Faly Ramahatana 
  
Mathieu David 
  
Economic optimization of micro-grid operations by dynamic programming with real energy forecast

Optimal management of micro-grids requires anticipating the supply-demand

unbalance. This work aims at developing a method to integrate real day-ahead deterministic forecasts of photovoltaic (PV) production and of system loads in the management of an ESS integrated inside a micro-grid. Dynamic Programming (DP) has been chosen to optimize the cost of the micro-grid operation. To test the developed method, a real educational Net Zero Energy Building equipped with a PV roof is considered. Compared to a management that does not take advantage of forecasts, the developed method allows decreasing the operating cost of the system. 

Introduction

Microgrids are rising worldwide because they contribute to better integrate renewables in energy systems [START_REF] Asmus | Microgrids, Virtual Power Plants and Our Distributed Energy Future The Electricity[END_REF]. A micro-grid is a system with its own generation means such as PV rooftop, loads and frequently an energy storage system (ESS). Its architecture aims to improve energy production and delivery to load. By their variable nature, intermittent RES such as PV generate fluctuations that destabilize supply and demand balance, reduce the power quality and therefore the system reliability.

The main challenge facing the microgrids is to find the most effective way to manage the generation and the load. This work focuses on a centralized microgrid with few controllable devices. Considering non-dispatchable RES such as PV, the use of an ESS allows balancing the supplydemand of electricity and add flexibility [START_REF] Anees | Grid integration of renewable energy sources: Challenges, issues and possible solutions[END_REF] to the system. The objective is to reduce the operation costs

Methods and tools

Load and PV forecasts

The building load forecasts are based on average weekdays. 𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (ℎ, 𝐷𝐷) is the energy consumed by the building for the week day D (i.e. Monday to Sunday) and hour h. The forecasted load 𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (ℎ, 𝐷𝐷) � corresponds to the average load of the building over the N weeks of the year as follow:

𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (ℎ, 𝐷𝐷) � = ∑ 𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (ℎ, 𝐷𝐷) 𝑁𝑁 𝑖𝑖 𝑁𝑁 ℎ ∈ (1, ⋯ ,24) 𝐷𝐷 ∈ (1, ⋯ ,7) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁 = 51 (1) 
Using this method, we generate 7 averages weekdays, which are representative of the building schedule use during an average week. As a consequence, all forecasted weeks are identical.

To forecast the PV output, day-ahead forecasts with a 1-hour granularity of relevant weather parameters, i.e. solar irradiance and dry-bulb air temperature are retrieved from the IFS run launched at midnight and available at the ECMWF portal. The simplified model proposed by [START_REF] Chen | Sizing of Energy Storage for Microgrids[END_REF] is used to compute the generation of the PV plant:

𝐸𝐸 𝑃𝑃𝑃𝑃 � (𝑡𝑡) = 𝜂𝜂 𝑃𝑃𝑃𝑃 × 𝑆𝑆 × 𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 � × �1 -𝑐𝑐𝑐𝑐 𝑃𝑃𝑃𝑃 × (𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 � (𝑡𝑡) -25)� × 𝜂𝜂 𝑖𝑖𝑖𝑖𝑖𝑖 × ∆𝑡𝑡 (2)
Where 𝜂𝜂 𝑃𝑃𝑃𝑃 is the conversion efficiency of the solar cell array, 𝑐𝑐𝑐𝑐 𝑃𝑃𝑃𝑃 the temperature coefficient of the PV module, S the PV field area, 𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 � and 𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 � are respectively the forecasted dry-bulb temperature and the global solar irradiance. Regarding the inverter, the efficiency is calculated using the model proposed by [START_REF] Riffonneau | Optimal Power Flow Management for Grid Connected PV Systems With Batteries[END_REF]:

𝜂𝜂 𝑖𝑖𝑖𝑖𝑖𝑖 = 1 - 𝑃𝑃 𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃 𝑃𝑃𝑃𝑃 × (0.0094 + 0.043 × 𝐼𝐼𝑎𝑎 + 0.04 × 𝐼𝐼𝑎𝑎 2 ) (3)

ESS model

The architecture of the system is based on the model introduced by Riffoneau [START_REF] Riffonneau | Optimal Power Flow Management for Grid Connected PV Systems With Batteries[END_REF], composed by a load, a PV generator, an ESS and a connection to the main grid. A lead-acid batterie is used for this work, with the assumption that no self-discharge occurs over time. For the AC-DC (bidirectional) conversion, we will use the same type of converter as the one used for the PV generator and its efficiency is given by see eq. 3. The round-trip efficiency of the batteries is estimated to be a constant value 𝜂𝜂 𝐸𝐸𝐸𝐸𝐸𝐸 of 82% [START_REF]International Renewable Energy Agency Electricity storage and renewables: Costs and markets to 2030[END_REF].

The State of Charge (𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆(𝑡𝑡) 𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖𝑛𝑛𝑛𝑛 ⁄ ) is the ratio of the current capacity C(t) to the reference capacity 𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖𝑛𝑛𝑛𝑛 and its variation over the time is ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡 -∆𝑡𝑡) -𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡). The energy that flows in and out to the ESS is given by:

𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡) = � 𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡) 𝐿𝐿𝐷𝐷𝐸𝐸𝐸𝐸𝐷𝐷𝐿𝐿𝐷𝐷𝐷𝐷𝐸𝐸 = 𝜂𝜂 𝑖𝑖𝑖𝑖𝑖𝑖 × ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) × 𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) > 0 𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡) 𝐸𝐸𝐷𝐷𝐿𝐿𝐷𝐷𝐷𝐷𝐸𝐸 = ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) × 𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖𝑛𝑛𝑛𝑛 𝜂𝜂 𝑖𝑖𝑖𝑖𝑖𝑖 × 𝜂𝜂 𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖 ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) < 0 (4) 
From a technical point of view, the lifespan of this type of storage is linked to the number and the depth of the cycles of charges and discharges. The considered model estimates the deterioration of the IOP Publishing doi:10.1088/1742-6596/1343/1/012067 3 state of health (SOH) as a linear relationship between the depth of the discharges and a coefficient of aging Z. ∆𝑆𝑆𝑆𝑆𝑆𝑆, wich corresponds to the diminution of the SOH after a discharge, is given by following equation:

∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = � 𝑍𝑍 × ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑖𝑖𝑖𝑖 ∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) < 0 0 𝑖𝑖𝑎𝑎 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑎𝑎𝑐𝑐𝑒𝑒 (5)

Optimization

In energy planning, there are numerous methods dedicated to the operating cost optimization [START_REF] Khatamianfar | Improving Wind Farm Dispatch in the Australian Electricity Market With Battery Energy Storage Using Model Predictive Control[END_REF][START_REF] Marano | Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage[END_REF]. Here, we chose the Dynamic programming (DP) because our problem can be convex or concave. Furthermore, [START_REF] Haessig | Computing an Optimal Control Policy for an Energy Storage[END_REF] showed that DP is a good candidate for the optimal management of an ESS. Last, as forecasts could be probabilistic, the use of the stochastic version of the DP will be the next step to achieve a robust ESS management.

The current SOH of a battery depends variation of the SOC and on various random factors such as manufacturing variance. Since our hypothesis does not take into account these random processes, it is assumed that the degradation is simply a function of the SOH. If the SOH reaches the minimum value 𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑖𝑖𝑖𝑖 , the ESS is disabled. The operating cost 𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡) of the ESS depends on its SOH and on the investment cost 𝐵𝐵𝑖𝑖𝑆𝑆 of the ESS.

𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡) = 𝐵𝐵𝑖𝑖𝑆𝑆 × � -∆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) 1 -𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑖𝑖𝑖𝑖 � (6) 
Costs of PV 𝑆𝑆 𝑃𝑃𝑃𝑃 (𝑡𝑡) and of purchased electricity from the grid 𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 (𝑡𝑡) are calculated using linear relationships based on unitary costs. The production cost of the PV field 𝑆𝑆 𝑃𝑃𝑃𝑃 (𝑡𝑡) is calculated as follow: 𝑆𝑆 𝑃𝑃𝑃𝑃 (𝑡𝑡) = 𝐸𝐸 𝑃𝑃𝑃𝑃 (𝑡𝑡) × 𝑆𝑆𝑢𝑢 𝑃𝑃𝑃𝑃 , where 𝑆𝑆𝑢𝑢 𝑃𝑃𝑃𝑃 is the unitary cost of energy production 𝐸𝐸 𝑃𝑃𝑃𝑃 (𝑡𝑡) of the PV generator . This unitary price of energy produced by the OPV is derived from the levelized cost of electricity (LCOE [START_REF] Branker | A review of solar photovoltaic levelized cost of electricity Renewable and[END_REF]). Considering the economical context of the study case, the unitary price is 𝑆𝑆𝑢𝑢 𝑃𝑃𝑃𝑃 = 0.069 𝐸𝐸𝑢𝑢𝑒𝑒𝑜𝑜𝑐𝑐/𝑘𝑘𝑘𝑘ℎ. In this study we assume constant values of the feed-in-tariff 𝑆𝑆 2 and variable grid cost 𝑆𝑆 1 of electricity are considered (see eq. 7).

𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 (𝑡𝑡) = 𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 (𝑡𝑡) × 𝑆𝑆𝑢𝑢 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 � 𝑆𝑆𝑢𝑢 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 = 𝑆𝑆 1 𝑖𝑖𝑖𝑖 𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 (𝑡𝑡) > 0 𝑆𝑆𝑢𝑢 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 = 𝑆𝑆 2 𝑖𝑖𝑖𝑖 𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 (𝑡𝑡) < 0 (7) 
The cost function of the optimization problem is the economic costs of the micro-grid operation taking into account the costs of the different sources (i.e. PV, ESS and grid). The optimal operation cost is obtained from the global minimization of the following objective function where the unique decision variable is the ESS energy (𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸 ):

𝐽𝐽 = min � 𝑆𝑆 𝑃𝑃𝑃𝑃 (𝑡𝑡) + 𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡) + 𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 (𝑡𝑡) 𝑇𝑇 𝑟𝑟=1 (8) 
Constraints are by nature related to the operation and to physical limitations of the system. The first constraint is the supply-demand balance of the micro-grid, which implies that the sum of the energy flows is null:

𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝑡𝑡) = 𝐸𝐸 𝑃𝑃𝑃𝑃 (𝑡𝑡) + 𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡) + 𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿 (𝑡𝑡) (9) 
The system also experiences technical constraints related to ESS limitations and to the grid contribution. Considering an electro-chemical battery, the technology itself implies that it is not possible to use the storage in the extremums (totally empty or full). As a result, an operating range between a minimum SOC 𝑛𝑛𝑖𝑖𝑖𝑖 and a maximum 𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑟𝑟𝑚𝑚 is necessary to avoid damaging the ESS.

𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆 max (10) As described in section II, the SOH of the ESS gradually decreases with the depths of the discharges. To keep the system working, a minimal level of SOH of the ESS 𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑖𝑖𝑖𝑖 is required.

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) > 𝑆𝑆𝑆𝑆𝑆𝑆 min (11)

Implementation

The control of the ESS consists in scheduling the SOC of the ESS with time step of 1 hour. Therefore, the SOC of the ESS is scheduled every hour of the next day. For the study, two management strategy will be compared: instantaneous or ruled based management and controlled with forecasts.

The ruled based is an instantaneous management, depending on the SOC of the battery, the supplydemand imbalance and the charges/discharges of the ESS. The operation of this strategy can be summarized by few rules. The PV can only charge the ESS when PV output excess the load. The ESS supplies the energy to the load when the PV is not enough. If the ESS is empty, the grid supplies the load. And finally, if the ESS is full, the excess of energy is injected to the grid.

This second management mode uses the forecasts as input of a receding horizon method. At 00h00 of simulated day 𝐷𝐷, 3 days of PV and load forecast are produced. Then, the optimization schedules the operation of the ESS for the next 72h of with a 1-hour granularity. Only the first 24 hours are considered to operate the ESS but the use of a longer horizon in the optimization permits to define an optimal SOC at the end of the first day. Without this receding horizon method, the ESS would have been empty at the end of every day. During the realization of the schedule of the ESS, the grid counterbalances the deviations from the forecasts. First, perfect forecasts, corresponding to the recorded historical data, will provide an assessment of the best performance that could be achieved while introducing forecasts to elaborate the scheduling of the ESS. Second, real forecasts, as described in section II, will give realistic results.

The operation cost of the micro-grid is obviously the first indicator generated by the two management strategies. Beside the economic assessment, the evaluation of the quality of the management of the micro-grid, will be done by the following indicators proposed by Simpore [START_REF] Simpore | Modélisation, simulation et optimisation d'un système de stockage à air comprimé couplé à un bâtiment et à une production photovoltaïque[END_REF]:

Self consumption: 𝜏𝜏 𝑐𝑐𝑐𝑐 = ∑ �𝐸𝐸 𝑃𝑃𝑃𝑃-𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝑟𝑟)+𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸 (𝑟𝑟) 𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶𝐸𝐸 � 𝑇𝑇 𝑡𝑡=1 ∑ 𝐸𝐸 𝑃𝑃𝑃𝑃 (𝑟𝑟) 𝑇𝑇 𝑡𝑡=1 (12) 
The rate of injections to the grid:

𝐸𝐸 𝐷𝐷 = ∑ �𝐸𝐸 𝑃𝑃𝑃𝑃-𝐶𝐶𝐶𝐶𝐺𝐺𝐿𝐿 (𝑟𝑟)+𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸-𝐶𝐶𝐶𝐶𝐺𝐺𝐿𝐿 (𝑟𝑟)� 𝑇𝑇 𝑡𝑡=1 ∑ 𝐸𝐸 𝑃𝑃𝑃𝑃 (𝑟𝑟) 𝑇𝑇 𝑡𝑡=1 (13) 

Data

The load data come from a building called EnerPOS, which is located in St-Pierre in the island of Reunion, a French overseas territory in the Indian Ocean. It is a building in a tropical environment of the southern hemisphere. The building is intended for administrative and school uses. It is a Net zero energy building [START_REF] Sartori | Net zero energy buildings: A consistent definition framework[END_REF] with integrated photovoltaic systems and a low energy consumption. The meteorological data comes from a meteorological station installed on the same site. The cost of electricity in Reunion Island is subsidized by the state and the selling prices are strongly lower than the real cost of electricity production. Considering these artificially low tariffs, the development of renewables must be grant-aid. In this work, we shifted the current prices applied to the studied building to correspond to the annual and real cost of energy provided by the unique local distribution operator, including taxes (Table 1). The timetable of the peak, off peak and normal hours used to compute the electricity bill of the building can be consulted on EDF website [START_REF]Tarifs et catalogues de prestations EDF Réunion[END_REF]. 

Results and discussion

For a sample day (see figures 1 and 2), we can see that the ESS operation of the ruled based strategy differs significantly from the control with forecasts. Considering the same initial SOC=0.5, the latter outperforms the ruled based method. The optimal control with forecasts uses the difference of prices between peak and off-peak hours to maximize the gains. The storage only stores the energy required to avoid purchasing of electricity from the grid during the peak hours. Regarding more specifically the use of real forecasts, the behaviour of the ESS is almost the same as for perfect forecasts. But due to forecasting errors, mismatches in supply-demand balance occur and increase the operating cost. As expected, in case of supply-demand imbalance of the micro-grid, the rule-based strategy systematically charges or discharges the ESS. As a consequence, the storage accumulates the extended of energy from the PV till its full and when the PV is not enough, the storage discharges to compensate the deficit. So, the ruled-based management uses intensely the storage and the operation cost is more important because of strong and frequent discharges. The forecast quality [START_REF] David | Outputs and error indicators for solar forecasting models[END_REF] is computed for an entire year of operation of the building. Table 2 gives the yearly metrics of error for the PV, the load and the net-load forecasts. This former corresponds to the net consumption of the building when considering the PV production, 𝐸𝐸 𝑁𝑁𝑟𝑟𝑟𝑟-𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 -𝐸𝐸 𝑃𝑃𝑃𝑃 . The forecasts experience a low bias. One can also notice that the PV forecasts are less accurate than the load forecasts with lower RMSE and MAE. Finally, the net-load forecasts are strongly worse than both PV and load forecasts. The evolution of the hourly operation cost as a function of the hourly forecasting error of the net-load indicates that an overestimation of the net-load leads to an increase of the operation cost. Moreover, if the error is close to 0, there are high cost valuers, which mean that at some points, we have to exploit the storage or the network as much as possible. In table 3, annual indexes show that the knowledge of the future can reduce the operating cost by 22% using perfect forecast and 15% with real forecast. So, the quality of the forecast increases the economic gains. Regarding the self-consumption rate, the values are almost the same for the perfect and real forecasts. However, the ruled-based has a higher self-consumption rate because the ESS is systematically charged when there is a surplus of PV production and then this surplus is shifted to the night hours to supply the building. The control with forecasts sells more energy to the grid to increase the gains and thus the injection to the grid is higher than the rule-based management. 

Conclusion

This work sets up the optimal control of an ESS with the aim to minimize the operating cost of a real microgrid. The specificity of the approach is to use real forecasts for the load and for the PV production. The use of the forecasts permits establishing the day-ahead schedule of the ESS and to minimize the operating cost. First, the results show that dynamic programming optimization allows detailing efficiently the microgrid features even if they assume non-linear behaviour. Second, the use of the ECMWF forecasts to predict the PV production improves significantly the yearly gain compared to a rule-based management strategy. Then, this study highlights that an underestimation of the future resources (PV) has less effects on the operating cost reduction than an overestimation.
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 3 Figure 3: Relationship between hourly forecast error and operation cost of the microgrid.

  

Table 1 .

 1 French context electricity price from extrapolated value at January 2018

		Fixed part	Peak	Summer (c€/kWh)	Winter (c€/kWh)
		(€/kW)	(c€/kWh)	LRH	NH	LRH	NH
	Average	47,640	41.49	13.83	15.17	18.38	25.87
	Normal hours: NH						
	Low rate hours: LRH						

Table 2 :

 2 Annual error metrics

		RMSE (Wh)	MAE (Wh)	MBE (Wh)
	Load	0.469	0.305	-0.003
	PV	0.909	0.332	-0.107
	Net-load	2.499	1.834	0.104

Table 3 :

 3 Performances of the microgrid for 1 year of operation

		Self-consumption	Injection to the grid	Max Energy	Annual operating
		τ cs [%]	𝐄𝐄 𝐑𝐑 [%]	from grid	cost J [€]
	Perfect	49.482	38.746	10.488	1086.054
	Forecast	48.215	44.239	14.258	1189.498
	Rule-based	55.758	9.432	3.534	1402.965
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