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Analysis of the shifted Helmholtz expansion
preconditioner for the Helmholtz equation

Pierre-Henri Cocquet!, Martin J. Gander?

1 Introduction

Solving discretized Helmholtz problems by iterative methods is challenging [8],
mainly because of the lack of coercivity of the continuous operator and the highly
oscillatory nature of the solutions. Krylov subspaces methods like GMRES are
the methods of choice because of their robustness, but they require a good pre-
conditioner to be effective. Among many proposed preconditioners like Incom-
plete LU, Analytic ILU or domain decomposition based preconditioners, the shifted
Helmbholtz preconditioner has received a lot of attention over the last decade, be-
cause of its simplicity and its relevance to heterogeneous media, see [7, 2, 3, 4] and
references therein.

We focus here on the recent idea of a generalization, the expansion precondi-
tioner [5, 6], which is based on the fact that the inverse of the discrete Helmholtz op-
erator can be written as a superposition of inverses of discrete shifted Helmholtz op-
erators only. This is achieved with the matrix-valued function f(f) := (-4, — (1+
iB)k?)~!, where A, corresponds to a finite difference discretization of the Laplace
operator, using a Taylor expansion to evaluate the function at § =0,
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The expansion preconditioner is then defined as the truncation of the Taylor series,
and converges to the exact inverse of the discrete Helmholtz operator if the Taylor
series actually converges. The authors in [5, 6] also propose to compute each inverse
of the shifted Helmholtz operator in the expansion preconditioner (1) approximately
using multigrid, which can converge with a number of iterations independent of the
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wavenumber for large enough shifts, see e.g. [2, 3]. The rate of convergence of
the expansion preconditioner toward A, = f(0) is computed in [5] to be O(B"),
but this result is obtained without bounds on the higher derivatives of f which can
deteriorate the performance of the proposed preconditioner.

The goal of this paper is to give theoretical and numerical insight for the perfor-
mance of the expansion preconditioner, and to extend its definition to finite element
discretizations. We first build the expansion preconditioner using the generalized
resolvent formula and study its performance. We next show, as proved in [4] for
the shifted Helmholtz operator, that a shift of the order of at most the wavenumber
ensures wavenumber independant convergence of GMRES preconditioned with the
expansion preconditioner. We then illustrate our results with numerical experiments,
which indicate that even a larger shift might be tolerable.

2 General analysis of the expansion preconditioner

Let Q be a convex polygon of R, with d = 1,2, 3. The shifted Helmholtz equation
with impedance boundary conditions is

—Au(x) — (K +ig)u(x) = f(x), x € Q, )
Oau—inu =0, on 99, 2)

where n is the unit outward normal on dQ, € > 0 is the so-called shift, and 7 > 0
is the impedance parameter. The Helmholtz equation with approximate radiation
condition is obtained from (2) by setting € = 0 and 17 = k. The variational form of
(2)is

{Find u € H'(Q) such that for all v € H'(Q) :
3

ag(u,v) := / Vu- Vv — (K —i—is)uvdx—in/ uvdo = / fvdx.
Q 90 Q
Let ¥}, be the finite element space obtained with piecewise linear polynomials,

Y, ={veL(Q)|v|r €Pforall T € 7} = Span(¢y, -, ¢y),

N . . . . . .
where {¢ j}j: | is the finite element nodal basis associated to the triangulation 7.
The discrete problem is then

Find u;, € ¥}, such that :
(4)

ac(un) = [ fods, Vo € %,

This is equivalent to the linear system A;wj;, = by, where u;, = F;,wy, is the Galerkin

solution and
N

Fy:ix=(x,-- ,XN)G(CN'—) Zx]'¢j€7/h.
=
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Denoting by K the stiffness, M the mass and N the boundary mass matrix, we get
Ae =K — (K> +ie)M —inN.

We denote by Ag the discrete Helmholtz operator obtained with € =0 and n = k. The
matrix Ay is invertible because of the impedance boundary condition in (2). We now
give a generalized resolvent formula which can be obtain by a direct computation.

Lemma 1. Let A, B € C"*" with B invertible, and let p,z € C be two complex num-
bers in the resolvent set of AB ™. Let R(z) := (A —zB) ! be the generalized resolvent
of A. Then the relation R(p) — R(z) = (z— p)R(z)BR(p) holds.

Using the Neumann series, Lemma 1 allows us to rewrite the inverse of the discrete
Helmholtz operator as a superposition of discrete shifted Helmholtz operators:

Theorem 1. The inverse of the discrete Helmholtz operator is given by
4y' = (Z(—ie)f (ASIM)’) Al
j=0
and the series converges in the norm ||x||,, = \/(Mx,X) = [l 12 (0)-
Proof. Lemma 1 applied with A = Ay, B=M, p =0 and z = i€ yields
Ayt = (L +ieA; ' M)A

Note that A, 'M = (M~ 'A¢)~!. Let w € CV such that Acw = Mb for some b € CV.
From the definition of the mass matrix M and the operator F;, and A, we get

ag(Fyw, Fw) = (Mb,W) = (th’Fh_w)Lz(_Q)'

Then using the Cauchy-Schwarz inequality and the lower bound

|a (Fyw, Fyw)| > .7 ag (Fyw, Fyw)| = € | Fuawll 2 ) + 1 | Fawl22 )

we obtain that [|wl|,, < |[b||,, €', and thus ||eA;'M||,, < 1. Finally, (I, +ieA;'M)"!
can be expanded as a Neumann series, which completes the proof.

Remark 2 The mass matrix is symmetric and positive definite so it admits a square
root M'/%. For any B € CN*N, the matrix norm induced by ||-||,; is then defined by
IBllyy = ||MY2BM~"/2||,. This yields

leas m |, =e||m'2ag 2| ~el|ag ml, <1,

and thus the series in Theorem 1 converges also in the 2-norm.

Following [5], the expansion preconditioner of order n € N7 is defined as a trun-
cation of the Neumann series given in Theorem 1,
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n—1 . il n—1 . .
EX(n)= | Y (—ie) (Ag'M)" | M = | Y (i) (A" M) )AL (5)
j=0 j=0
The preconditioned Helmholtz problem is thus given by
EX (H)A()Wl = EX(n)bl (6)

From Elman’s estimate (see e.g. Theorem 1.8 in [4]), the rate of convergence of GM-
RES used for solving any Aw = b can be estimated by an upper bound of ||I; —A||,.
Denoting by r,, the GMRES residual and assuming that ||I; —Al|, < ¢ < 1, this

reads m
Iele (/)" -

[roll, = \ (1+0)

We now compute this term for the expansion preconditioner.

Theorem 3. For any shift € > 0, impedance parameter 1 > 0, meshsize h and n €
N, the expansion preconditioner satisfies the bounds

N (Ig—EX(1)Ag) < et (A 'M),
I+e (A;'M)

Vn>1, /(I —EX(n)Ap) <
n- (Ia (n) 0)_1—8JV(Ag1M)

(e (Ag'M))",

where A (B) denotes any matrix norm or p(B).

Proof. The first item follows from I, — EX(1)Ag = I, — A, 'Ag = ieA, ' M. For the
second one, we compute

I, — EX(n)Ag = (A, ' —EX(n))Ag = (Z(—ie)f(AglM)/) A 1Ag.  (8)

j>n

Note that A;'Ag = I; +i€A; 'M and thus A, 'Ag and A, 'M commute. Now, using
that ep(A;'M) < ¢ ||AI;T1M||2 < 1, we can use Gelfand’s formula to get the conver-
gence of the Neumann series with respect to any matrix norm. Taking norms in (8)
and summing the geometric series then gives

N (Ig—EX(n)Ag) < A (Ly+ieA; 'M) (et (Ag'M))" Y (e (A 'M))
>0
I+et (A;'M)

— (e (A, 'M))".
Remark 4 The construction of the expansion preconditioner as well as Theorem 3
hold without any changes for high order finite element discretizations.

The upper bound from Theorem 3 involves only €4 (AglM). If this quantity Is
bounded away from 1, the expansion preconditioner can reduce the number of GM-
RES iterations when using a large enough 7, i.e. enough terms in the expansion.
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3 Wavenumber-independent convergence of GMRES

As it was proved for the shifted Helmholtz preconditioner in [4], we now show that
taking € < k is sufficient in the expansion preconditioner to ensure wavenumber-
independant convergence of GMRES. We do this for two types of meshes: for
k3h? < Cy, for which one should have no pollution error according to [9], and the
even higher resolution i ~ k2.

Theorem 5. Assume that one of the following assumptions holds:

(Al)n ~k and Kh* < Cy with Cy small enough.
(A2)n Sk, k> ko for a given ko > 0 and kh+/ k% — €| < Cy with Cy small enough.

Then there exists a constant C, > 0 depending only on £ such that for any € > 0
with €Cy < k, we have

Ce\" k+Ce
Vn>1, /(I —EX(n)Ay) < | —

where N (.) = p(.) if (Al) holds, and N (.) = |.|| if (A2) holds.

Proof. Assume that (A1) holds. Let A € C be an eigenvalue of M 1A, = (A;'M)~!
and v € CV be the associated eigenvector. Then we have

M 'Agv= (M1 (K —inN) — (k* +ie)I;) v = Av.
Therefore, the spectrum of M~ 'A; is given by
oM 'Ag) = {4 +ie | A; e o(M 'Ag)},

from which we infer that
t

ep(A,'M) = max .
p( & ) leG(MflAU) |A]+18|

€

Let b € CV be fixed and v, € CV be the solution to Agv, = Mb. Note that ¢, =
Fyvy, € ¥, corresponds to the FEM discretization of the solution to (2) with f = F;b.
Since f € L*(2) and Q is assumed to be convex, the solution to the Helmholtz
equation (2) belongs to H?(£). Since (A1) holds, one can apply [9, Corollary 4.4
p-12] to get

VOl 20y + kIOl 20) < 11220 - (10)
Then (10) shows that

1
IEnvili2@) < 7 [1Fnbll20) -

Using [4, Eq. (4.2) p. 24], we have || Fy|ov .y, ~ h9/2, which gives

b
il = g arm, < 12
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The above estimate holds for any be (CN and thus
HA 11‘4 H < —1 11)
0 2~ k' (

The upper bound (11) proves that, for any u € 6(A,'M), |u| < k~!. Since any
A € 6(M~'Ap) can be written as A = 1/u, one gets k < |A|. We finally infer that
there exists C > 0 depending only on £2 such that

p(A:'M) < %

12)

Assuming now that (A2) holds allows us to apply [4, Lemma 3.5 p.595] that gives
the quasi-optimality of the bilinear form a, on ¥}, with respect to the weighted norm
||u|ﬁk = HV”HZZ(Q) +k? H””iz(g)- Using this, the authors proved in [4, Lemma 4.1
p. 598] that there exists a constant C; depending only on £2 such that

_ G
1

A M|, < = (13)
Using now (12) and (13) together with the bound proved in Theorem 3 concludes

the proof.

4 Numerical experiments

We discretize the Helmholtz equation on the unit square with classical Robin ra-
diation boundary conditions, n = k, using P1 finite elements and the resolution
hk3/2 = 1. In Table 1, we show the iteration numbers that GMRES preconditioned
with the expansion preconditioner needed to reach a relative residual reduction of
le — 6 for the right hand side f = 1. We see that for all expansion preconditioners,
n = 1,2,3, iteration numbers are constant for the shift € = k, and for larger n even
a little better. For larger shifts, the expansion preconditioner with n = 1, which is
identical to the shifted Helmholtz preconditioner, has growing iteration numbers, as
shown in [4]. For the shift £ = k3/2, the expansion preconditioners with n = 2,3 still
seem to have constant iteration numbers, which is remarkable, and still increasing
n lowers the iteration numbers a bit. When the shift is however € = k2, iteration
numbers now also grow rapidly for the expansion preconditioner with n = 2,3, at

n=1 n=2 n=3
€ k 132 k2 k k32 k2 k 132 k2
k=5 5 6 8 5 6 9 5 7 9
k=10 6 8 13 5 8 12 5 7 13
k=20 6 11 24 5 8 21 4 7 20

Table 1 GMRES iteration numbers for Helmholtz with the expansion preconditioner.
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—k=5 —k=5 —k=5
1 ---k=10 1 ---k=10 1 ---k=10
k=20 k=20 k=20

| —k=5 | —k=5 | —k=5
" - k=10 " ---k=10 1 - k=10
! k=20 ! k=20 ! k=20
05! | | 3
E i i i
o @ ) |
05 |
0 05 1 15 15
Re
| —k=5 | —k=5
1 - k=10 11 ---k=10
| k=20 | k=20
05 | |
E i i
AT . .
-0.5

Fig. 1 Numerical range for shifts &€ = k, k%2, k2 (from left to right). Top row: shifted Helmholtz
which is identical to the expansion preconditioner with n = 1. Middle row: expansion precondi-
tioner n = 2. Bottom row: expansion preconditioner n = 3.

a linear rate in the wave number k, which was also observed in [4] for the shifted
Helmholtz preconditioner with Robin boundary conditions'. The numerical ranges
for the preconditioned operators of Table 1 are shown in Figure 1. We can see that
the expansion preconditioner is robust for the shifts € = k and € = k*/2 in the range
k € {5,10,20} tested, since the corresponding numerical range does not approach
zero. It thus seems to deteriorate only for larger shifts than the shifted Helmholtz
preconditioner, but is also substantially more costly, since one has to invert the
shifted Helmholtz operator n times.

1 Quadratic growth was even observed in the wave guide configuration.
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5 Conclusions

We presented a convergence analysis of the expansion preconditioner for discretized
Helmholtz problems. We showed that like for the shifted Helmholtz preconditioner,
which coincides with the expansion preconditioner for n = 1, wave number inde-
pendent convergence of GMRES can be guaranteed for shift € < k. For larger shifts,
we tested the expansion preconditioner numerically and found that in the range of
wave numbers tested, the expansion preconditioner seems still to be robust for shifts
€ = k3/2, which is quite remarkable. Unfortunately for shifts of O(kz), which is re-
quired for the effective solution of the shifted problems by multigrid [2, 3], the
expansion preconditioner is also not robust any more, like the shifted Helmholtz
preconditioner. The effort for pushing this approach to larger shifts is thus still on-
going, see also the important recent work in domain decomposition [10] presented
as a plenary lecture in the present conference [11].
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