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Abstract: Tiger nut (Cyperus esculentus) is a tuber that can be consumed raw or processed into
beverages. Its nutritional composition shows a high content of lipid and dietary fiber, close to
those of nuts, and a high content of starch, like in other tubers. Tiger nuts also contain high levels
of phosphorus, calcium, and phenolic compounds, which contribute to their antioxidant activity.
From those characteristics, tiger nuts and derived beverages are particularly relevant to limit food
insecurity in regions where the plant can grow. In Europe and United States, the tiger nut derived
beverages are of high interest as alternatives to milk and for gluten-free diets. Fermentation or
addition of probiotic cultures to tiger nut beverages has proven the ability of lactic acid bacteria to
acidify the beverages. Preliminary sensory assays concluded that acceptable products are obtained.
In the absence of pasteurization, the safety of tiger nut-based beverages is not warranted. In spite of
fermentation, some foodborne pathogens or mycotoxigenic fungi have been observed in fermented
beverages. Further studies are required to select a tailored bacterial cocktail which would effectively
dominate endogenous flora, preserve bioactive compounds and result in a well-accepted beverage.

Keywords: tiger nuts; horchata; lactic fermentation; beverage; quality; product development

1. Introduction

Increased consumption of fruits and vegetables is recognized to protect against non-communicable
diseases [1,2]. Health benefits of fruit and vegetable intake have been historically related to their
high content in vitamins, minerals, and phytochemicals. They are also recommended as a source of
dietary fibers. For this purpose, starchy roots and tubers have a considerable role for carbohydrate and
dietary fiber intake [3]. This role is of great importance for gluten-free diets, which are characterized
by insufficient dietary fiber uptake [4–6]. In addition, comparatively to dairy products, plant-based
materials do not contain lactose or dairy allergens and exhibit low cholesterol content. Moreover,
they benefit from a vegan-friendly status. Among plant-based alternatives to milk, the most popular are
soya, almond- and rice-based beverages, but other substitutes, either directly obtained from traditional
edible plant extraction, either fermented, are gaining interest as the market is rapidly expanding [6–8].
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Lactic fermentation is a traditional and sustainable way to increase the shelf-life of food products
as well as to change texture, flavor, and taste [9,10]. In addition, depending on the bacterial strains,
a probiotic effect, defined as a health benefit on the host, conferred by living microorganisms
administered in adequate amounts, can be expected [11].

Historically, lactic fermentation has been applied to a variety of raw materials, including milk,
meat, fish, cereals, vegetables, and fruits [9,12–14]. Lactic fermentation of cereals, including maize,
millet, barley, oats, rye, wheat, rice or sorghum, into beverages is ancestral and commonly used
in Africa [7,15]. Lactic fermented beverages obtained from teas or vegetables or fruits, with high
functional value, were also described [16,17]. The development of new lactic-fermented products is
explored worldwide and is recognized as the most suitable way for increasing the daily consumption
of fresh-like vegetables and fruits [7,10,16].

Tiger nut (Cyperus esculentus) is a tuber, mainly harvested in Spain, West Africa countries like
Nigeria, Senegal, or Ghana, and also in South America, as in Chile [18,19]. From an economic point of
view, tiger nut is described as an underutilized African crop with high potential for development [20].
Because of its ecological plasticity and its invasive capacity, this plant is considered as a weed or a crop
depending on the context [18]. In West Africa, the tubers are often part of the diet as they are cheap,
available all the year around, and with nutritional benefits [20]. Recent market changes show how
innovative tiger nut based beverages are arising around Europe and this tuber is becoming popular in
the US [21].

Nutritional composition of tiger nut tubers shows some unique features, between other tubers
and nuts [19]. Starch content of tiger nut is closely related to that of cassava, whereas lipid and even
more fiber contents resemble those found for almonds or pistachios. Its composition and associated
health benefits offer to this tuber a huge potential for product development. Nowadays, tubers are
consumed raw, roasted or after transformation into beverage or flour. The beverage is obtained after
several washing steps to eliminate dusts and poor-quality tubers, soaking overnight the dry tubers in
water, disinfection with chlorinated water, blending with water, pressing, and filtering (Figure 1).
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The beverages obtained from this process are called improperly tiger nut milk [22,23] or juice [24].
In Spain, added with a minimum of 10% sugar, this is the very popular drink called “Horchata”.
Processing this product is regulated: a minimum of 12 Brix, 1.9% of starch, 2% of fats, total sugars
expressed as sucrose of 10%, and a pH above 6.3 [25]. Horchata can be produced fresh, pasteurized,
sterilized, concentrated or even in powder. When heat treatments are applied, an amylolytic step is
required before applying a temperature above 75 ◦C to avoid starch gelatinization. Whole ground
tiger nut and flour are also commercialized. Both the fermentation of tiger nut derived beverage
or the addition of probiotic cultures have been evaluated in several studies, resulting in tiger nut
yogurts [23,26–31]. Moreover, the “Horchata” production process results in several by-products,
such as the drained-water, which is suitable for other applications [32].

This review examines the latest description of nutritional composition, together with
microbiological quality, of tiger nuts and derived beverages. We provide a review of the impact
of lactic fermentation on the quality of tiger nut beverages. From those data, we focus on the relevance
of the consumption of fermented beverages and their potential for new product development.

2. Nutritional Characteristics and Bioactive Compounds of Tiger Nut

The energy value of tiger nut tuber ranges within 400–413.8 kcal/100 g [19,33]. The main
components of tiger nut are carbohydrates, which represent 43.3 g/100g. Starch content, 29.9%
in wet matter, is similar to that of cassava and about twice that of potato [19]. Dietary fiber content,
of 8.81 g/100g, is much higher than in other tubers, which contain 0.66–2.55 g/100g, and in similar
ranges than nuts. It is constituted of insoluble dietary fiber at 99.8%. Sucrose content, 13.03 g/100g,
is also much higher than in other tubers, ranging from 0.31 to 4.77 g/100g.

Tiger nut contains 22% to 45% of fat in dry matter, depending on the origin of the tubers [34].
In wet matter, due to a higher moisture content of ca. 26%, lipid content is lower than in tree nuts.

The examination of the fat structure in seed oils obtained from tiger nut showed that neutral
lipids, dominated by triacylglycerols constitute the bulk of lipids and represent 65.9% of total lipids,
while glycolipids and phospholipids represent 5.6–6.9% and 1.4–3.1%, respectively. The structural
feature is consistent with most vegetable oils, with monounsaturated acids predominantly found
in greater amounts at the sn-2 position, and a lower prevalence of saturated fatty acids, located in
the sn-1 and sn-3 positions [35,36]. The main fatty acids are oleic 56% to 85%, palmitic 10% to 20%,
linoleic 8% to 12% and stearic 0.3% to 5.3% acids [19,34,37,38], while the minor acids were linolenic
and palmitoleic [35]. Tiger nuts composition in monounsaturated fatty acids is in agreement to that
found for olive oil, being the fatty acid profile used as a possible geographical authenticity marker.
Tiger nut naturally contains a number of sterol components that are of a different composition than
the components found in olive oil. β-sitosterol was found as the main compound (≈49–60 mg/100g),
followed by stigmasterol, campesterol, α and β-tocopherols [39].

Protein content in tiger nut (5.04–6.67% wet matter) is higher than that found in other tubers,
but lower than in nuts. For instance, the protein content of tubers ranges from 0.66% in sweet potato to
2.55% in yam, whereas pine nuts and peanuts contain 13.7% and 25.8% of proteins, respectively [19].
The predominant protein fraction (82–91%) corresponds to the water-soluble fraction of albumin and
non-protein nitrogen. The analysis of these fractions by electrophoresis presented a high diversity in
polypeptide molecular weights, highlighted at 20, 25, 37, 55, 75 and ∼106 kDa. The other solubilized
fractions of globulins (1.11–3.96%), prolamins (0.91–3.45%) and glutelins (0.63–1.98%) presented a
pattern with fewer different molecular weight polypeptides [40]. The amino acid profile shows,
in decreasing order, aspartic acid, glutamic acid, leucine, alanine and arginine [37]. In addition to
protein anabolism, L-Arginine is of particular interest as it is the main precursor of nitric oxide (NO),
a non-adrenergic and non-cholinergic neurotransmitter involved in numerous physiological and
signaling processes, with a strong vasodilator action. For instance, a dried defatted tiger nut tuber
dietary supplementation of rats fed with L-NAME nitric oxide synthase inhibitor (Nω-nitro-L-arginine
methyl ester hydrochloride) presented an effect on NO metabolism, preventing the reduction in
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the production of nitric oxide synthesis markers in serum and penile tissue. It also prevented the
increased activity of enzymes like acetylcholinesterase, arginase, and adenosine deaminase, leading to
the inhibition of NO production whether on serum, on brain or on penile tissue [41].

Tiger nut tubers exhibit high calcium, and phosphorus mineral contents [33,34,37]. On the other
hand, magnesium, manganese, iron, zinc and copper are also present, but at lower levels.

Apart from those main characteristics, phenolic and anti-nutrient compounds were
analyzed [38,42,43] (Table 1). Phytates represented ≈21.4 mg/100g in raw tubers, oxalates ≈13.1 mg/100g,
alkaloids ≈2.6 mg/100g and tannins ≈2.4 mg/100g. The content of all these families of compounds
was decreased after soaking, with a more marked effect when soaking was performed at 60 ◦C/7h
compared to room temperature 12h [42]. The highest decrease was observed for tannins (61%), followed
by oxalates with (58%) and polyphenols (48%). The main discrepancies were observed with the data
published by Chukwuma et al. (2010) [43], but for tannins, phytates and polyphenols, the contents were
100-fold below those observed in other tubers or in chickpeas [44–46]. The composition analysis shows
that trans-ferulic acid, vanillic acid, vanillin and trans-cinnamic acid are the main phenolic compounds
in tiger nut oils [38]. Moreover, the antioxidant activity of tiger nut polyphenols was investigated in
comparison with flavonoids from a chemoprotective perspective. A dietary supplementation with 25%
of whole tiger nut showed moderate renal and hepatoprotective properties against acrylamide-induced
toxicity in rats [47].

Table 1. Phenolic profile of tiger nut.

Compound Concentration Ref.

Apigenin 7.91–50.58 mg GAE/100 g [48]
Caffeic acid 1.07–15.25 mg GAE/100 g [48]

3.90–102.19 µg RE/kg [49]
(Epi)Catechin 8.83 × 10−4 − 6.58 mg GAE/100 g [48]
Cinnamic acid 0–40.66 µg RE/kg [49]
Coumaric acid 0-6801.0 µg/g [50]

4.20 × 10−4 − 17.25 mg GAE/100 g [48]
0–126.76 µg RE/kg [49]

Ferulic acid 3.5–2,284 µg/g [50]
33.79–58.38 mg GAE/100 g [48]

0–22.33 µg RE/kg [49]
Diferulic acid 0.0–829.0 µg/g [50]

Ferulic acid-4-O-glucoside 0–46.95 µg RE/kg [49]
Gallic acid 3.95 × 10−3 − 1.74 mg GAE/100 g [48]

Homovanillyl alcohol 0–4.54 µg RE/kg [49]
p-Hydroxybenzaldehyde 0–16.47 mg GAE/100 g [48]

4.0–337.0 µg/g [50]
p-Hydroxybenzoic acid 0–8.3 µg/g [50]

2.18–29.12 mg GAE/100 g [48]
2.52–67.70 µg RE/kg [49]

Isohydroxymatairesinol 0–1331.45 [49]
Kaempferol 3.62–24.44 mg GAE/100 g [48]

Luteolin 7.29–72.17 mg GAE/100 g [48]
24-Methylcholestanol ferulate 0–45.40 µg RE/kg [49]

Naringenin 2.38 × 10−3 − 16.16 mg GAE/100 g [48]
Peonidin 0–7.81 µg RE/kg [49]

Protocatechuic acid 0.61–0.79 mg GAE/100 g [48]
Quercetin 3.76 × 10−3-60.63 mg GAE/100 g [48]

trans-Resveratrol-3-O-glucoside 0–25.68 µg RE/kg [49]
Scopoletin 0–310.80 µg RE/kg [49]
Sesamin 0-28.67 µg RE/kg [49]

Sinapinic acid 8.53 × 10−1 − 20.97 mg GAE/100 g [48]
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Table 1. Cont.

Compound Concentration Ref.

Sinensetin 0–16.07 µg RE/kg [49]
Syringic acid 4.58 × 10−4 − 4.12 mg GAE/100 g [48]
Vanillic acid 3.0–25.3 µg/g [50]

5.88–15.20 mg GAE/100 g [48]
0–10.84 µg RE/kg [49]

Vanillin 15.5–68.7 µg/g [50]
ethyl Vanillin 0–25.38 µg RE/kg [49]
4-Vinylphenol 0–1084.48 µg RE/kg [49]

GAE: Gallic Acid Equivalent; RE: resveratrol Equivalent.

3. Nutritional Characteristics of Tiger Nut-Based Beverages

The main composition of tiger nut-based beverages, i.e., Horchata de Chufa and juices, is presented
in Table 2.

Table 2. Proximate major nutritional content in tiger nut tubers and beverages.

Nutrient Tiger Nut Tuber
(g/100g) a

Horchata De Chufa
(g/100g) a

Tiger Nut Beverage
(g/100g)

Total fat 24.49 3.09 1.26–1.59 b 1.88–2.27 c

SFA (% total fatty acid) 17.5
MUFA (% total fatty acid) 72.9
PUFA (% total fatty acid) 9.3

Ratio n-6/n-3 22
Proteins 5.04 0.91 2.34–2.51 b 0.47–0.54 c

Ash 1.7 0.25 0.31–0.39 b 0.16–0.18 c

Carbohydrates 43.3 nd 1.93–2.34 b 2.31–2.74 c

Total dietary fiber 8.91 1.03 0.23–0.31 b 0.53–0.65 c

Sucrose 13.03 >10
Total energy (kcal/100g) 413.8 >71.45 28.42–33.71 b 28.04–33.55 c

a data from Sanchez-Zapata 2012 [19], Horchata de Chufa was prepared from tiger nut beverage and additives
including more than 10% of sucrose; b Tiger nut beverage was obtained by soaking Nigerian tiger nut in water
(1:3 w/v) for 10 h, then by blending drained nuts with water (1:5 w/v). The resulting homogenous slurry was
filtered using a muslin cloth and the resultant filtrate was pasteurized at 67 ◦C for 30 min [24]; c To obtain tiger
nut beverage, tiger nut from Ghana were first dried for two months at room temperature. The nuts were hydrated
by soaking in a water bath for 24 h at 40 ◦C then grinded with water (1:4 w/v). Finer particles were obtained by
dispersing the sample with ultra-turrax mixer at 13,000 rpm for 20 min and were then transferred into a pneumatic
press using one volume of water, to be filtered through a 4 µm-pore-size filter membrane [51]; SFA: saturated fatty
acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; nd: not determined value.

As can be seen in the table, tiger nut beverage, which differed from that of “Horchata” in the fact
that there is no sucrose addition, exhibits energy values ranging from 28.42 to 33.55 kcal/100 mL [19,42].
These values are close to those of skim cow milk (33 kcal/100 mL), and in the early window by
comparison with soy-based “milk” alternatives, which range from 33 to 58 kcal/100 mL. The overall
plant-based “milk” alternatives present a larger range (12–92 kcal/100 mL).

A protein content between 0.47–2.51% can be expected in tiger nut beverages according to the
process of extraction [24,51]. Considering the plant-based “milk” alternatives, the highest overall
protein content is found in soy-based beverages, ranging from 2.50 to 3.16% whether rice and
almond-based “milk” alternatives exhibit the lowest protein content with 0.28% and 0.31–0.59%,
respectively [52]. The tiger nut beverage concentration of essential amino acids is 14.27 g/100 g of
proteins, which represents ≈28% of the total amino acid content. It can be observed that leucine is the
limiting amino acid [24]. Although the tiger nut beverage amino acid scores are lower than the few
existing values, namely for quinoa or soy, which have amino acid scores all above 100%, the essential
amino acid composition is of interest and differs from some other plant-based beverage proteins.
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Methionine and cysteine show a relative abundance in tiger nut whereas they are the limiting amino
acids in pea, almond and soy proteins [52]. The calculation of tiger nut beverage amino acid score
values [53] ranged from 29% for leucine to 87% for methionine plus cysteine for infants/pre-school
children, and 31% to 102% respectively for adults.

The fat content of tiger nut tuber is far above those of beverages, and as expected from tuber
composition, the lipid fraction is mainly composed of oleic, palmitic, and linoleic acids. Interestingly,
the fractionation of compounds between beverage and residue fraction is dependent on the compound
family, being approximately 4:1 for protein, lipid, salts, and soluble fiber, whereas it is 1:6 for insoluble
fiber and 1:1 for carbohydrates [51].

Tiger nut beverage is an emulsion of oil droplets in an aqueous phase and contains starch
granules and small solid particles [25]. Starch granules are related to product stability, in particular
regarding color and texture. For that matter, a maximal pasteurization temperature is recommended
to avoid starch gelatinization [54]. Milling conditions were shown to modulate colloidal stability of
the beverage [51]. The stability of the system is ensured by proteins, located at the interphase oil-water.
The addition of emulsifiers could be required for long-term storage of the beverage. For instance,
the analysis of 87 samples, either fresh artisanal-made, or UHT-treated in industry, revealed that
emulsifiers like citric acid esters of mono- or diglycerides, and monoacyl glycerol, are present into
industrial tiger nut beverages. On the opposite, phosphatidic acid is present only in fresh beverage,
and the fresh beverage content of biotin and of L-arginine is respectively 4-fold and 10-fold higher
than in UHT beverage [55].

4. Products Obtained by Lactic Fermentation or Lactic Acid Bacteria Addition

Until now, lactic fermentation of tiger nut beverages has been poorly investigated compared
to its multiple interesting applications (e.g., from a nutritional point of view and for new product
development). Fermentation of non-dairy beverages has been mainly focused on vegetable juices [56],
fruits juices [17,57–60], cereal-based beverages [7,59], but also walnut and cashew nut beverages [61,62].
Although the demand for plant-based milk substitutes is increasing, the unwillingness of the
mainstream consumer to try unfamiliar foods that are perceived as unappealing may be a limiting
factor. Some undesired flavors could efficiently be reduced by fermentation and the flavor could
be more appreciated in presence of lactic acid [8]. Lactic acid bacteria not only modify sensory
characteristics of the beverages, but also can produce additional micronutrients [63,64] or increase
antioxidant properties [17], produce texturing compounds like exopolysaccharides [65,66], or limit
undesirable microorganism development [67–69].

Besides lactic fermentation of foods and beverages, the addition of lactic acid bacteria cultures
per se can bring numerous advantages by the production of compounds, like exopolysaccharides,
which modify the texture [6]. The use of probiotic lactic acid bacteria to develop new functional
beverages from fruits or vegetables is challenging, because the growth or survival of bacteria in such
media has to be carefully examined [70–75]. But the interest is even more significant for food matrices
that contain a high content of dietary fiber, and can serve as a prebiotic [71,75]. For developing
countries, the selection of probiotic bacteria can be an issue to limit food insecurity [76].

The first study reporting tiger nut beverage fermentation compared the obtained product with
cow milk yogurt [29]. Classical yogurt starters were used, i.e., Lactobacillus bulgaricus and Streptococcus
thermophilus, to ferment tiger nut beverage. As expected, the fermentation resulted into an acidified
product, at a pH of 3.9, which was overall less appreciated by a small untrained panel than the
classical yogurt. Ukwuru et al. (2008) could not detect any difference of general acceptability between
fermented tiger nut beverage and cow milk [30], but the lower acceptability of yogurt-processed tiger
nut beverage compared to classical cow milk yogurt was confirmed by Sanful et al. (2009) with a
broader sensory panel [31]. At this stage, the production of a fermented product from a 1:1 mix of tiger
nut and cow milks seems to be the best compromise for sensory attributes, but this product loses the
advantages of a plant-based yogurt.
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Tiger nut beverage fermentation performed with a Lactobacillus plantarum isolated from
spontaneous fermentation demonstrated the ability of this strain to grow and to acidify the
beverage [27]. Interestingly, an attempt to ferment tiger nut beverage with isolates from Ogi,
a traditional fermented cereal porridge from Nigeria, resulted in a pH decrease up to 4.04–4.36
depending on isolated combinations [23]. In that study, four species (Lb. plantarum, Lactobacillus
acidophilus, St. thermophilus and Lactobacillus brevis) were used, and three combinations of three isolates
among those bacteria were used, resulting into comparable growth and acidification levels.

None of the previous studies reported a phase separation over fermentation. However, this could
be expected from its composition, as the stability of this complex system depends on oil-water droplets,
the protein emulsifying effect, and small solid particles. Acidification would modify protein surface
properties. Moreover, in fermented non-dairy beverages, the role of exopolysaccharides, produced
by bacteria, on texture and sensory quality has been demonstrated for a long time [77,78]. The use of
exopolysaccharides producing lactic acid bacteria demonstrated their positive impact on the texture
of fermented soy beverages [79] and on pureed carrots [80]. A similar approach would be of great
interest for tiger nut beverages. Moreover, exopolysaccharides exert some beneficial health effects [81].

The role of proteins in beverage stability and the interest in protein fortification of food encouraged
the formulation of fermented beverages from tiger nuts supplemented with soybean, sorghum,
whey proteins, and caseinate [28,82]. Xanthan gum was also used for its thickening and stabilization
effects [28]. A beverage containing sorghum, soybean, and tiger nut flours in ratio 5:3:2 and fermented
with Lb. plantarum exhibited a decrease of counts of yeasts and molds and of enterobacteria below
the detection limit over 24h of fermentation. This beverage contained 26.6% of proteins and 26.2%
of carbohydrates on a wet base, and was positively evaluated by a sensory panel [82]. Dairy protein
addition modified gel properties, leading to semi-solid, yogurt-like gels [28]. Gel stiffness and viscosity
were higher and whey drainage was lower when sodium caseinate was used instead of whey proteins,
hence opening a way for texture modulation by varying the protein type and content.

Compared to other lactic fermented beverages with a plant-origin, there are some features
observed in the original nutritional composition of tiger nut beverages. The natural balance in good
quality nutrients, likewise, unsaturated fat, minerals, and antioxidant, make tiger nut fermented
beverages a potential candidate for diet complementation. The abundance of unsaturated fatty
acids together with antioxidant compounds is an effective choice for lowering the dietary intake
of saturated fatty acids and to limit oxidative stress. Oleic acid especially is suggested to reverse
induced hyperlipidemia and to have a strong hepatoprotective effect on rats receiving a high fat/high
cholesterol diet [83,84]. Depending on the process flow and the final protein content of tiger nut
beverages, the determination of protein bioavailability is definitely required to evaluate the effect of
lactic fermentation on these nutrients. Tiger nut beverage calcium content of 40 mg/100g is higher
than other unfortified milk alternatives having drastically lower contents of calcium, ranging from
0 to 12 mg/100 g [52]. The calcium bioavailability in plant-based beverages is however uncertainly
comparable with the 120 mg/100 g cow milk calcium content, because its natural association with
caseins facilitates absorption and limits sedimentation. Whether fermentation improves this parameter,
it is also worth further investigation.

Tiger nut composition showed the presence of numerous phenolic compounds. However,
the impact of lactic fermentation on these compounds in tiger nut beverages has never
been investigated.

5. Safety and Microbiological Quality

In a study evaluating the parasite presence of raw tubers collected from street vendors and
market places in Ghana, several parasites were found; Cryptosporidium parvum being the most
common [85]. Enterobacteria and Staphylococcus sp. were also detected. Moreover, several species of
mycotoxin-producing molds, Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus and Penicillium
italicum, were found in raw tiger nut tubers [27]. Mycotoxins were detected in both raw tiger nuts
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and beverages [86,87]. Aflatoxins B1 and G2, beauvericin and ochratoxin A were the predominant
mycotoxins detected in tubers, with respectively 14, 10, 11 and 8 samples upon 83 that exhibited toxin
contents over the limits of quantification.

The pH of tiger nut beverage is in the range 6.3–6.8 [19], which is not limiting the growth of
food-borne pathogens. On tiger nut beverage samples, two microbiological profiles were observed
depending on the process applied, either industrial or home-made [88]. On industrial products,
which were heat-treated, no foodborne pathogen could be detected, and total viable bacteria counts
were below the detection limit. On the opposite, the home-made products exhibited total viable counts
in the range of 3.6–6.5 log CFU/mL, and on certain samples, enterobacteria, Bacillus sp., Escherichia
coli and yeast and molds were found. In another study [30], an increase of bacterial counts from
1.3 log CFU/mL to 3.5 log CFU/mL and 8.5 log CFU/mL, when stored at 4 ◦C or at 32 ◦C respectively,
was observed after 6 days of storage. The samples stored at 32 ◦C showed spoilage signs after 6 days.
The refrigerated sample remained drinkable over 14 days and the bacterial counts reached then 4.4 log
CFU/mL.

In tiger nut beverage, ochratoxin A was detected in 32 samples from 238, but below quantification
limit. Aflatoxins B1, B2 and G2 were detected in 12, 2 and 1 samples, respectively from 238, and below
the maximal limits fixed by EU.

Fermentation generally results in an increase of safety thanks to acidification and to the production
of bacteriostatic compounds such as organic acids, hydrogen peroxide or bacteriocins [9,89]. Lactic acid
bacteria also can impair the growth of mycotoxin-producing fungi, inhibit the biosynthesis of
mycotoxins or degrade the compounds [89–91]. Only preliminary studies have investigated safety
or the microbiological quality of the fermented tiger nut beverages. Agbaje et al. (2015) [27] isolated
and identified potential foodborne pathogens, such as Staphylococcus aureus, and mycotoxinogen
fungi. Traditional fermented beverages hold their own microbial ecosystem, among those lactic acid
bacteria are diverse and often associated with yeasts [7,59,92]. To date, contrarily to other fermented
vegetables [93–96], there is no data on tiger nut beverage microbiota.

6. Conclusions and Future Research for Functional Beverages and Foods

The interest in the lactic fermentation of plant-based beverages emerged from the search of
“substitutes” to milk, due to the allergenicity or vegan-based considerations. In developing countries,
the objective to fulfill nutritional requirements of people affected by food insecurity is another leading
reason for this type of research. Most of these studies highlighted the value of developing featured
tastes and flavors, together with an increased shelf-life of perishable products. In line with that
objective, the development of fermented products from tiger nut beverages is particularly relevant.

The requirement of starters isolated from a similar origin is pointed out as a key-factor for
successful fermentation [97–99]. When developing new fermented beverages from plant-origin,
the choice for fermentative bacteria selected from fermented plants should be recommended. Moreover,
the selection of tailored microbial starters contributes to the safety of the fermented foods and beverages
by two aspects: i) the safety of the starter itself, ensured by its GRAS status and not producing toxic
compounds, and ii) its ability to decrease hazards in a given food or beverage [100]. Consequently,
extensive research on lactic acid bacterial starters adapted to tiger nut beverage fermentation is
still required.
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