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Abstract

In this paper, we present a projective hybridizable Raviart-Thomas mixed method (H-RTp)
for second-order diffusion problems. The proposed method is inspired by the hybridizable
discontinuous Galerkin (HDG) formalism, as it introduces a residual flux terms in the (hy-
bridized version of) Raviart–Thomas mixed method. Specifically, we add a projective-type
stabilization function in the definition of the normal trace of the flux on the mesh skeleton.
Indeed, we use broken Raviart–Thomas space of degree k ≥ 0 for the flux, a piecewise polyno-
mial of degree k+1 for the potential, and a piecewise polynomial of degree k for its numerical
trace. This unconventional polynomial combination is made possible in the general framework
of HDG methods thanks to the projective-based stabilization function introduced. The con-
vergence and accuracy of the H-RTp method are investigated through numerical experiments
in two-dimensional space by using h- and p-refinement strategies. An optimal convergence
order (k + 1) for the H(div)-conforming flux variable (obtained after a straightforward re-
construction) and superconvergence (k + 2) for the potential (without any postprocessing) is
observed. Comparative tests with the classical H-RT method and the well-known hybridizable
local discontinuous Galerkin (H-LDG) method are also performed and exposed in terms of
CPU time and mesh refinement.

Keywords: Hybridizable discontinuous Galerkin, projective-based stabilization function,
higher-order Raviart–Thomas space, simplified postprocessing, h- and p-refinements

1. Introduction

Consider the second-order diffusion model problem

∇ · (−κ−1
∇u) = f in Ω,

u = g on ∂Ω.

(1a)

(1b)

where Ω ⊂ Rd is a bounded polyhedral domain (d ≥ 2) with boundary ∂Ω ⊂ Rd−1. The
boldface fonts are used throughout this paper to characterize any vector-valued or matrix-
valued functions. To ensure that the problem (1) is well posed, the following assumptions
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are assumed to be satisfied: κ ∈ [L∞(Ω)]d,d is a matrix-valued function that is symmetric
and positive definite in Ω, f ∈ L2(Ω), and g ∈ H1/2(∂Ω) is a prescribed Dirichlet boundary
condition. System (1) can be used to model, for instance, the groundwater flow in porous
media in which the potential u represents the pressure head, f a sink/source term and κ−1

the permeability tensor [1]. In this physical framework, it is convenient to introduce the
Darcy velocity σ (i.e, the flux) as a supplementary unknown such that the problem (1) can
be rewritten as a first-order system,

κσ = −∇u in Ω,

∇ · σ = f in Ω,

u = g on ∂Ω.

(2a)

(2b)

(2c)

The H(div)-conforming mixed finite element (MFE) methods are very widely used for solving
the system (2) (see, e.g., [1, 2, 3, and references therein]). Several successful combinations of
compatible polynomial interpolation functions for the flux σ ∈ H(div; Ω) and the potential
u ∈ L2(Ω) satisfying the discrete inf-sup condition have been proposed in the literature
(e.g., the Raviart–Thomas (RT) [3] and the Brezzi–Douglas–Marini (BDM) [2] families).
These formulations provide numerical solutions (σh, uh) with optimal convergence in L2 and
continuous normal components for σh at the interelement boundaries [4, 2, 1]. However, MFE
methods lead to a saddle-point problem with large coupled degrees of freedom, which is quite
challenging and time consuming to solve (see, e.g. [2, 5, 6, and references therein] ).

To circumvent these issues, mixed methods using the nonconforming Galerkin finite ele-
ments have been extensively studied over the last two decades for stationary diffusion problems
(see, e.g., [7, and references therein]). The term nonconforming means that no regularity as-
sumptions are made on the discrete variables. These methods were developed within the
general framework of discontinuous Galerkin (DG) formalism and consider a combination of
completely discontinuous approximation spaces for both the flux and potential [8]. Among
the DG methods, the local discontinuous Galerkin (LDG) method is of particular interest due
to its local conservation properties and its flexibility in handling adaptive hp refinement. In
contrast to the standard MFE methods, the discrete flux variable σh can be easily eliminated
locally, thus reducing the linear system to only the primal variable uh unknowns. However,
relative to standard H(div)-conforming MFE methods, the LDG method provides a less ac-
curate approximation of discrete variables (uh,σh). According to Corkburn et al. [9], this
lack of robustness is due to the fact that the numerical trace ûh is expressed solely in terms
of uh, independent of σh.

In response to these drawbacks, the hybridization technique has been introduced in [10, 11]
using Lagrange multipliers and static condensation and, reducing the global coupled linear
system to only unknowns located on the skeleton of the mesh [12]. This condition is achieved
by introducing a new discrete single-valued variable ûh that is merely the so-called numerical

trace of the potential defined at the element boundaries [11]. This technique allows one to
establish local solvers in each element with ûh playing the role of the Dirichlet boundary
conditions. Therefore, the interior unknowns (σh, uh) can be easily eliminated (by static con-
densation) from the set of algebraic equations that are now expressed in terms of Lagrange
multipliers ûh only. The problem is then closed and the global algebraic linear system is as-
sembled by imposing transmission conditions throughout the Lagrange multipliers. The hy-
bridizable discontinuous Galerkin (HDG) formalism introduced first by Cockburn et al. (2009)
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represents a unified framework [11] that includes the well-established hybridized mixed finite
element (H-MFE) methods by using a null-stabilization function [2, 3, 10], the hybridizable
LDG (H-LDG) methods by using a multiplicative stabilization function [9, 11, 12, 13], and
the recently developed hybrid higher-order (HHO) methods by using a projective stabilization
function [14, 15, 16, 17]. All of these hybrid methods are established by suitably choosing
the stabilization function and subsequently the local approximation spaces in addition to the
postprocessing step. Note that the HDG formalism has several advantageous features and is
well suited for parallel computing. Since its introduction, HDG methods have benefited from
intensive research and development (see, e.g., [12, 13, 17, 18, and references therein]) and have
been applied to a large class of physical problems [19, 20, 21, 22].

The aim of the present paper is to introduce novel perspectives in the hybridization of
mixed finite element methods directly inspired by the HDG formalism. More precisely, we
propose a penalized formulation of the Hybridized Raviart–Thomas method, denoted H-RTp,
by adding a projective-type stabilization function in the definition of the normal trace of the
flux on the mesh skeleton. As a result, the proposed method differs from the standard H-RT
method and indeed belongs to the general class of HDG mixed methods. The introduction
of these additional stability terms modifies the conventional polynomial combination com-
monly used for the approximation of the discrete variables. Thus, on each simplex A of the
mesh, the higher-order Raviart–Thomas space RTk(A) with k ≥ 0 for the flux σh is used,
a piecewise polynomial of degree k + 1 (i.e., one degree higher than for the standard H-RTk

method) for the potential uh and a piecewise polynomial of degree k for its numerical trace
ûh on ∂A. This unconventional polynomial combination is made possible by the Lehrenfeld–

Schöberl stabilization function [19]. One distinctive feature of this stabilization function is
that it uses a suitable L2-projection operator, allowing for the consideration of polynomials of
higher degree for the approximation of the potential. Thus, no postprocessing is required to
improve the accuracy of the potential uh since it converges naturally at the order k + 2, and
a straightforward flux reconstruction is sufficient to obtain an H(div)–conforming variable
σ⋆
h converging at the order k + 1. Note that the approach presented here can be extended to

any other compatible mixed finite element such as those proposed by the authors in [2] (e.g.,
BDM or BDFM spaces) and to any other stabilization function (e.g., multiplicative-type).

The rest of this paper is organized as follows. In Section 2, we describe the general formal-
ism of HDG methods, define the local solvers and the global problem and present the static
condensation from an algebraic viewpoint. In Section 3, we review selected existing stabiliza-
tion functions and provide details concerning the postprocessing of σh and uh. In Section 4,
we describe the projective H-RTp method; in particular, we review the Lehrenfeld–Schöberl

stabilization function, define the local approximation spaces and describe the simplified post-
processing to estimate the flux. In Section 5, numerical experiments are investigated using
h- and p-refinement strategies, and comparisons are exposed in terms of memory require-
ments, CPU time and convergence properties. Finally, we end with concluding remarks and
perspectives.

2. Hybridizable discontinuous Galerkin methods

2.1. Notations

Let us now introduce the notation that will be used throughout this paper. We denote by
Ωh := {A} (the mesh) a triangulation of the domain Ω into affine-mapped simplexes (triangles
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if d = 2 and tetrahedron if d = 3) and by ∂Ωh := {∂A}. Let Ea
h = E i

h ∪Eb
h (the mesh skeleton)

be the set of all facets (edges if d = 2 and faces if d = 3) of Ωh, where E i
h and Eb

h denote the
set of interior and boundary facets, respectively. We say that F is an interior facet F ∈ E i

h

if there exists A1 and A2 in Ωh such that F = A1 ∩ A2. Furthermore, we assume that the
(d− 1)-Lebesgue measure of F is not null. For all A ∈ Ωh and F ∈ Ea

h, |A| and |F| represent
the measure of A and F , respectively. We set hA := diam(A) and h := maxA∈Ωh

(hA) i.e., the
maximal element diameter. Hereafter, for any domain D ⊂ Rd, we denote by (·, ·)D and by
〈·, ·〉∂D the standard L2-inner products in L2(D) and L2(∂D), respectively. Let us introduce
the following notations associated with the weak formulation:

(·, ·)Ωh
:=

∑

A∈Ωh

(·, ·)A, 〈·, ·〉∂Ωh
:=

∑

A∈Ωh

〈·, ·〉∂A and 〈·, ·〉Es

h
:=

∑

F∈Es
h

〈·, ·〉F , (3)

where the index s = {a, i, b}. Let Pd
k (D) denote the space of polynomial functions of degree not

exceeding k ≥ 0 on D, and let Pd
k(D) := [Pd

k (D)]d. Similarly, we set L2(Ωh) := [L2(Ωh)]
d. Let

us now introduce the jump [[·]] and weighted average {·}ω trace operators defined on interior
facets as follows:

[[v]] := v1 · n1 + v2 · n2, (4)

{ϕ}ω := ω1ϕ1 + ω2ϕ2, (5)

for all (v, ϕ) ∈ L2(Ωh) × L2(Ωh), where the vector of weights ω := (ω1, ω2) is such that
ω1 + ω2 = 1. Similarly, we introduce the complement of ω denoted ω defined as follows:

ω := 1− ω = (ω2, ω1). (6)

If ω = (1/2, 1/2), we then recover the classical average operator; we omit the subscript ω in
its definition. For the HDG discretization, two types of finite element spaces are required.
The first ones for σh and uh are defined inside the elements:

Vh := {v∈L2(Ωh): v|A∈V(A), ∀A∈Ωh}, (7)

Qh := {q∈L2(Ωh): q|A∈Q(A), ∀A∈Ωh}, (8)

and the second ones for the trace function ûh are defined on the mesh skeleton:

Λg
h := {µ ∈ L2(Ea

h) : µ|F ∈ Λ(F) ∀F ∈ E i
h and µ|F = Πhg ∀F ∈ Eb

h}, (9)

where Πh denotes the L2-projection onto Λ(F). Following (9), the numerical trace of the
potential is defined as follows:

ûh =

{

λh on E i
h

Πhg on Eb
h

, (10)

where λh ∈ Λ0
h denotes the Lagrange multipliers. For convenience, let us introduce the local

space associated with the degrees of freedom of ûh on the boundary of the element A,

Λ(∂A) := {µ ∈ L2(∂A) : µ|F ∈ Λ(F) ∀F ⊂ ∂A}. (11)

Furthermore, we assume for the moment that V(A), Q(A) and Λ(∂A) are suitably chosen
local approximation spaces of finite dimensions that we define precisely below.
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2.2. Local solvers & Global problem

The HDG methods provide an approximation of (σh, uh) in terms of solutions of a local
Dirichlet boundary value problem on each element of the mesh, which are then patched
together by transmission conditions across interelement boundaries. In other words, for all
A ∈ Ωh, we assume that we know the numerical trace of the potential ûh on ∂A, and we
initially determine (σh, uh) in terms of (ûh, f) by solving the local problem

(κσh,vh)A − (uh,∇ · vh)A + 〈ûh,vh · n〉∂A = 0,
−(σh,∇qh)A + 〈σ̂h · n, qh〉∂A = (f, qh)A,

(12)

for all (qh,vh) ∈ Q(A)×V(A). Here, the numerical trace σ̂h ·n represents an approximation
of σ · n over ∂A, and we assume that this trace is consistent and depends linearly on σh, uh
and ûh. Following [13], we then assume that the trace has the following simple form:

σ̂h · n := σh · n+ τ(uh − ûh) on ∂A, (13)

where τ is a linear local stabilization function that we describe below. In practice, its choice
is quite delicate since it can strongly affect the stability and accuracy of the HDG method.
Inserting (13) into (12), the weak form of the local problem in each element A ∈ Ωh is found
to be as follows: for any given ûh ∈ Λ(∂A), find (uh,σh) ∈ Q(A) × V(A) such that

(κσh,vh)A − (uh,∇ · vh)A + 〈ûh,vh · n〉∂A = 0,
(∇ · σh, qh)A + 〈τ(uh − ûh), qh〉∂A = (f, qh)A,

(14)

for all (qh,vh) ∈ Q(A)×V(A). Note that the local problem (14) can be solved in an element-
by-element fashion to derive the variables (uh,σh) solely in terms of (ûh, f). The global prob-
lem is then closed by imposing weakly the transmission conditions i.e., the single-valuedness
of the normal component of the discrete variable σ̂h, on each interior facet of the mesh that
is as follows: find ûh ∈ Λg

h such that

〈σh · n+ τ(uh − ûh), µh〉∂Ωh
= 0, (15)

for all µh ∈ Λ0
h, where σh and uh are solutions of the local problem (14). Substituting

the solutions of (14) into (15), we obtain the global linear system that involves only the
numerical trace ûh. This step completes the presentation of the HDG methods. All hybrid
methods referenced in the literature, such as hybridized Raviart–Thomas (H-RT) or Brezzi–
Douglas–Marini (H-BDM) methods [2, 10], H-LDG methods [11, 9, 23] or, more recently,
HHO methods [16, 15, 17], are established by properly choosing the stabilization function τ
and subsequently the local spaces V(A), Q(A) and Λ(F) in addition to the postprocessing
step. Before describing some of these choices, let us briefly review the well-known technique
of static condensation used to reduce the stiffness matrix of the HDG methods.

2.3. Static condensation

Note that the HDG method just described above consists of seeking an approximation
(uh,σh, ûh) ∈ Qh × Vh × Λg

h satisfying the equations











a(σh,vh) + b(uh,vh)− c(ûh,vh) = 0,

b(qh,σh) + dτ (uh, qh)− rτ (ûh, qh) = (f, qh)Ωh
,

c(µh,σh) + rτ (µh, uh) + sτ (ûh, λh) = 0,

(16)
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for all (qh,vh, µh) ∈ Qh × Vh × Λ0
h. Notably, the bilinear functionals used in (16) can be

decomposed into two classes: those who are independent of the stabilization function τ such
as

a(σh,vh):=− (κσh,vh)Ωh
,

b(uh,vh) :=(uh,∇ · vh)Ωh
,

c(ûh,vh) :=〈ûh,vh · n〉∂Ωh
,

and those depending on it:

dτ (uh, qh):=〈τ(uh), qh〉∂Ωh
,

rτ (ûh, qh) :=〈τ(ûh), qh〉∂Ωh
,

sτ (µh, ûh):=− 〈τ(ûh), µh〉∂Ωh
.

Hence, the corresponding algebraic system can be written as follows:




A Bt −Ct

B Dτ −Rt
τ

C Rτ Sτ



 ·





Σh

Uh

Ûh



 =





G
F
H



 , (17)

where Σh, Uh and Ûh are vectors of degrees of freedom associated with the discrete variables
σh, uh and λh, respectively. To eliminate (σh, uh) locally, we introduce the corresponding
vector of interior degrees of freedom Σ̃t

h = [Σt
h,U

t
h]. Then, the linear system (17) can be

rewritten in a compact form:
[

Ã −B̃t

B̃ Sτ

]

·

[

Σ̃h

Ûh

]

=

[

F̃
H

]

, (18)

where Ã, B̃ and F̃ are defined as follows:

Ã =

[

A Bt

B Dτ

]

, B̃t =

[

Ct

Rt
τ

]

, and F̃ =

[

G
F

]

. (19)

The associated matrix Ã has a block-diagonal structure due to the discontinuous nature of
Vh and Qh, and its inverse can be easily computed by using a Cholesky factorization. Thus,
the elimination of Σ̃h follows immediately, and we obtain a single matrix equation only for
the multipliers Ûh,

AÛh = H̃, (20)

where A is a symmetric positive definite matrix and H̃, the corresponding right-hand side, is
given by

A = Sτ + B̃Ã−1B̃t and H̃ = H− B̃Ã−1F̃ . (21)

Once the solution ûh is obtained, the discrete interior variables (σh, uh) can be computed
by solving the local problem (14) on each element of the mesh. This step completes the
reduction technique by static condensation of the HDG methods. It is clear that the choice of
local spaces V(A), Q(A) and Λ(F) has a direct impact on the dimension of the local solvers
and of the global problem (20). For instance, the size of A is directly proportional to the
dimension of Λ(F). However, no assumptions have been made about local spaces nor on the
stabilization function τ used to characterize the HDG method. This point is discussed in
detail in the next section.
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3. Stabilization functions and postprocessing techniques

3.1. Local stabilization functions

The choice of the stabilization function remains an open question. Several formulations
have been proposed in the literature, some more intuitive [10, 11], and others more sophis-
ticated [16, 17, 19], but all of them initially assume that τ is a linear, nonnegative function
and that the local spaces Q(A) and V(A) cannot be chosen arbitrarily and must satisfy in-
clusion constraints. A remarkable feature of these properties is that HDG methods can be
well-defined completely independently of the choice of the local approximation space Λ(∂A),
but in practice, it will be assumed to be sufficiently rich. As suggested by Cockburn in [13],
“the role of τ is to transform the discrepancy between uh and ûh on ∂A into an energy” to
enhance the stability of HDG methods and to ensure that the local problem (14) and, hence,
the global problem (16) are well-defined. We then focus on two well-known variants that we
describe in detail below.

3.1.1. Null stabilization

In the simplest form of the null–stabilization function, we suppose that

τn(uh − ûh) := 0 on ∂Ωh. (22)

Assuming (22), the bilinear functionals dτ , rτ and sτ become nulls, and the HDG formulation
(17) consists of seeking an approximation (uh,σh, ûh) ∈ Qh×Vh×Λg

h satisfying the equations











(κσh,vh)Ωh
− (uh,∇ · vh)Ωh

+ 〈ûh,vh · n〉∂Ωh
= 0,

(∇ · σh, qh)Ωh
= (f, qh),

〈σh · n, µh〉∂Ωh
= 0,

(23)

for all (qh,vh, µh) ∈ Qh ×Vh ×Λ0
h. This simplified formulation is typically considered in the

so-called hybridized version of mixed finite element methods [1, 2]. In this case, the choice of
appropriate finite dimensional spaces Qh, Vh and Λh is not evident, but stability conditions

provide many successful combinations of them such as the RT and BDM families [2, 3].
Hence, the local problems (14) as well as the global problem (23) are well defined without
any stabilization procedure. The expected convergence rates of uh and σh for the H-RTk and
H-BDMk methods are summarized in Table 2.

3.1.2. Multiplicative stabilization

The multiplicative–stabilization function was suggested first by Cockburn et al. [11] to
establish the original H-LDGm method, namely,

τm(uh − ûh) := τF · (uh − ûh) on ∂Ωh, (24)

where τF is a strictly positive constant. By imposing transmission conditions [[σ̂h]] = 0 on
interior facets F ∈ E i

h, we obtain an explicit expression of the numerical traces (ûh, σ̂h) in
terms of (uh,σh):

[

ûh
σ̂h

]

=

[

{uh}ω
{σh}ω

]

+

[

0 αF

βF 0

]

·

[

[[uh]]
[[σh]]

]

, (25)
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where ω, αF and βF are positive constants defined as follows:

ω =

(

τ1
τ1 + τ2

,
τ2

τ1 + τ2

)

, αF =
1

τ1 + τ2
and βF =

τ1τ2
τ1 + τ2

. (26)

Here, τ1 and τ2 represent the stabilization parameters associated with the common facet F
adjacent to A1 and A2, respectively. Let us specify that the H-LDGm method cannot be
considered as a LDG method since the parameter αF is not null for any finite value of τ1,2.
In this case, the local spaces Q(A), V(A) and Λ(∂A) must satisfy the following inclusion
constraints:

∇Q(A) ⊂ V(A), Q(A)|∂A ⊂ Λ(∂A) and V(A) · n|∂A ⊂ Λ(∂A). (27)

Several combinations of admissible local spaces have been studied in the literature [11], as
summarized in Table 1. Previous reports have concluded that both discrete variables converge
optimally (k+1) in L2 assuming that uh and σh are approximated locally by polynomials of
degree k (cf. Table 1, Variant 2) and that τF is taken to be of order one (cf. Table 2, line 3).

H-LDG V(A) Q(A) Λ(F)

Variant 1. P
d
k−1(A) Pd

k (A) Pd−1
k (F)

Variant 2. P
d
k(A) Pd

k (A) Pd−1
k (F)

Variant 3. P
d
k(A) Pd

k−1(A) Pd−1
k (F)

Table 1: Admissible polynomial spaces V(A), Q(A) and Λ(F) for the H-LDG method with k ≥ 1.

3.2. Postprocessing techniques

Until 1985, the hybridization was considered only as an implementation trick to overcome
the saddle-point problem provided by MFE methods. However, Arnold and Brezzi established
in [4] that the additional information ûh defined on the mesh skeleton can be exploited to
construct locally a new approximated variable u⋆h converging faster than uh in L2. We end
this section by showing how to postprocess both interior variables (uh,σh) in conjunction with
their numerical traces (ûh, σ̂h) to obtain (i) a better approximation of the potential u⋆h that
converges one order higher than uh and (ii) a H(div)-conforming variable σ⋆

h that ensures
the continuity of its normal across interelement boundaries.

3.2.1. Postprocessing of the flux variable

We now show how to postprocess σh and σ̂h to obtain an optimal convergent approxi-
mation of σ, denoted σ⋆

h and belonging to H(div; Ω). On each simplex A ∈ Ωh, we initially
assume that the velocity σh ·n ∈ Pd−1

k (∂A), and we define the variable σ⋆
h as the only element

of the local Raviart–Thomas space RTk(A) := P
d
k(A)⊕ xPd

k (A) verifying that, for any k ≥ 0,
then

〈(σ⋆
h − σ̂h) · n, µh〉∂A = 0 ∀µh ∈ Pd−1

k (∂A),

(σ⋆
h − σh, ξh)A = 0 ∀ξh ∈ P

d
k−1(A).

(28a)

(28b)

We specify that (28a) and (28b) are simply an L2-projection of the discrete variable σh and
its trace σ̂h onto the interior and normal basis functions of RTk(A), respectively. Note that
for k = 0, the orthogonal projection (28b) is empty.
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3.2.2. Postprocessing of the scalar variable

Here, we show how to obtain the postprocessed variable u⋆h. To this aim, we assume that
the potential is approximated by a polynomial of degree at most k in A, i.e., uh ∈ Pd

k (A). For
all A ∈ Ωh, find u⋆h ∈ Pd

k+1(A) such that

(∇u⋆h,∇qh)A = −(κσ⋆
h,∇qh)A,

(u⋆h, 1)A = (uh, 1)A,

(29a)

(29b)

for all qh ∈ Pd
k+1(A). The closure condition (29b) is an additional solution constraint that

fixes the mean value of u⋆h on A. The postprocessing technique used here relies on the su-
perconvergence of the average value of the potential uh and is a slight modification of the
postprocessing introduced in [9], which consists of using the H(div)-conforming variable σ⋆

h

instead of σh.

4. Projective hybridizable Raviart–Thomas method

To our knowledge, only two well-established primal formulations referenced in the liter-
ature belong to the subclass of the projective HDG methods: first, the HDG method with
reduced stabilization (H-LDGp) proposed initially by Lehrenfeld in his thesis [19] (see, e.g.,
[13, 18, 24]), and second, the novel HHO method proposed by Di Pietro and Ern [17, 25].
The error analysis of the H-LDGp method was carried out by Oikawa in 2015 [18], who es-
tablished the optimal convergence of both σh and uh for general polyhedral elements: we
have included in Table 2 (Line 4) the analogous mixed formulation of the primal method
proposed by these authors. Recently, Cockburn et al. established bridges between the HHO
method and the general framework of HDG methods [16] (see, e.g., [17, 15]): they identify
the numerical traces of the primal HHO method in the general HDG mixed format and es-
tablish that both the local approximation spaces and the stabilization function suggested by
Di Pietro and Ern are novel and distinctive choices that enrich the family of HDG methods.
More precisely, the stabilization functions as used by both H-LDGp and HHO methods rely
on specific L2-projection operators, allowing for the consideration of polynomials of a higher
degree for the approximation of the potential. Recently, Lederer et al. proposed in a series of
original papers [26, 27] a new discretization method for incompressible flow problems based
on an H(div)-conforming finite element space (BDM space) and an HDG method. The key
idea is to relax the H(div)-conformity constraint so that only reduced unknowns are involved
by imposing transmission conditions. Hence, the general HDG framework opens up novel
perspectives by expanding the permissible polynomial combinations for approximations of
discrete variables through a large choice of stabilization function. The projective hybridizable
Raviart–Thomas (H-RTp) formulation that we develop in this paper can be considered an
inspired variation of the H-LDGp method described above and the traditional H-RT mixed
method. Before describing our projective variant, let us review some definitions concerning
the projective stabilization function introduced in [24].

4.1. The Lehrenfeld–Schöberl stabilization function

As mentioned above, Lehrenfeld and Schöberl observed that (i) the size of the stiffness
matrix is directly proportional to the dimension of the local space Λ(F) and that (ii) the
quality of the discrete variables uh and σh relies on polynomials used to build them. They
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Method Degree V(A) Q(A) τ uh σh u⋆

h
σ⋆

h

H-RTk k ≥ 0 P
d

k(A)⊕ xPd

k
(A) Pd

k
(A) τn k + 1 k + 1 k + 2 –

H-BDMk k ≥ 2 P
d

k
(A) Pd

k−1
(A) τn k k + 1 k + 2 –

H-LDGm
k

k ≥ 1 P
d

k(A) Pd

k
(A) τm k + 1 k + 1 k + 2 k + 1

H-LDGp

k
k ≥ 0 P

d

k
(A) Pd

k+1
(A) τp k + 2 k + 1 – k + 1

H-RTp

k
k ≥ 0 P

d

k(A)⊕ xPd

k
(A) Pd

k+1
(A) τp k + 2 k + 1 – k + 1

Table 2: Comparison of various hybrid mixed methods using the same local approximation space Λ(F) :=
Pd−1

k
(F). These methods are defined by their local approximation spaces Q(A) and V(A) and the stabilization

function τn, τm or τ p. The columns uh, σh, u
⋆

h and σ
⋆

h indicate the expected convergence rate of ‖u−uh‖L2(Ωh),
‖σ − σh‖L2(Ωh), ‖u− u⋆

h‖L2(Ωh) and ‖σ − σ
⋆

h‖L2(Ωh), respectively.

improve the convergence of interior variables, without increasing the size of the final system
(20), by simply modifying the multiplicative stabilization function τm (24) as follows:

τ p(uh − ûh) := τF · (πΛh
(uh)− ûh) on ∂Ωh, (30)

where πΛh
is the L2-projection operator onto Λ(∂A). Following (30), the discrete variable uh

can now be approximated in a larger space Q(A). However, as suggested by the authors, the
enrichment is limited and conditioned by the following inclusion constraints:

∇Q(A) ⊂ V(A), πΛh
(Q(A))|∂A ⊂ Λ(∂A) and V(A) · n|∂A ⊂ Λ(∂A). (31)

Assuming that Λ(∂A) and V(A) are the set of polynomials of degree k, the authors conclude
that Q(A) can be composed at most of polynomial of degree k + 1. Then, assuming that the
stabilization parameter τF in (30) is taken to be of order 1/h, they observe that the discrete
variable uh converges at the order k + 2 in the L2-norm without any postprocessing [18, 19].
There is a price to pay in return for using the projective Lehrenfeld–Schöberl stabilization
function. Indeed, by increasing the polynomial degree of the scalar variable uh (just one degree
higher), the static condensation clearly becomes heavier due to the larger number of degrees
of freedom per element (cf., e.g. Table 3). However, this trick avoids any postprocessing of
the scalar variable uh (29).

4.2. Local approximation spaces

A characteristic feature of the standard H-MFE methods is that their discrete solutions
coincide with those of the originalH(div)-conforming MFE methods [10, 11]. This equivalence
rests on two key ingredients: (i) the choice of the null-stabilization function τn which amounts
to forcing the flux residual Rσ

∂A := (σ̂h − σh) · n to be zero and (ii) the choice of the local
approximation spaces as indicated in Table 2. The proposed H-RTp method is obtained by
modifying each of these two points. First, we relax the residual constraint (i.e., Rσ

∂A 6= 0)
by replacing τn by the Lehrenfeld–Schöberl stabilization function τ p (30); second, we adapt
the polynomial combination of the discrete variables to respect the inclusion constraints (31).
Consequently, the H-RTp method differs fundamentally from the standard H-RT method as
it introduces additional stabilization terms and uses a different polynomial combination set
for approximating discrete variables. To complete our presentation, we select (i) the smaller
admissible space Λ(∂A) to minimize the size of the stiffness matrix A in (20) and (ii) the larger
space Q(A) to optimize the expected convergence rate of uh. We then define the projective

10



H-RTp
k method by choosing the numerical trace of flux and local polynomial spaces as follows:

σ̂h · n := σh · n+ τF · (πΛh
(uh)− ûh) on F ∈ ∂A, (32)

V(A) := RTk(A), Q(A) := Pd
k+1(A) and, Λ(∂A) := Pd−1

k (∂A), (33)

for all A ∈ Ωh. It can be easily checked that the chosen local spaces (33) with respect to the
normal trace definition (32) verify all inclusion constraints (31). We have illustrated in Table 3,
the various local approximation spaces, i.e., V(A), Q(A) and Λ(∂A), used to construct the
H-RTp

k method by specifying the location of their corresponding degrees of freedom. Thus, the
resulting method can be considered as a penalized variant of the original H-RT method where
the postprocess of the potential is now disabled and the flux reconstruction is simplified, as
we will see below.

4.3. Simplified postprocess of the flux

The key idea of this simplified postprocessing procedure relies on properties of local basis
functions vh that span the Raviart-Thomas element RTk(A). Let us remind that a unisolvent
finite element RTk(A) can be derived by fixing (i) the moments of the normal component
up to order k on facets and (ii) the interior moments up to order k − 1 [2]. As a result, the
set of basis functions can be divided into two categories: first, the subset of normal basis

functions, denoted v∂
h, having nonvanishing normal traces on ∂A which are L2-orthogonal to

any polynomial ξh ∈ P
d
k−1(A) and, second, the subset of interior basis functions, denoted vi

h,
having vanishing normal traces on the boundary ∂A. Thanks to these last two properties, we
will be able to guarantee the existence and uniqueness of the simplistic flux reconstruction.
As explained in the previous section, the postprocess procedure (28) used to construct σ⋆

h

relies on the L2-orthogonal projection of the discrete variable σh and its trace σ̂h onto basis
functions that span RTk(A). Hence, assuming that both σh and σ⋆

h belong to the same local
space RTk(A) and using the L2-orthogonality property of functions v∂

h and ξh, the second
equation (28b) reduces to,

(σ⋆,i
h , ξh)A = (σi

h, ξh)A ∀ξh ∈ P
d
k−1(A), (34)

where σ⋆,i
h and σi

h denote the restriction of σ⋆
h and σh to the interior basis functions, respec-

tively. Thus, the projection operation (34) consists of substituting the interior nodal values of
σ⋆
h by those of σh. In other words, if we denote by Σ⋆

A (resp. ΣA) the local vector of degrees
of freedom of σ⋆

h (resp. σh), we then deduce easily from (34) that

Σ⋆
A =

(

Σ⋆,∂
A

Σi
A

)

, (35)

where Σ⋆,∂
A and Σi

A correspond to the restriction of Σ⋆
A and ΣA to the normal and interior

basis functions of RTk(A), respectively. Similarly, by using that interior basis functions vi
h

have no normal trace on ∂A, the first equation (28a) reduces to the following equation,

〈σ⋆,∂
h · n, µh〉∂A = 〈σ∂

h · n, µh〉∂A + 〈τF · (πΛh
(uh)− ûh), µh〉∂A ∀µh ∈ Pd−1

k (∂A). (36)

The corresponding matrix equation (36) is smaller than (28) since its dimension is equal here
to the number of normal basis functions per element (cf., e.g., Tables 3 and 4). Note, however,
that this simplified flux reconstruction requires computing beforehand the projection of the
potential πΛh

(uh) onto Λ(∂A). This step can easily be done by means of the quadrature
formula in the two-dimensional case [18, 24].
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H-RTp
k method k = 0 k = 1 k = 2 k = 3

V(A) := RTk(A)

(a0) (a1) (a2) (a3)

Q(A) := Pd
k+1(A)

• •

•

• •

•

•

••

• • • •

•

•

•

•

•

•

• • • • •

• • • •

• • •

• •

•

(b0) (b1) (b2) (b3)

Λ(F) := Pd−1
k (F) • • • • • • • • • •

(c0) (c1) (c2) (c3)

Table 3: Localization of degrees of freedom of the local approximation spaces V(A), Q(A) and Λ(F) used by the H-RTp

k
method for different polynomial

order k = 0, . . . , 3. Here, A is a triangle (d = 2), and F is an edge of ∂A. For the local space V(A) = RTk(A), the arrows indicate the value of the normal
component (3(k + 1)-normal basis functions), and the double dots indicate the value of both components (k(k + 1)-interior basis functions).
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Method dimV(A) dimQ(A) u⋆

h
σ⋆

h

H-RTk (k + 1)(k + 3) (k + 1)(k + 2)/2 (k + 2)(k + 3)/2 −
H-LDGm

k
(k + 1)(k + 2) (k + 1)(k + 2)/2 (k + 2)(k + 3)/2 (k + 1)(k + 3)

H-LDGp

k
(k + 1)(k + 2) (k + 2)(k + 3)/2 − (k + 1)(k + 3)

H-RTp

k
(k + 1)(k + 3) (k + 2)(k + 3)/2 − 3k + 3

Table 4: The first and second columns indicate the dimension of local spaces V(A) and Q(A), respectively.
The dimension of the local solver is equal to the sum of these two quantities. The third and fourth columns
indicate the size of the local matrix to compute the postprocessed variables u⋆

h and σ
⋆

h, respectively.

5. Numerical experiments

The performance of the novel H-RTp
k method is now investigated for the following three

numerical examples in two-dimensional space in terms of convergence, accuracy, stability
and efficiency. In particular, we compare the projective H-RTp

k variant with the standard
H-RTk method without any stabilization and the well-established H-LDGm

k method using a
multiplicative stabilization function. For our experiments, we focused on three hybrid mixed
methods, each using distinctive stabilization functions. These methods are all implemented in
a single Fortran 2003 program, and a direct solver using an unsymmetric-pattern multifrontal
method and direct sparse LU factorization (UMFPACK) is considered for solving the asso-
ciated linear system [28]. In the rest of this paper, we focus only on the best approximated
variables, i.e., (uh,σ

⋆
h) for the H-RTp

k method, (u⋆h,σh) for the H-RTk method and (u⋆h,σ
⋆
h)

for the H-LDGm
k method, and on the CPU time required to obtain them: let us presice that

the CPU time does not take into account the time required to read mesh files and write out-
put files. The numerical errors and corresponding estimated convergence rates (ECRs) are
computed in the usual L2-norm. In particular, we denote by euh

and eσh
(resp. eu⋆

h
and eσ⋆

h
),

the L2-error of discrete variables uh and σh (resp. postprocessed variables u⋆h and σ⋆
h),

euh
= ‖u− uh‖L2(Ωh) and eσh

= ‖σ − σh‖L2(Ωh), (37)

and similarly for eu⋆

h
and eσ⋆

h
, respectively. We consider two types of triangular meshes

(structured/unstructured) in these experiments as illustrated in Figure 1, and standard h-
and p-refinement strategies are used to compute the discrete solutions and numerical errors
over the entire domain. For instance, regular meshes are obtained by discretizing the unit
domain Ω with uniform squares of length h = 1/n for n = {4, 8, 16, 32, 64}, which are then
divided into two triangles as depicted in Figure 1.a. The mesh refinement is then characterized
by n. However, let us precise here that for a given mesh and for any fixed value of k, these
three variants have a global matrix equation (20) of identical size and sparsity structure (cf.
Table 5). It should also be noted that the computational effort to calculate postprocessing
variables is generally negligible thanks to parallelization strategies, but in our case, all these
calculations are done sequentially. The source term and Dirichlet boundary conditions are
taken such that the proposed analytical solution is exact.

5.1. Test A – Homogeneous isotropic flow

The first test case considered here is used to evaluate the performance of hybrid mixed
methods in the simplest possible setting, i.e., Poisson’s equation. We then consider the ho-
mogeneous Dirichlet boundary value problem corresponding to the exact solution u(x, y) =
sin(2πx) sin(2πy) in the unit domain Ω = (0, 1)2. Here, the material is assumed to be the
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(a) (b)

Figure 1: Regular mesh (a) and irregular mesh (b) for n = 16.

k�n 4 8 16 32 64
0 40 176 736 3008 12160
1 80 352 1472 6016 24320
2 120 528 2208 9024 36480
3 160 704 2944 12032 48640

Table 5: Total number of interior Lagrange multipliers, i.e., dimension of the stiffness matrix A, as a function
of the mesh refinement n and the polynomial degree k of the hybrid method on regular meshes.

homogeneous and isotropic κ = I2, where Id denotes the d× d identity matrix. A history of
convergence of the H-RTp

k, H-RTk and H-LDGm
k methods is summarized in Table 6 for regular

meshes (n = 4, . . . , 64) and different polynomial degrees (k = 0, 1, 2). We emphasize here that
we do not report in the Table 6 the history of convergence of selected discrete variables; how-
ever, we analyze below their behavior. For all degrees of approximation k, we note that the
discrete variables uh and σh converge both optimally with order k+1 for the H-RTk method,
whereas the postprocessed variable u⋆h converges with order k + 2 in the L2-norm. Similar
results are obtained for the H-LDGm

k method except for the lowest degree (k = 0), where u⋆h
converges only with order k + 1, as is the case for uh. These results are in accordance with
the theoretical estimates of convergence rates given by Brezzi et al. in [2] for mixed methods
and by Cockburn et al. in [11] for HDG methods. Concerning the H-RTp

k method and for
all degrees of approximation k, we observe that the scalar variable uh converges (without any
postprocessing) with order k + 2, including the particular case k = 0, and that both σh and
σ⋆
h converge with optimal order k+1. The substantial gain in accuracy induced by the post-

processing technique is clearly illustrated here; however, the discrete variable uh of the H-RTp
k

method has a slightly smaller error than the postprocessed scalar variable u⋆h of the H-RTk

and H-LDGm
k methods (cf. Table 6). To complete our analysis, we also include comparisons

in terms of the CPU time, which corresponds here to the simulation time needed to obtain
the discrete variables referenced in Table 6 for each method. Despite the fact that all hybrid
methods are built according to a unified principle, each of these three variants uses different
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H-RTp

k
H-RTk H-LDGm

k

k n euh
ECR eσ⋆

h
ECR eu⋆

h
ECR eσh

ECR eu⋆

h
ECR eσ⋆

h
ECR

4 2.10E−1 − 1.99E−0 − 1.27E−1 − 1.96E−0 − 1.27E−1 − 1.97E−0 −
8 4.41E−2 2.25 1.01E−0 0.98 3.11E−2 2.03 1.01E−0 0.96 6.63E−1 0.94 1.01E−0 0.96

0 16 9.83E−3 2.16 5.06E−1 1.00 7.79E−3 2.00 5.05E−1 1.00 3.41E−1 0.96 5.06E−1 1.00
32 2.38E−3 2.04 2.52E−1 1.00 1.95E−3 2.00 2.52E−1 1.00 1.73E−1 0.98 2.52E−1 1.01
64 5.95E−4 2.00 1.26E−1 1.00 4.90E−4 2.00 1.26E−1 1.00 8.72E−2 0.99 1.26E−1 1.00
4 3.64E−2 − 4.31E−1 − 2.27E−2 − 4.13E−1 − 2.67E−2 − 4.24E−1 −
8 3.09E−3 3.56 1.14E−1 1.92 3.15E−3 2.85 1.13E−1 1.87 3.38E−3 2.98 1.16E−1 1.87

1 16 3.38E−4 3.19 2.87E−2 1.99 3.99E−4 2.98 2.86E−2 1.98 4.21E−4 3.00 2.92E−2 1.99
32 3.96E−5 3.09 7.04E−3 2.01 4.86E−5 3.04 7.02E−3 2.02 5.15E−5 3.03 7.17E−3 2.03
64 4.80E−6 3.04 1.74E−3 2.00 5.98E−6 3.02 1.74E−3 2.01 6.33E−6 3.02 1.77E−3 2.02
4 4.59E−3 − 8.65E−2 − 5.21E−3 − 8.58E−2 − 5.26E−3 − 8.75E−2 −
8 2.35E−4 4.29 9.62E−3 3.17 2.80E−4 4.22 9.54E−3 3.17 2.80E−4 4.23 9.83E−3 3.15

2 16 1.29E−5 4.18 1.18E−3 3.03 1.76E−5 4.00 1.17E−3 3.03 1.76E−5 3.99 1.21E−3 3.02
32 7.99E−7 4.01 1.51E−4 2.97 1.14E−6 3.95 1.51E−4 2.96 1.15E−6 3.94 1.55E−4 2.96
64 5.08E−8 3.98 1.92E−5 2.98 7.33E−8 3.96 1.92E−5 2.98 7.36E−8 3.97 2.01E−5 2.95

Table 6: Test A – Homogeneous and isotropic test case on regular meshes

local assemblies and local techniques to reconstruct the discrete variables as indicated in Ta-
ble 4. To achieve this aim, we plot in Figure 2 the errors in u and in σ as a function of the
CPU time. For a wide range of degree of approximation k, we observe that both the H-RTp

k

and H-LDGm
k methods yield very similar results with a slight advantage for the projective

variant and that they outperform the standard H-RTk method, which clearly requires more
CPU time (see., for instance, Figures 2-a1,2 and 2-b0,1,2). The situation is somewhat different
for the lowest degree (k = 0), and in this latter case only, we observe that the numerical
approximation of the scalar variable of both the H-RTp

0 and H-RT0 methods outperforms that
of the H-LDGm

0 method; this result arises mainly because the H-LDGm
0 method converges

only with order one (cf. Figure 2-a0). This experiment also illustrates the benefits of using
higher-degree approximations. For instance, we can achieve better accuracy with the H-RTp

k
method (with approximately half the CPU time) with a square approximation (k = 2) in a
coarser mesh (n = 8) than with a constant approximation (k = 0) in the finest mesh (n = 64).

5.2. Test B – Heterogeneous anisotropic flow

The second test case is used to analyze the behavior of hybrid methods in the context of
heterogeneity and anisotropy of the material. To this aim, we consider the Dirichlet problem
corresponding to the exact solution u(x, y) = sin(πx) cos(πy) on the domain Ω ∈ (0, 1)2. Here,
we assume that the diffusion tensor is given by

κ−1 =

[

ex+y 0
0 ex−y

]

, (38)

which corresponds to a heterogeneous and smooth anisotropic medium, where the magnitude
of diffusion coefficients along each principal direction x and y, respectively, vary continuously
at each point of the domain; here, the strongest anisotropic ratio is approximately e2. This
test case is inspired from [29]. A history of convergence is presented in Table 7 for a wide
range of polynomial degree 0 ≤ k ≤ 2 and for irregular meshes (n = 4, . . . , 64).

All conclusions established in the previous experiment (Test A – Homogeneous isotropic
flow) are also observed here despite the presence of heterogeneity and anisotropy.
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Figure 2: Test A – History of convergence of the discrete variables for the H-RTp

k
(△ : euh

and N : eσ⋆

h
), the

H-RTk (� : eu⋆

h
and � : eσh

) and the H-LDGm

k (◦ : eu⋆

h
and • : eσ⋆

h
) methods as a function of the CPU time

tCPU for different polynomial degrees 0 ≤ k ≤ 2 on regular meshes.
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H-RTp

k
H-RTk H-LDGm

k

k n euh
ECR eσ⋆

h
ECR eu⋆

h
ECR eσh

ECR eu⋆

h
ECR eσ⋆

h
ECR

4 6.77E−2 − 1.80E−0 − 4.55E−2 − 1.77E−0 − 3.36E−1 − 1.85E−0 −
8 1.54E−2 2.14 8.99E−1 1.00 1.41E−2 1.69 8.95E−0 0.98 1.72E−1 0.97 9.10E−1 1.02

0 16 3.95E−3 1.96 4.46E−1 1.01 3.83E−3 1.88 4.45E−1 1.00 8.67E−2 0.99 4.49E−1 1.02
32 1.00E−3 1.98 2.21E−1 1.01 9.82E−4 1.96 2.21E−1 1.00 4.36E−2 0.99 2.23E−1 1.01
64 2.51E−4 2.00 1.10E−1 1.00 2.48E−4 1.99 1.10E−1 1.00 2.19E−2 0.99 1.10E−1 1.01
4 6.01E−3 − 2.27E−1 − 5.54E−3 − 2.25E−1 − 5.08E−3 − 2.12E−1 −
8 7.34E−4 3.03 5.83E−2 1.96 7.82E−4 2.82 5.82E−2 1.95 6.60E−4 2.94 5.67E−2 1.90

1 16 8.90E−5 3.04 1.46E−2 2.00 9.75E−5 3.00 1.46E−2 2.00 8.24E−5 3.00 1.43E−2 1.99
32 1.09E−5 3.03 3.62E−3 2.01 1.21E−5 2.96 3.62E−3 2.01 1.03E−5 3.00 3.62E−3 1.98
64 1.37E−6 3.00 9.10E−4 2.00 1.52E−6 3.04 9.11E−4 1.99 1.30E−6 2.99 9.07E−4 2.00
4 4.60E−4 − 2.31E−2 − 3.65E−4 − 2.30E−2 − 4.28E−4 − 2.12E−2 −
8 2.27E−5 4.34 2.90E−3 2.99 2.32E−5 3.98 2.90E−3 2.99 2.86E−5 3.90 3.19E−3 3.02

2 16 1.38E−6 4.04 3.58E−4 3.02 1.52E−6 3.94 3.58E−4 3.02 1.77E−6 4.01 3.95E−4 3.01
32 8.72E−8 3.99 4.60E−5 2.96 9.72E−8 3.97 4.61E−5 2.96 1.11E−7 3.99 4.94E−5 3.00
64 5.48E−9 4.00 5.74E−6 3.00 6.15E−9 3.99 5.75E−6 3.00 6.94E−9 4.00 6.17E−6 3.00

Table 7: Test B – Heterogeneous and smooth anisotropic test case on regular meshes

5.3. Test C – Homogeneous anisotropic flow

The last experiment was mentioned in [30] as causing some numerical locking problems
for a large class of numerical methods. Then, the exact solution is taken to be

u(x, y) = sin(2πx)e
−

2π√
δ
y
,

and the permeability tensor is assumed to be equal to

κ−1 =

[

1 0
0 δ

]

. (39)

Here, the locking parameter δ is assumed to be the sufficiently large δ = 106, and the stabiliza-
tion parameter is chosen to be of order one, that is, τ = O(1). In the last example, we wish
to illustrate the benefits of using a stabilization function. Thus, we focus only on the H-RTp

k
method using the Lehrenfeld–Schöberl stabilization function and the standard H-RTk method
without any stabilization. As indicated above, for any fixed values of k and n, we observe
that the projective H-RTp

k variant requires less CPU time than the standard H-RTk method
in this latter example as well. A history of convergence is plotted in Figure 3 for different
polynomial degrees (k = 0, . . . , 3) on irregular meshes (n = 8, . . . , 64). For the lowest degree
(k = 0), we observe that both the H-RTp

0 and H-RT0 methods yield similar results and that
the use of the stabilization function provides no significant improvements (cf. Figures 3-a0
and 3-b0): the velocity error does not converge, and the estimated convergence rate (ECR)
of the potential decreases significantly as the mesh is refined. We clearly observe a numerical

locking phenomena for both the H-RTp
0 and H-RT0 methods. The situation is somewhat dif-

ferent for higher-degree approximations (k ≥ 1), for which the gap is now more significant. As
shown in Figure 3, the numerical errors computed by the H-RTp

k method differ significantly
and are more accurate by several orders of magnitude than those given by the H-RTk method
(cf., e.g., Figures 3-a1,2 and 3-b1,2). In particular (for k = 3), we clearly observe problematic

numerical locking for the H-RT3 method only (cf. Figures 3-a3 and 3-b3). Note that this is
not the case for the H-RTp

3 method and that the computed errors decrease as expected, i.e.,
k+2 for the potential and k+1 for the flux. Therefore, we conclude that the projective H-RTp

k

variant outperforms the standard H-RTk method, particularly in highly anisotropic porous
media. In the latter case, we highlight the beneficial role of using a stabilization function to
restore the convergence of the method in severe cases. Let us point out that any other HDG
methods using a non-null stabilization function will also be able to treat this rough case.
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6. Conclusion & Perspectives

In summary, we have presented a projective hybridizable Raviart–Thomas method for
second-order diffusion problems. The proposed method is inspired by the HDG formalism
as it introduces residual flux terms into the original H-RT method. Specifically, we add a
projective-type stabilization function in the definition of the normal trace of the flux on the
mesh skeleton allowing to consider polynomials of higher degree for the approximation of
the potential. Extensive numerical experiments have been performed to prove the accuracy,
efficiency and robustness of the H-RTp method. To this aim, comparisons with the standard H-
RT method and the well-known H-LDG method are exposed in terms of mesh and polynomial
refinements, and CPU time. For any fixed-value of k (including the particular case k = 0), the
H-RTp

k method achieves an optimal convergence order for (i) the approximate flux, k+1, after
a straighforward reconstruction step and (ii) the potential, k + 2, without any postprocess.
These comparisons also indicate that the H-RTp method requires less CPU time and is more
accurate than the standard H-RT method, particularly in highly anisotropic porous media.

The key idea explored in this paper is that H-MFE methods are also amenable to sta-
bilization strategies within the general framework of HDG methods. From our viewpoint,
this is a promising direction to explore, as the resulting method inherits all benefits of the
original methods. Notably, the resulting method developed in this paper for second-order dif-
fusion problems is not limited to only the Raviart–Thomas finite element and the projective
Lehrenfeld–Schöberl stabilization function but can be easily extended to any other class of
problems, (broken) H(div)-conforming finite elements and stabilization functions. Accord-
ingly, an extension to more general advection-diffusion-reaction problems (with nonnegative
characteristic form) will be considered in a forthcoming paper.
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Figure 3: Test C – History of convergence of the discrete variables for the H-RTp

k
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) methods
as a function of the mesh size 1/h for different polynomial orders 0 ≤ k ≤ 3 on irregular meshes.
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