simplified model proposed by [4] is used to compute 
the generation of the PV plant:  

𝐸𝐸𝑃𝑃𝑃𝑃� (𝑡𝑡) = 𝜂𝜂𝑃𝑃𝑃𝑃 × 𝑆𝑆 × 𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� × �1 − 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃 × (𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� (𝑡𝑡) − 25)� × 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 × ∆𝑡𝑡  (2) 
Where 𝜂𝜂𝑃𝑃𝑃𝑃 is the conversion efficiency of the solar cell array, 𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃 the temperature coefficient of the 
PV module, S the PV field area, 𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�  and 𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�  are respectively the forecasted dry-bulb 
temperature and the global solar irradiance.  Regarding the inverter, the efficiency is calculated using 
the model proposed by [3]:  

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 = 1 −
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑃𝑃𝑃𝑃𝑃𝑃
× (0.0094 + 0.043 × 𝐼𝐼𝐼𝐼 + 0.04 × 𝐼𝐼𝑛𝑛2) (3) 

2.2. ESS model  
The architecture of the system is based on the model introduced by Riffoneau [3], composed by a load, 
a PV generator, an ESS and a connection to the main grid. A lead-acid batterie is used for this work, 
with the assumption that no self-discharge occurs over time. For the AC-DC (bidirectional) conversion, 
we will use the same type of converter as the one used for the PV generator and its efficiency is given 
by see eq. 3. The round-trip efficiency of the batteries is estimated to be a constant value 𝜂𝜂𝐸𝐸𝐸𝐸𝐸𝐸 of 82%[5]. 
The State of Charge (𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐶𝐶(𝑡𝑡) 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟,𝑛𝑛𝑛𝑛𝑛𝑛⁄ ) is the ratio of the current capacity C(t) to the reference 
capacity 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟,𝑛𝑛𝑛𝑛𝑛𝑛 and its variation over the time is ∆𝑆𝑆𝑂𝑂𝐶𝐶(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡 − ∆𝑡𝑡) − 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡). The energy 
that flows in and out to the ESS is given by: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) = �
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 × ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)  × 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟,𝑛𝑛𝑛𝑛𝑛𝑛  𝑖𝑖𝑖𝑖 ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) > 0

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) × 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟,𝑛𝑛𝑛𝑛𝑛𝑛

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 × 𝜂𝜂𝐸𝐸𝐸𝐸𝐸𝐸
 𝑖𝑖𝑖𝑖 ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) < 0

 (4) 

 From a technical point of view, the lifespan of this type of storage is linked to the number and the 
depth of the cycles of charges and discharges. The considered model estimates the deterioration of the 
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state of health (SOH) as a linear relationship between the depth of the discharges and a coefficient of 
aging Z. ∆𝑆𝑆𝑆𝑆𝑆𝑆, wich corresponds to the diminution of the SOH after a discharge, is given by following 
equation: 

∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = �𝑍𝑍 × ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑖𝑖𝑖𝑖 ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) < 0
0  𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 (5) 

2.3. Optimization 
In energy planning, there are numerous methods dedicated to the operating cost optimization [6,7]. Here, 
we chose the Dynamic programming (DP) because our problem can be convex or concave. Furthermore, 
[8] showed that DP is a good candidate for the optimal management of an ESS. Last, as forecasts could 
be probabilistic, the use of the stochastic version of the DP will be the next step to achieve a robust ESS 
management. 
 The current SOH of a battery depends variation of the SOC and on various random factors such as 
manufacturing variance. Since our hypothesis does not take into account these random processes, it is 
assumed that the degradation is simply a function of the SOH. If the SOH reaches the minimum value 
𝑆𝑆𝑆𝑆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚, the ESS is disabled. The operating cost 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) of the ESS depends on its SOH and on the 
investment cost 𝐵𝐵𝐵𝐵𝐵𝐵 of the ESS.   

𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) = 𝐵𝐵𝐵𝐵𝐵𝐵 × �
−∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)

1− 𝑆𝑆𝑆𝑆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚
� (6) 

 Costs of PV 𝐶𝐶𝑃𝑃𝑃𝑃(𝑡𝑡) and of purchased electricity from the grid 𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) are calculated using linear 
relationships based on unitary costs. The production cost of the PV field 𝐶𝐶𝑃𝑃𝑃𝑃(𝑡𝑡) is calculated as follow:  
𝐶𝐶𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) × 𝐶𝐶𝑢𝑢𝑃𝑃𝑃𝑃, where 𝐶𝐶𝑢𝑢𝑃𝑃𝑃𝑃 is the unitary cost of energy production 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) of the PV 
generator .  This unitary price of energy produced by the OPV is derived from the levelized cost of 
electricity (LCOE [9]). Considering the economical context of the study case, the unitary price is 𝐶𝐶𝑢𝑢𝑃𝑃𝑃𝑃 =
0.069 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸/𝑘𝑘𝑘𝑘ℎ. In this study we assume constant values of the feed-in-tariff 𝐶𝐶2 and variable grid cost 
𝐶𝐶1 of electricity are considered (see eq. 7). 

𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) = 𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) × 𝐶𝐶𝑢𝑢𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �
𝐶𝐶𝑢𝑢𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐶𝐶1 𝑖𝑖𝑖𝑖 𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) > 0
𝐶𝐶𝑢𝑢𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐶𝐶2 𝑖𝑖𝑖𝑖 𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) < 0 (7) 

 The cost function of the optimization problem is the economic costs of the micro-grid operation 
taking into account the costs of the different sources (i.e. PV, ESS and grid). The optimal operation cost 
is obtained from the global minimization of the following objective function where the unique decision 
variable is the ESS energy (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸): 

𝐽𝐽 = min �𝐶𝐶𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) + 𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 (8) 

 Constraints are by nature related to the operation and to physical limitations of the system. The first 
constraint is the supply-demand balance of the micro-grid, which implies that the sum of the energy 
flows is null:  

𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) = 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) + 𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡) (9) 
 The system also experiences technical constraints related to ESS limitations and to the grid 
contribution. Considering an electro-chemical battery, the technology itself implies that it is not possible 
to use the storage in the extremums (totally empty or full). As a result, an operating range between a 
minimum SOC𝑚𝑚𝑚𝑚𝑚𝑚 and a maximum 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is necessary to avoid damaging the ESS. 

𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶max (10) 
 As described in section II, the SOH of the ESS gradually decreases with the depths of the discharges. 
To keep the system working, a minimal level of SOH of the ESS 𝑆𝑆𝑆𝑆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 is required.  

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) > 𝑆𝑆𝑆𝑆𝐻𝐻min  (11) 

3. Implementation 
The control of the ESS consists in scheduling the SOC of the ESS with time step of 1 hour. Therefore, 
the SOC of the ESS is scheduled every hour of the next day. For the study, two management strategy 
will be compared: instantaneous or ruled based management and controlled with forecasts. 
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 The ruled based is an instantaneous management, depending on the SOC of the battery, the supply-
demand imbalance and the charges/discharges of the ESS. The operation of this strategy can be 
summarized by few rules. The PV can only charge the ESS when PV output excess the load. The ESS 
supplies the energy to the load when the PV is not enough. If the ESS is empty, the grid supplies the 
load. And finally, if the ESS is full, the excess of energy is injected to the grid. 
 This second management mode uses the forecasts as input of a receding horizon method. At 00h00 
of simulated day 𝐷𝐷, 3 days of PV and load forecast are produced. Then, the optimization schedules the 
operation of the ESS for the next 72h of with a 1-hour granularity. Only the first 24 hours are considered 
to operate the ESS but the use of a longer horizon in the optimization permits to define an optimal SOC 
at the end of the first day. Without this receding horizon method, the ESS would have been empty at the 
end of every day. During the realization of the schedule of the ESS, the grid counterbalances the 
deviations from the forecasts. First, perfect forecasts, corresponding to the recorded historical data, will 
provide an assessment of the best performance that could be achieved while introducing forecasts to 
elaborate the scheduling of the ESS. Second, real forecasts, as described in section II, will give realistic 
results. 
 The operation cost of the micro-grid is obviously the first indicator generated by the two management 
strategies. Beside the economic assessment, the evaluation of the quality of the management of the 
micro-grid, will be done by the following indicators proposed by Simpore [10]: 

Self consumption: 𝜏𝜏𝑐𝑐𝑐𝑐  = ∑ �𝐸𝐸𝑃𝑃𝑃𝑃−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)+𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑇𝑇
𝑡𝑡=1

∑ 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡)𝑇𝑇
𝑡𝑡=1

 (12) 

The rate of injections to the grid: 𝐸𝐸𝑅𝑅 = ∑ �𝐸𝐸𝑃𝑃𝑃𝑃−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)+𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)�𝑇𝑇
𝑡𝑡=1

∑ 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡)𝑇𝑇
𝑡𝑡=1

 (13) 

4. Data  
The load data come from a building called EnerPOS, which is located in St-Pierre in the island of 
Reunion, a French overseas territory in the Indian Ocean. It is a building in a tropical environment of 
the southern hemisphere. The building is intended for administrative and school uses. It is a Net zero 
energy building [11] with integrated photovoltaic systems and a low energy consumption. The 
meteorological data comes from a meteorological station installed on the same site. The cost of 
electricity in Reunion Island is subsidized by the state and the selling prices are strongly lower than the 
real cost of electricity production. Considering these artificially low tariffs, the development of 
renewables must be grant-aid. In this work, we shifted the current prices applied to the studied building 
to correspond to the annual and real cost of energy provided by the unique local distribution operator, 
including taxes (Table 1).  The timetable of the peak, off peak and normal hours used to compute the 
electricity bill of the building can be consulted on EDF website [12]. 
 

Table 1. French context electricity price from extrapolated value at January 2018  

 Fixed part 
(€/kW) 

Peak 
(c€/kWh) 

Summer (c€/kWh) Winter (c€/kWh) 
 LRH NH LRH NH 

Average  47,640 41.49 13.83 15.17 18.38 25.87 
Normal hours: NH 
Low rate hours: LRH 

5. Results and discussion 
For a sample day (see figures 1 and 2), we can see that the ESS operation of the ruled based strategy 
differs significantly from the control with forecasts. Considering the same initial SOC=0.5, the latter 
outperforms the ruled based method. The optimal control with forecasts uses the difference of prices 
between peak and off-peak hours to maximize the gains. The storage only stores the energy required to 
avoid purchasing of electricity from the grid during the peak hours. Regarding more specifically the use 
of real forecasts, the behaviour of the ESS is almost the same as for perfect forecasts. But due to 
forecasting errors, mismatches in supply-demand balance occur and increase the operating cost. As 
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expected, in case of supply-demand imbalance of the micro-grid, the rule-based strategy systematically 
charges or discharges the ESS. As a consequence, the storage accumulates the extended of energy from 
the PV till its full and when the PV is not enough, the storage discharges to compensate the deficit. So, 
the ruled-based management uses intensely the storage and the operation cost is more important because 
of strong and frequent discharges. 
 

 

 
 
 
 
 
 
 
 
 

 
Figure 1. Rule-based management   Figure 2. Real forecast scheduling 

 
 The forecast quality [13] is computed for an entire year of operation of the building. Table 2 gives 
the yearly metrics of error for the PV, the load and the net-load forecasts. This former corresponds to 
the net consumption of the building when considering the PV production, 𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐸𝐸𝑃𝑃𝑃𝑃. 
The forecasts experience a low bias. One can also notice that the PV forecasts are less accurate than the 
load forecasts with lower RMSE and MAE. Finally, the net-load forecasts are strongly worse than both 
PV and load forecasts. The evolution of the hourly operation cost as a function of the hourly forecasting 
error of the net-load indicates that an overestimation of the net-load leads to an increase of the operation 
cost. Moreover, if the error is close to 0, there are high cost valuers, which mean that at some points, we 
have to exploit the storage or the network as much as possible. 

Table 2: Annual error metrics 
 RMSE (Wh)  MAE (Wh) MBE (Wh) 
Load 0.469 0.305 -0.003 
PV 0.909 0.332 -0.107 
Net-load 2.499 1.834 0.104 

 
Figure 3: Relationship between hourly forecast error and operation cost of the microgrid. 

 In table 3, annual indexes show that the knowledge of the future can reduce the operating cost by 
22% using perfect forecast and 15% with real forecast. So, the quality of the forecast increases the 
economic gains. Regarding the self-consumption rate, the values are almost the same for the perfect and 
real forecasts. However, the ruled-based has a higher self-consumption rate because the ESS is 
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systematically charged when there is a surplus of PV production and then this surplus is shifted to the 
night hours to supply the building. The control with forecasts sells more energy to the grid to increase 
the gains and thus the injection to the grid is higher than the rule-based management. 

Table 3: Performances of the microgrid for 1 year of operation 

 Self-consumption 
τcs [%] 

Injection to the grid 
𝐄𝐄𝐑𝐑[%] 

Max Energy 
from grid 

Annual operating 
cost J [€] 

Perfect 49.482 38.746 10.488 1086.054 
Forecast 48.215 44.239 14.258 1189.498 
Rule-based 55.758 9.432 3.534 1402.965 

6. Conclusion 
This work sets up the optimal control of an ESS with the aim to minimize the operating cost of a real 
microgrid. The specificity of the approach is to use real forecasts for the load and for the PV production. 
The use of the forecasts permits establishing the day-ahead schedule of the ESS and to minimize the 
operating cost. First, the results show that dynamic programming optimization allows detailing 
efficiently the microgrid features even if they assume non-linear behaviour. Second, the use of the 
ECMWF forecasts to predict the PV production improves significantly the yearly gain compared to a 
rule-based management strategy. Then, this study highlights that an underestimation of the future 
resources (PV) has less effects on the operating cost reduction than an overestimation. 
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