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Abstract  

Temperature can directly and indirectly impact the livelihood of inhabitants of a 
country and the natural environment as a whole. The surface temperature trend 
approximations for South Africa (SA) were calculated using a linear-regression fitting 
model. The model was adapted at The University of Reunion Island and was referred 
to as the Trend-Run model. The geophysical signal of the model was split into a sum of 
oscillations, which was used to clarify most of its variability. The trend values were 
calculated from the residual terms as a linear function. The model used atmospheric 
oscillations, which included Annual (AO), Semi-Annual (SAO), Quasi-Biennial 
Oscillations (QBO), El Niño-Southern Oscillation (ENSO), the 11-years solar cycle-Sun 
Spot Number (SSN) and Indian Ocean Dipole (IOD). The South African Weather Service 
(SAWS) data were used for the study. Data sets over a 31-year period, from March 
1980 to December 2011, were used to measure the validity of the Trend-Run model, 
to determine the contribution and effect of this particular oscillation, and the validity 
of the model. The Trend-Run model showed very high applicability to the surface 
temperatures in all provinces across the SA region under investigation. High coefficient 
of determination values between (0.70-0.91) were recorded for surface temperatures 
across all provinces in the country with minor variations. The AO, ENSO and SAO were 
the highest contributing forcings in the model, thereby showing their high relevance to 
the success of this model in the study area. The temperature increases are expected to 
negatively impact on the biomes of SA, including the forest biome. Selected tree 
species of Acacia, Eucalyptus and Pinus could be impacted negatively with rising 
temperatures, which would negatively impact on the forestry industry in SA. As 
expected, the model did obtain a high success rate that ranged from 70% to 91% in 
the areas under study, however, there was still room for improvement by the possible 
inclusion of additional atmospheric forcings to the model that maybe be applicable to 
the weather and forestry distribution in SA. 
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1 Introduction 

Africa is one of the most susceptible continents to climate variability, a 
situation that is intensified by the interaction of ‘numerous stresses’ that arise at a 
variety of levels and with little adaptive capability (IPCC 2007a). Southern Africa is 
considered as one of the most susceptible regions in Africa (IPCC 2007b). Increases in 
temperature have the potential to actively impact human health across the continent, 
since it is generally anticipated that, as the planet heats, climate variability will 
intensify (Garland et al. 2015). Variations in the occurrence of unforgiving life-
threatening climate events and the variability of weather configurations were 
predicted to have substantial challenges for biotic and abiotic factors (Lewis and King 
2017). Future cumulative occurrences of heat stress, drought and flooding instances 
were predicted, and these were projected to have detrimental effects, especially from 
variations in mean temperature. Climate system warming can result in very large 
corresponding changes in climate extremes. 

General Circulate Models (GCMs), which make use of the recognized 
fundamental standards of physics, are often used to interpret weather adjustments 
and worldwide warming (IPCC 2007c). These studies indicated that anthropogenic 
forcing was the major contributor to climatic modifications over the last century 
(Scafetta 2010). However, these results are questionable because the GCM 
simulations failed to reproduce the oscillations observed in the climate phenomena at 
different scales on the ground since 1850 (Scafetta 2010). It was maintained that 
climatic oscillations articulate at multiple time scales with astronomical cycles 
(Scafetta 2010). The existing GCMs of the climate therefore do not embrace vital 
astronomical forcings (Scafetta 2010). Subsequently, climate changes due to natural 
causes may still be severely underestimated (Scafetta 2010). Past developments in 
climatic variables are of interest in a variety of educational disciplines and financial 
sectors; alongside ecology, agriculture, forestry and water aid management. Several 
studies have investigated climatic developments in South Africa, primarily focusing on 
station data of temperature as well as diverse indices derived from those portions 
(IPCC 2007c). The greatest limitation to such studies of historic climate is the provision 
of lengthy-term meteorological station observations that have sufficient coverage to 
give a justifiable illustration of weather in a vicinity. South Africa has a strong network 
of rainfall and temperature recording stations compared to most countries in the 
southern hemisphere, which makes it possible to investigate developments and 
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variability over several decades. However, it is often difficult to get clear signals of 
long-term adjustment because of large variability across a range of spatial and 
temporal scales (DEA 2013). Many researchers in atmospheric science have recently 
been studying climatic trends over extensive terms (IPCC 2007c) but the physical 
mechanisms and characteristics have not yet been clearly established; including the 
current climate models. The linear-regression fitting model (hereafter referred to as 
Trend-Run) was applied using the selected data sets to calculate the relevant values 
and temperature trends at selected regions (Sivakumar et al. 2017). The Trend-Run is a 
statistical model that was adapted at The University of Reunion Island for temperature 
trend approximations in the southern subtropical upper troposphere and lower 
stratosphere (UT-LS) region (Bencherif et al. 2006). 

The intergovernmental panel on climate change (IPCC) found that global 

temperatures have been increasing by a rate of 1.5C per decade, which is very 
concerning for abiotic and biotic factors on the earth (IPCC 2018). Hugues and Balling 

(1996) showed a maximum temperature increase of 0.11C per decade between 1960 
and 1990. There was also a significant increase in temperature over three weather 
stations in the Limpopo province of South Africa between 1960 and 2003 (Kruger and 
Shongwe 2004). A model simulation study by Engelbrecht (2005) showed an escalation 

in temperature in South Africa of 1 to 3C and 1 to 2C in summer and winter, 
respectively. 

Temperature and its variability can influence numerous processes in the 
hydrological cycle, such as rainfall, which is a vital resource for agricultural and 
forestry practices in a country. The forest biome overlaps with a number of 
bioregional programmes for provinces such as the Cape, KwaZulu-Natal (KZN) and 
Mpumalanga (DWAF 2005). Two of these regions were identified by Conservation 
International as global biodiversity regions with high levels of endemism (DWAF 2005). 
A wide range of climatic conditions and variations in topography and vegetation exists 
in SA and this gives rise to broad vegetation zones. It has been projected that South 
Africa’s biodiversity will be adversely affected by climate change in the medium- to 
long-term (DEA 2015a). It is against this background that creating a conducive 
environment adaptation of climate change is recognized as a crucial area of 
intervention by the Government of South Africa. As such, expanded opportunities now 
exist to think more broadly about climate change responses in these areas, including 
different responses for different biomes (DEA 2015b). The SA bioclimate showed that 
warming and trends in aridification are strong enough to decrease the area of the 
country’s biomes to between 38 and 55% of their current combined surface area; 
especially in the western, central and northern parts of the country where the largest 
losses can be expected (Rutherford et al. 2000). The areas studied in SA had high levels 
of terrestrial and aquatic biodiversity; the Cape and KwaZulu-Natal Provinces had 
some of the highest biodiversity of plants in the world and high levels of endemism. 
Along the eastern seaboard of SA, there are high levels of aquatic biodiversity, which 
play an important role in the economy of the associated towns and cities (de Moor 
and Day 2013). Forestry research has demonstrated that South African forests have 
the largest biodiversity of any temperate forested region in the world (Silander 2001). 
The national biodiversity importance of South African forests is not always recognized 
nor given the appropriate attention. The forested areas in SA has been up to seven 
times richer in species than any other forested area in the Southern Hemisphere, even 
though these forests cover a much larger surface area. When the number of plant 
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species (occurring within each of the six biomes in SA) are correlated to the total area 
covered by each biome, this results in the forest biome having the highest 
concentration of species (3,000 species in approximately 5,052 km2, as opposed to the 
next highest, fynbos with 7,500 species on 76,744 km2) (DWAF 2005). Trend 
investigations of temperature and interrelated variables are critical in the creation of 
future climatic settings and management practices (Jain and Kumar 2012). Throughout 
Africa, rainfall and vegetation are known to resonate with the El Niño-Southern 
Oscillation (ENSO) and the Indian Ocean Dipole (IOD), coupled with ocean-atmosphere 
phenomena. However, the regional-scale repercussions of surface temperature 
changeability for photosynthesis in Africa have not received motivated consideration, 
especially IOD. The first possibility for the IOD is created by a feedback joined with 
ocean-atmosphere monsoon and tropical circulation (Saji et al. 1999). The second 
possibility considers the IOD as part of an Indo-Pacific ENSO (Behera and Yamagata 
2003). According to Owiti et al. (2008), some of east Africa’s extreme rainfall 
conditions were related to the negative and positive phases of the IOD. This kind of 
climate information could assist to progress monitoring, prediction and early warning 
of extreme rainfall events and reduce adverse impacts of climate extremes over east 
Africa. A more recent study has established that the IOD is now acknowledged as a 
foremost climatic influence and should be considered in the southern Indian Ocean 
(Morioka et al. 2010). However, it must be stressed that these studies have not 
addressed any quantitative influence of the diverse atmospheric forces in the values of 
the temperature trend. Therefore, the aim of the present study was to determine 
whether the Trend-Run model was applicable to the surface temperature over SA in 
general. Our objectives were: (1) to assess the performance of the model on the 
surface temperature using historical data sets from the South African Weather Service 
(SAWS) stations from all provinces for the period from March 1980 to December 2011; 
(2) to assess the weighted relevance of atmospheric forcings on the model in various 
regions of the country; and (3) to determine the decadal trend values and compare 
them to the literature and possible effects of selected commercial forest species in SA. 

2 Material and methods 

2.1 Study sites and population of data  

This study was performed on monthly averages of surface temperature from 
selected meteorological stations in the nine provinces of South Africa; covering the 
period of March 1980 to December 2011 (Figure 1). The chosen study sites had a 
complete dataset and were continuous (with no gaps in the datasets). The 29 weather 
stations were selected because they ranged from a 100 km to 300 km apart as shown 
in Figure 1. The data was obtained from the South African Weather Service (SAWS) in 
Pretoria, South Africa. The data was screened from the stations and the raw data went 
through quality checks to evade syntax errors, ensure internal reliability, remove 
extreme outliers and exhibit spatial coherency. The obtained daily data-sets were 
averaged over a month and weather stations with incomplete data sets were excluded 
from the study. Due to the consistent nature of data obtained from the selected 
station (directly from a designated official at SAWS), the data sets were considered to 
be of good value and satisfactory for the study. The data was arranged in 12 month 
blocks for a total period of approximately 31 years for surface maximum temperature 
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for each station. This followed the parameter set by the World Meteorological 
Organization (WMO) as the period for averaging these variables (30 years) (WMO 
2017). The geographical coverage of stations used in this study is shown in Figure 1.1. 

 

Figure 1.1 Geographical location of the 29 weather stations used in this study in all provinces of South Africa. 

2.2 Trend-Run model  

Trend-Run is an algebraic model that was modified and used at The University 
of Reunion Island for temperature trend estimates in the southern subtropical upper 
troposphere-lower stratosphere (UTLS) (Bencherif et al. 2006). The model was based 
on the principle of breaking down the variations of a time series signal (in our case, 
Temperature) Y (t) into the sum of the different parameters that describe the 
variations of Y (t): 

Y(t) = c1 SAO(t) + c2 AO(t) + c3 QBO(t) + c4 ENSO(t) + c5 SSN(t) + c6 IOD(t) + ε 

Where, ε represented the residual term and ci (i = 1 to 6) represented the various 
considered atmospheric force coefficients. Once the coefficients ci (i = 1 to 6) were 
calculated, the analogous parameters were detached in the model and the least-
square method was applied to minimize the sum of the residual squares and to 
determine the parameter coefficients ci. The trend was parameterised as linear and 
regarded as: Trend(t) = α0 + α1 t, where t denoted the time series, α0 was a constant, 
α1 was the slope of Trend (t) line that estimated the trend over the time scale. The 
former version of the model utilised only the main oscillations, such as: annual and 
semi-annual oscillations (AO and SAO, respectively), QBO (quasi-bi-annual oscillation), 
ENSO (El-Niño-Southern Oscillation), and the 11-years solar cycle-Sun Spot Number 
(SSN). AO and SAO were considered to be mean seasonal cycles. The model further 
used South Oscillation Index to parameterize the QBO (Randel and Cobb 1994; Li et al. 
2008) and the ENSO cycles, respectively. The SAO in the tropical region above 35 000 
m above sea level was the strongest mode of annual variability. This SAO was initially 
detected in temperature and zonal wind in the data recorded in the 1960s (Reed and 
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Rogers 1962; Reed 1966). The amplitude of the SAO usually declines with an increase 
in latitude, however, it can recuperate in the subtropics, which is dependent on the 
altitude. The IOD resemble the inter-variability existing in the Indian Ocean, with an 
east-west dipole in the sea surface temperature (SST) anomalies of the basin. One of 
the mechanisms responsible for the IOD is that the eastern Indian Ocean can become 
abnormally cold, anomalous winds blow from east to west along the equator and 
south eastward of the coast of Sumatra causing a thermocline and a mixed layer lift up 
in which the atmospheric convection gets inhibited during certain years (Saji et al. 
1999; Morioka et al. 2010). This coupled ocean-atmospheric phenomenon in which 
convection, winds, SST and thermocline actively take part in, is known as the IOD. The 
IOD is commonly measured by an index called the dipole mode index (DMI), which is 
defined as the SST anomaly difference between the western (50°E-70°E, 10°S-10°N) 
and eastern (90°E-110°E, 10°S-Equator) tropical Indian Ocean (Sivakumar et al. 2017). 
In order to consider the IOD in the Trend-Run model, we used DMI from the Japanese 
agency for marine - earth science and technology 
(http://www.jamstec.go.jp/frsgc/research/d1/iod/dmi.html). The coefficient of 
determination (R2) is a vital coefficient to recognize since it affords total information 
about the capability of the regression model to explain variance in the result. The 
decadal trend values in degrees Celsius were also calculated to see if there was any 
change in the temperature increase or decrease over time. For more information 
about the use Trend-Run model and forcing parametrisation, the reader may refer to 
the works published by Bencherif et al. (2006) and Bègue et al. (2010). 

3 Result and discussion 

Climate change effects are uncertain in southern Africa (Fairbanks and Scholes 
1999). The commercial forestry industry in South Africa is sensitive to global warming 
since only 1.5% of the country, under present climatic conditions, is appropriate for 
tree crops (Fairbanks and Scholes 1999). Additionally, the relatively extended time 
frame between planting and yield (rotation) renders tree plantations more susceptible 
to any environmental adjustment. The potential effects of climate change were 
modelled on pines and eucalypts as the main tree species in South Africa by 
Warburton and Schulze (2008). Different climate prediction models all indicated that 
there is a temperature increase over the forestry constituencies of the country 
(Warburton and Schulze 2008). Predictions regarding rainfall are more divergent; a 
rise in precipitation seems more probable in forestry areas in the eastern part of the 
country (Warburton and Schulze 2008). Probable climate change possibilities to 
determine their potential effects on the forest industry found that declining rainfall 
with rising temperature was detrimental to forest growth, whereas rainfall increases 
offset all adverse impacts of temperature (Warburton and Schulze 2008). This 
simultaneously increased the optimal growing conditions for the total area under both 
pines and eucalyptus (Warburton and Schulze 2008). Long-term and regional outlooks 
of forest ecology, biogeography and conservation management are important 
considerations in SA because of its high levels of biotic and abiotic diversity (ISRIC 
2013). The altitudinal and latitudinal distribution of forests and vegetation types 
display substantial sensitivity to climate change (ISRIC 2013). Forest preservation in 
the long-term requires reserves in areas with good climate allowing for viable forest 
management strategies (Eeley et al. 1999). Climate change make forests most 
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vulnerable to climate change and extremes in the regeneration phase and it is 
imperative to take projections of climate change into consideration in future 
reforestation programs (Ivetic and Devetaković 2016). As new regions turn out to be 
climatically appropriate for forestry, the geographical location of the industry to match 
areas of optimum potential should be shifted to the new favourable regions (Kiker 
2000). Heat and drought resistant hybrids could be developed by genetic engineering 
to offset the danger of climate change (Kiker 2000). According to Jewitt et al. (2015), 
the future climate developments encourages an understanding of the series and 
degree of climate change impacts. The incorporation of habitat loss and climate 
change into a framework that can be developed to inform appropriate conservation 
actions, mitigate climate change impacts on biodiversity and facilitate dynamic 
conservation planning in South Africa. 

3.1 Model application and uncertainty  

There is potential to improve the understanding of atmospheric interactions 
with the current data sets. In general, all data sets have some organized biases and 
reservations and their usefulness will depend on a particular application. Simplified 
representations of regional climate models in reality are often founded on insufficient 
input data and doubts in parameter values and reduced mathematical depiction of 
processes. Henceforth, caution must be applied when using any of these data sets. A 
vital science question that now arises is how predictive doubt can be recognized, 
quantified and eventually reduced for climate change modelling? Uncertainty 
evaluation is compelled by the need to contribute towards an accurate and/or 
optimum basis for decision making. 

3.2 Trend-Run model efficiency  

Table 2 depicts a summary of the values for the contribution coefficients for 
different forcings (SAO, AO, QBO, IOD, ENSO and SSN) expected to drive the most of 
surface temperature variability. The corresponding R2 values are reported in Table 1. 
The model coefficient of determination for the Trend-Run model performed (on 
average) the highest (Vanwyksvlei-0.91, Oudshoorn-0.90) over the Northern Cape and 
Western Cape respectively; with the lowest R2 values (Dohne-0.72, Umtata-0.70)  
being recorded in the Eastern Cape as compared to the rest of the country (Table 1). 
This was a significant finding as the model recorded both the highest and the lowest 
overall values in the provinces of the Cape. There was no relationship between the 
spatial distribution (geographical coordinates) and model performance (coefficient of 
determination values) in the study as the results were inconsistently randomly 
distributed throughout the country as illustrated and demonstrated in Figure 1. and 
Table 1 respectively. However, the model was found to perform efficiently; this was 
based on the high coefficient of determination values, which ranged from 0.7 to 0.91 
in this study (Table 1). These results showed that the model is highly applicable in all 
provinces across South Africa. 

 
 
 



REFORESTA (2019) 7: 50-72  Jimmy et al. 

Reforesta Scientific Society   57 
 

Table 1. The corresponding values for the coefficient of determination (R2) and geographical coordinates for the 29 
weather stations in all nine provinces (Northern Cape-NC, Western Cape-WC, Eastern Cape-EC, KwaZulu-Natal-KZN, Free 

State-FS, North West-NW, Mpumalanga-MP, Limpopo-LP and Gauteng-GT) for surface temperature over South Africa. 

 
The lengthy-time period oscillations observed for each wind and temperature 

consisting of annual, semi-annual, and quasi-biennial oscillations (AO, SAO, and QBO), 
are important functions in this dynamic vicinity (Mayr et al. 2010). The SAO is a vital 
oscillation, particularly around the equator and peaks at the stratosphere and 
mesosphere (Remsberg et al. 2002). The forcing mechanism of SAO is beneficial for 
generating knowledge of the numerous functions inside the meridional structure and 
the seasonal march of the SAO. Since the sun crosses the equator twice a year, the 
SAO can be generated via motion advection from summer time to the winter 
hemisphere (Holton and Wehrbein 1980). The results of the coefficient values in Table 

2 allows one to deduce that the AO was a dominant factor (52% in average) and this 

was followed by the ENSO (11% in average). The highest SSN contributions over SA in 
this study was recorded in the Western Cape at (Table 2), indicating that it has a little 
contribution to the temperature variability across the country; with the exception of 
the Eastern and Western Cape Provinces. There was scientific agreement that only a 
trivial part of current climate change could be attributed to the solar cycle (IPCC, 

Meteorological Station name (Province) 
Latitude 

Decimal degrees 
Longitude 

Decimal degrees 
R2 

Vanwyksvlei (NC) -30.35 21.82 0.91 
Oudtshoorn (WC) -33.60 22.20 0.90 

Aliwal (EC) -30.72 26.72 0.89 
Okiep (NC) -29.60 17.88 0.89 

Graaf Reinett (EC) -32.25 24.53 0.89 
Glencollege (FS) -28.95 26.33 0.88 
Vredendal (WC) -31.67 18.50 0.88 
Upington (NC) -28.40 21.27 0.87 

Durban South (KZN) -29.97 30.95 0.87 
Twee Riverien (NC) -32.03 20.52 0.87 

South African Astronomical Observatory - SAAO (WC) -33.93 18.48 0.86 
Carltonville (GT) -26.33 27.38 0.84 

Pretoria (GT) -25.73 28.18 0.84 
Cape Columbine (WC) -32.83 17.86 0.84 

Polokwane (LP) -23.87 29.45 0.83 
Estcourt (KZN) -29.02 29.87 0.81 
Vryburg (NW) -26.95 24.75 0.81 

Robertson (WC) -33.83 19.90 0.81 
East London (EC) -33.03 27.83 0.81 
Riverview (KZN) -28.45 32.18 0.80 

Lindleyspoort (NW) -25.48 26.70 0.80 
Messina (LP) -22.27 29.90 0.78 

Cape St Francis (EC) -34.20 24.83 0.77 
Loskop dam (MP) -25.40 29.37 0.77 

Frankfort (FS) -27.27 28.50 0.76 
Skukuza (MP) -24.98 31.60 0.75 
Pofadder (NC) -29.12 19.38 0.75 

Dohne (EC) -32.52 27.47 0.72 
Umtata (EC) -31.53 28.67 0.70 
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2013). However, this reason did not appear to be applicable to certain areas of the 
Cape. For all the study sites the AO is a dominant forcing. Its contribution is within 
35%-65% and, as one may expect, it is increasing southward as illustrated in Figure 1.2 
and Table 2. With regards to the SAO, its contribution is less than the ENSO one. The 
SAO contribution is found to be quasi-constant (about 8,8% ±2,5% (Table 2) in 
average) for all locations. In fact, the ENSO forcing appears as the 2nd important one, 
and shows more variability across the country (Figure 1.3) than the SAO (ENSO 
averaged contribution is about 11.22% ±5,6% (Table 2). In fact, ENSO is known to drive 
regional climate variability and may have impact on agriculture and forestry. Figure 1.3 
illustrates how the ENSO contributions increase northward and eastward. The North-
East SA provinces seem to be the most exposed to ENSO effects. 

Table 2. Contribution (in percentages) of SAO, AO, QBO, IOD, ENSO and SSN (11-year solar cycle) and decadal trend 
values, as obtained by the linear regression Trend-Run model at 29 weather stations in all provinces of South Africa for 
surface temperature: Northern Cape-NC, Western Cape-WC, Eastern Cape-EC, KwaZulu-Natal-KZN, Free State-FS, North 

West-NW, Mpumalanga-MP, Limpopo-LP and Gauteng-GT. 

 

Temperature 

Station name and Province 
SAO 
(%) 

AO 
(%) 

QBO 
(%) 

IOD 
(%) 

SOI 
(%) 

SSN 
(%) 

Trend 
(°C/decade) 

Pretoria (GT) 13.75 48.81 1.26 5.57 12.28 2.54 0.84 
Twee Riveren (NC) 8.89 61.51 0.02 2.99 11.29 2.30 0.77 
Oudtshoorn (WC) 9.36 69.34 3.29 0.39 4.54 2.55 0.60 
Vredendal (WC) 10.34 57.84 1.60 9.53 3.98 4.25 0.59 

Messina (LP) 8.83 35.88 2.64 4.95 20.42 5.48 0.57 
Skukuza (MP) 7.67 36.10 2.74 5.39 20.82 2.11 0.49 
Upington (NC) 6.41 57.33 1.05 3.52 12.84 0.25 0.48 
Polokwane (LP) 12.26 41.35 2.45 4.29 19.41 3.21 0.43 
Robertson (WC) 3.57 54.18 1.34 2.49 8.93 10.12 0.38 

Dohne (EC) 7.78 44.86 3.00 2.98 10.05 3.17 0.37 
Carltonville (GT) 12.25 44.57 2.66 3.62 16.42 4.02 0.35 

Aliwal (EC) 8.24 64.17 0.55 0.88 10.30 5.02 0.33 
Pofadder (NC) 4.26 51.56 0.94 3.77 9.46 5.07 0.33 

Umtata(EC) 9.33 42.09 0.25 4.63 10.70 2.93 0.31 
East London (EC) 7.44 56.30 1.25 2.82 8.78 4.03 0.26 

South African Astronomical Observatory - SAAO (WC) 5.48 67.96 0.83 3.16 0.41 8.01 0.24 
Riverview (KZN) 6.34 42.63 1.32 4.75 17.54 6.98 0.23 

Graaf Reinett (EC) 6.63 66.94 1.09 0.25 12.51 1.15 0.18 
Cape Columbine (WC) 6.66 65.60 1.90 2.31 0.42 7.05 0.18 

Frankfort (FS) 11.11 41.94 0.53 3.38 18.07 0.67 0.15 
Estcourt (KZN) 10.93 51.16 0.80 3.50 11.42 3.55 0.13 

Glencollege (FS) 9.01 60.26 0.25 2.70 9.82 5.89 0.12 
Durban South (KZN) 6.40 59.27 0.14 8.16 9.89 3.27 0.11 

Vryburg (NW) 8.47 50.74 2.34 1.68 10.10 7.60 0.07 
Vanwyksvlei (NC) 7.27 65.52 0.09 6.45 9.55 1.79 0.07 

Cape St Francis (EC) 11.28 43.69 0.65 8.32 12.76 0.54 0.07 
Loskop dam (MP) 13.47 34.21 4.97 5.56 14.91 3.47 0.06 

Okiep (NC) 10.81 64.14 2.02 8.09 0.71 2.81 -0.25 
Lindleyspoort (NW) 9.87 34.72 3.26 10.35 17.14 4.13 -0.38 
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Figure 1.2 Annual Oscillation (AO) increasing southwards in the country. 

 
Figure 1.3 ENSO (El-Nino Southern Oscillation showing high variability as it increases across the country. 

The highest SAO contributions were found in Gauteng and Limpopo (Table 2). 
The QBO had little or no effect on the model performance as seen from the AO and 
SAO contributions (Table 2). 

3.3 The possible impact of the decadal trend values on commercial forestry species 
in South Africa 

The decadal trend values calculated by the Trend-Run model ranged between 
-3.8°C and 0.84°C per decade throughout the country (Table 2). Coastal stations and 
inland stations did not create a distinctive pattern in the decadal trend distribution 
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throughout the country (Figure 1.4). Some weather stations under investigation along 
the coasts (Eastern and Western Cape) and interior part (Mpumalanga, Limpopo, 
Northern Cape and Gauteng) of SA had decadal trend values (Table 2) congruent to 
the work by Spear et al. (2015), who found increases in temperature of approximately 
0.4 to 1.4°C along the coasts and certain areas of central South Africa (Figure 1.4). 
These current increases in the temperature trends could also have dire consequences 
such as increased evaporation during drier periods, which can subsequently impact 
the quantity of available drinking water, water resources and agriculture (Prokić 2018). 
During the 20th century, the presence of breaks in global and hemispheric 
temperatures have been deliberated extensively in the climate literature. However, 
this was not always formally studied using the time series properties set by the World 
Meteorological Organization (WMO) (IPCC 2013). The long time periods associated 
with decisions developed in the forestry industry and the timing and the magnitude of 
global warming will need to develop strategies for adaptation (Bennett and Kruger 
2013). These strategies will vary with area and time frames (Bennett and Kruger, 
2013). Whilst the indigenous forests in SA provide aesthetic and conservation values, 
they arguably do not contribute as much to the economy as the commercial forestry 
sector, which introduced exotic tree species for timber in the early 19th century (van 
der Zel 1995; Bennett and Kruger, 2013). A number of non-invasive species were 
introduced more than a century ago in SA (Forsyth et al. 2004), and there is no 
scientific literature to demonstrate the invasiveness in SA by eucalypt hybrid clones. 
Subsequently, the eucalypt tree is a good option for land use that could assist in the 
rendering of ecosystem services such as animal shelter on farms and pollination 
services (De Lange et al. 2013; Harper et al. 2017). 

 

Figure 1.4 °C per decade (March 1980-December 2011) distribution across all weather stations and provinces in SA. 

The Australian Acacia mearnsii and the fast growing Eucalyptus grandis were 
introduced to supply wood for the country (Scott and Gush 2017). Acacia mearnsii, 
which is known as black wattle, is well researched in SA and of the locally grown 
commercial hardwoods, is the most drought resistant. It requires a mean annual 
temperature (MAT) of 16-19°C for its growth (Schulze and Davis 2014). The tree is 
grown optimally in the regions of KZN, Eastern Cape and Mpumalanga in SA (Schulze 
and Davis 2014). The climatically prime area for A. mearnsii production is in KwaZulu-

https://public.wmo.int/en/media/press-release
https://public.wmo.int/en/media/press-release
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Natal and southern Mpumalanga under the present climate conditions. As the 
temperature increases and rainfall is decreased, the climatically optimal production 
areas are expected to decrease and also reduce tree growth (Warburton and Schulze 
2008). However, if the temperatures increase with rainfall, then the tree growth will 
be increased subsequently (Warburton and Schulze 2008). The same prediction but 
with greater variation was predicted for the Eastern Cape. However, the climatically 
optimum area for A. mearnsii in Mpumalanga increases when the temperature 
increased by 1°C and 2°C; perhaps due to the decrease in frost occurrence (Warburton 
and Schulze 2008). The Trend Run Model in this study has demonstrated a range of 
temperature increases between 0.06°C per decade and 0.49°C per decade, which 
could result in a decrease in Acacia occurrence should the rainfall be decreased by 
climatic conditions during that time period. 

Eucalyptus dunnii is a fast growing tree for the paper and pulp industry in SA. 
Eucalyptus dunnii is disease prone and susceptible to defoliating insects when the 
mean annual temperatures (MAT) are greater than 19°C, and especially under drought 
conditions. Eucalyptus GC (grandis x camaldulensis) is a hybrid for warmer climates 
but is very vulnerable to frost and snow damage (Schulze and Davis 2016). The 
climatically optimum distribution range for GC is along the east coast of SA, which 
extends approximately 100 km inland to the warmer parts of Swaziland and 
Mpumalanga. Eucalyptus GC seems to be a strong hybrid consideration in future 
climate change scenarios. Eucalyptus GU (grandis x urophylla), like the Eucalyptus GC 
hybrid flourishes in warm climates with MATs > 17°C, however, GC develops optimally 
at high precipitation with MAPs in excess of 950 mm (Schulze and Davis 2016). The 
Trend run model showed a high of 0.49°C per decade increase and these hybrids of 
Eucalyptus have a greater chance of survival and will be beneficial for the forestry 
industry. During MATs lower than 17°C, frost damage can occur and even snow 
damage when the MAT is less than 16°C. Eucalyptus macarthurii is tolerant to frost 
(except when young) and can produce commercially sustainable harvests with 
moderately low risk on negligible sites. Eucalyptus macarthurii requires a MAP > 800 
mm for optimum growth and when the MAT is approximately 15.5°C. Although E. 
macarthurii thrives optimally under a wide range of rainfall patterns, they are 
susceptible to high temperatures where conditions are dry. The increase of 0.37°C per 
decade could eventually detrimentally impact the growth of E.  macarthurii; its 
optimum climatic belt being the KZN interior, the Eastern Cape and Mpumalanga. It is 
predicted that during the climatic conditions between 2045 and 2065, this species will 
shift further into the interior into the eastern Free State and northern areas of the 
Eastern Cape (Schulze and Davis 2016). 

A variety of eucalypts are grown on a short rotation (8-12 years) and some 
species of Pinus are grown over longer rotations for sawlog timber (Scott and Gush 
2017). The Western Cape semi-arid zone could experience more inconsistent rainfall 
patterns and future drier condition. Under these conditions, even regions in the 
wetter portion of what is now classified as the semi-arid zone could be earmarked for 
planting with E. gomphocephala, as it has shown itself to be very resilient to the 
summer drought (du Toit et al. 2017). It was found that frost limited the growth and 
distribution of E. grandis, which prevented its invasion of native vegetation. However, 
the predicted decrease in the incidences of frost because of increased winter 
temperatures could result in E. grandis becoming more invasive (Musengi and 
Archibald 2017). 



REFORESTA (2019) 7: 50-72  Jimmy et al. 

Reforesta Scientific Society   62 
 

Pinus elliottii is the most robust pine species in South Africa (Schulze and Davis 
2016). It produces a durable and relatively hard timber but its marketability is limited 
by its high resin content. It is also the most resistant of the pine species to attacks by 
Sphaeropsis sapinea following hail damage (Schulze and Davis 2016). Its wide 
tolerance range to both temperature and precipitation, has enabled P. elliottii to cover 
an extensively large area from the Eastern Cape through KZN, western Swaziland, 
Mpumalanga, and broadening from the coast to far inland. The least tolerant is Pinus 
patula; it requires MATs > 13°C. Following hail damage, P. patula is very vulnerable to 
Sphaeropsis sapinea but the least susceptible to snow damage. It grows from the 
north eastern areas of the Eastern Cape through KZN, Free State and into 
Mpumalanga. P. patula is expected to be suitable for climates during the periods 
between 2081 and 2100. Pinus taeda is the most challenging pine species in terms of 
climate and soil requirements. Although it can grow in low temperatures, it is sensitive 
to drought. P. taeda maybe more resistant to hail but is most susceptible to snow 
damage. Pinus taeda grows along the north coast of the Eastern Cape, large extents of 
KwaZulu Natal and in certain parts of Mpumalanga. Its climatically optimum areas will 
increase between the years 2045 and 2065 (Schulze and Davis 2016). Pinus taeda is 
expected to be more adaptable to climate change during the periods from 2080 to 
2100, with possible shifts into the interior of SA, southwards into Lesotho and certain 
areas of the Eastern Cape (Schulze and Davis 2016). Pinus hybrids are recognised as 
being more robust to potential increasing temperatures and changing rainfall regimes 
than the pure Pinus species (Warburton and Schulze 2008). The climatically optimal 
areas within KwaZulu-Natal were predicted to decrease with increasing temperatures, 
while areas climatically optimal for Pinus species/hybrids in the Eastern Cape and 
Mpumalanga were expected to expand under conditions of increasing temperatures 
(Warburton and Schulze 2008). Hence the highest recorded temperatures by the 
Trend run model of 0.84°C per decade (Table 2) might not negatively impact the Pinus 
hybrids, however, this will also be concurrently rainfall dependant (Warburton and 
Schulze 2008). 

In Figure 2 (a, b, c), the measured values were congruent with the simulated 
values, which demonstrated that the model would work in the KZN region. The trend 
values range for this province was between 0.11°C to 0.23°C (Table 2) per decade 
increase. The significance of this finding is that unlike agricultural crops, trees are 
harvested between 10 and 30 years hence such increases compounded over time can 
decrease forest growth and adversely affect production in KZN (DWAF 2005). 

In Figure 3 (a, b), the measured and simulated values were in good agreement 
with each other. The decadal trend values for Messina and Polokwane in the Limpopo 
Province are 0.57°C/decade and 0.43°C/decade, respectively. These results were 
closely congruent to that of the DEA (2013) which stated a 0.6°C to 0.9°C (Table 2) 
increase in the Limpopo Province. The DEA (2015a) stated that such a trajectory of 
increase would detrimentally affect agriculture, forestry and aquatic ecosystems in 
this province by the year 2030. The trend values from our stations in the Limpopo 
(Messina and Polokwane) of 0.57°C and 0.43°C (Table 2), respectively, were not 
congruent with the results of Tshiala et al. (2011), who found that the catchments in 
the Limpopo Province of SA exhibited a rise of 0.12°C/decade in the mean annual 
temperature. 
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Figure 2. Temporal evolution of monthly surface temperature values as observed over KwaZulu-Natal weather stations for 
the period from March 1980 to December 2011 (blue line), superimposed by the simulated Trend-Run model (red line), a) 

Estcourt, b) Durban South and c) Riverview. 

 

 
Figure 3. Temporal evolution of monthly surface temperature values as observed over Limpopo weather stations for the 

period from March 1980 to December 2011 (blue line), superimposed by the simulated Trend-Run model (red line), a) 
Messina and b) Polokwane. 

In Figure 4 (a, b, c, d, e, f), the measured and simulated values were in good 
agreement with each other. The decadal trend values for Aliwal, Umtata, Graaf 
Reinett, Dohne, East London and Cape St Francis in the Eastern Cape were 
0.33°C/decade, 0.31°C/decade, 0.18°C/decade, 0.26°C/decade and 0.07°C/decade 
(Table 2), respectively. The decadal trend increase was lower at the coastal area 
stations in the Eastern Cape, which is concurrent with the finding by the DEA (2013). 
The potential to expand the forestry plantations in the Eastern Cape is a high 
possibility with the increasing temperatures found in this study since species of Pinus 
are more robust to climate change than the other tree species (Acacia and Eucalyptus) 
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(Warburton and Schulze 2008). Henceforth, proactive forestry planning is imperative 
for this industry (Warburton and Schulze 2008). 

 

 

 

 

 

 

Figure 4. Temporal evolution of monthly surface temperature values as observed over Eastern Cape weather stations for 
the period from March 1980 to December 2011 (blue line), superimposed by the simulated Trend-Run model (red line), a) 

Aliwal, b) Umtata, c) Graaf Reinett, d) Dohne, e) East London and f) Cape St Francis. 

In Figure 5 (a, b, c, d, e), the measured and simulated values were in good 
agreement with each other. The decadal trend values for Vredendal, Cape Columbine, 
South African Astronomical Observatory (SAAO), Oudshoorn and Robertson are 
0.59°C/decade, 0.18°C/decade, 0.24°C/decade, 0.60°C/decade and 0.38°C/decade 
(Table 2), respectively. The increase in these temperatures at the current state could 
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affect the high concentration of aquatic diversity and indigenous forests in the Cape 
region. Especially in the Western Cape regions, the occurrence and susceptibility of 
forests to fires have caused massive damage to the economy and forests in the regions 
because of these temperature increases (DEA 2013). 

 

 

 

 

 
Figure 5. Temporal evolution of monthly surface temperature values as observed over Western Cape weather stations for 
the period from March 1980 to December 2011 (blue line), superimposed by the simulated Trend-Run model (red line), a) 

Vredendal, b) Cape Columbine, c) SAAO (South African Astronomical Observatory), d) Oudtshoorn and e) Robertson. 

In Figure 6 (a, b, c, d, e), the measured and simulated values were in good 
agreement with each other. The decadal trend values for Twee Riveren, Upington, 
Pofadder, Okiep and Vanwykslvlei were 0.77°C/decade, 0.48°C/decade, 
0.33°C/decade, -0.25°C/decade, 0.07°C/decade (Table 2), respectively. These increases 
were concurrent with the DEA (2013), which states that the high level of biodiversity 
and forestry in the Northern Cape will be detrimentally affected by such temperature 
increases). 
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Figure 6. Temporal evolution of monthly surface temperature values as observed over Northern Cape weather stations 
for the period from March 1980 to December 2011 (blue line), superimposed by the simulated Trend-Run model (red 

line), a) Twee Riveren, b) Upington, c) Pofadder, d) Okiep and e) Vanwyksvlei. 

In Figure 7 (a, b), the measured and simulated values were in good agreement 
with each other. The decadal trend values for Frankfort and Glencollege were 
0.12°C/decade and 0.15°C/decade (Table 2), respectively. These results, however, did 
not support that in the Free State by Envirotech Solutions (2015), which stated that 
the temperatures could rise between 1 and 3°C (DEA 2015b). Their concern was that 
this increased heating over the interior could affect agricultural productivity in the 
Free State but we predict that the effect will be much lower. These projected changes 
are also expected to encourage tree growth and cause the expansion of the savanna 
biome into the already threatened grassland biome (DETEA 2014). 

In Figure 8 (a, b), the measured and simulated values were in good agreement 
with each other. The decadal trend values for Lindleyspoort and Vryburg are -
0.38°C/decade and 0.07°C/decade (Table 2), respectively. These results for the North 
West Province differed from those of the DEA (2015b), who predicted a temperature 
increase of around 1°C. Since this province plays a major role in stock and maize 
farming, this could negatively impact agriculture and the economy as a whole (DEA 
2015b). 

 
 



REFORESTA (2019) 7: 50-72  Jimmy et al. 

Reforesta Scientific Society   67 
 

 

 
Figure 7. Temporal evolution of monthly surface temperature values as observed over Free State weather stations for the 

period from March 1980 to December 2011 (blue line), superimposed by the simulated Trend-Run model (red line), a) 
Frankfort and b) Glencollege. 

 

 
Figure 8. Temporal evolution of monthly surface temperature values as observed over North West weather stations for 

the period from March 1980 to December 2011 (blue line), superimposed by the Trend-Run model (red line), a) 
Lindleyspoort and b) Vryburg. 

In Figure 9 (a, b), the measured and simulated values were in good agreement 
with each other. The decadal trend values for Pretoria and Carltonville were 
0.84°C/decade and 0.35°C/decade (Table 2), respectively. These were the highest 
calculated values for SA. This was congruent with the finding of up to 1°C/decade by 
the City of Tshwane (COT) report  (2015), which stated that this increasing ‘heat island 
effect’ could be the result of the strong urbanization effect. As the rate of urbanisation 
increases, the species richness in plant diversity decreases. Since forests harbour a 
high level specialist species, this could most definitely render them vulnerable to 
extinction (Mellinger et al. 2018). Henceforth, this temperature increase as calculated 
by the trend run model can have dire consequences to species and forests health in 
the Gauteng region (Pretoria and Carltonville) should these decadal increases continue 
together with a high rate of urbanisation. 

In Figure 10 (a, b), the measured and simulated values were in good 
agreement with each other. The decadal trend values for Skukuza and Loskop Dam 
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were 0.49°C/decade and 0.06°C/decade (Table 2), respectively. This has high 
importance since Mpumalanga has the second highest quantity of commercially 
produced maize and the largest production area for forestry in the country (Maponya 
et al. 2013). At the weather station in Skukuza, a temperature increase of 
0.49°C/decade was recorded by the Trend-Run model. This finding was congruent to 
the finding by Spear et al. (2015), where temperatures were expected to soar between 
0.4°C and 1.5°C. The report by the City of Mbombela (COM) in 2017, demonstrated 
that the province could possibly see an increase in temperature by as much as 2°C by 
2035 and 1 to 3°C by 2040, which could detrimentally affect the maize production and 
the forestry sector in Mpumalanga (Maponya et al. 2013). The challenge of 
temperature increases is exacerbated by the fact that temperature increases are 
expected to be higher over Mpumalanga and the other interior provinces of SA (DEA 
2015a). The high level of congruency between the measured and the simulated values 
and high R2 values from figures 2-10  and Table 1 respectively shows that the Trend 
model could have some application on the weather and used as a forestry 
management tool and for various other biomes across  in SA. 

 

 
 

Figure 9. Temporal evolution of monthly surface temperature values as observed over Gauteng weather stations for the 
period from March 1980 to December 2011 (blue line), superimposed by the simulated Trend-Run model (red line), a) 

Pretoria and b) Carltonville. 

 

 
Figure 10. Temporal evolution of monthly surface temperature values as observed over Gauteng weather stations for the 

period from March 1980 to December 2011 (blue line), superimposed by the simulated Trend-Run model (red line), a) 
Skukuza and b) Loskop Dam. 
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4 Conclusion 

The Trend-Run model efficiency was variable throughout the country but had 
consistently high coefficient of determination values for each station and in each 
province; overall the Trend-Run model performed very efficiently. The model outputs 
showed that the measured values were in strong agreement with the simulated 
values. The SAO, the AO and the ENSO played a vital role in model simulation in South 
Africa. The ENSO and AO produced the highest weighted contributed value to the 
model. The other contributions (from QBO, IOD and SSN forcings) to the variability of 
surface temperature were less significant. The trend values calculated by the Trend-
Run model demonstrated a consistent rise in surface temperature across South Africa, 
which is alarming since the various biomes in SA will be detrimentally impacted by the 
warming effect in the country. The forestry industry is at risk because of the 
protracted period from planting to harvest. There were also possible negative 
implications for the aquatic biomes (fishing industry) in the Eastern Cape. Rising 
temperatures created the possibilities of changing biomes within the country, which 
would require proactive government intervention. The Trend-Run model can be very 
useful in monitoring the various biomes and has the capacity to be modified. 
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