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Birth and death in a continuous opinion dynamics model

The consensus case
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Abstract. We here discuss the process of opinion formation in an open community where agents are made
to interact and consequently update their beliefs. New actors (birth) are assumed to replace individuals
that abandon the community (deaths). This dynamics is simulated in the framework of a simplified model
that accounts for mutual affinity between agents. A rich phenomenology is presented and discussed with
reference to the original (closed group) setting. Numerical findings are supported by analytical calculations.

PACS. 87.23.Ge Dynamics of social systems – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

Opinion dynamics modeling represents a challenging field
where ideas from statistical physics and non-linear science
can be possibly applied to understand the emergence of
collective behaviors, like consensus or polarization in so-
cial groups. Several models have been proposed in the past
to reproduce the key elements that supposedly drive the
process of opinion making [1,2]. The problem of providing
an adequate experimental backup to such developments is
indeed an open one, and more work is certainly needed to
eventually assess the interpretative ability of the proposed
mathematical formulations, following e.g. the guidelines
of [3,4]. Models based on interacting agents display how-
ever a rich and intriguing dynamics which deserves to be
fully unraveled.

Opinion dynamics models can be classified in two large
groups. On the one hand, opinions are represented as dis-
crete (spin-like) variables where the system behaves simi-
larly to spin glasses models [5]. On the other, each individ-
ual bears a continuous opinion which span a pre-assigned
range [6]. More recently, a new framework for a discrete
but unbounded number of opinions was proposed in [2]
and shown to nicely complement the picture. In all the
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above approaches, a closed system is generally assumed,
meaning that the same pool of actors is made to interact
during the evolution. This can be interpreted by assum-
ing that the inherent dynamical timescales (e.g. opinion
convergence time) are much faster than those associated
to the processes (e.g. migration, birth/death) responsible
for a modification of the group composition, these latter
effects having being therefore so far neglected. Such an
implicit assumption is certainly correct when the debate
is bound to a small community of individuals, thus mak-
ing it possible to eventually achieve a rapid convergence
towards the final configuration. Conversely, it might prove
inaccurate when applied to a large ensemble of interacting
agents, as the process becomes considerably slower and ex-
ternal perturbations need to be accounted for. Given the
above, it is therefore of interest to elucidate the open sys-
tem setting, where the population is periodically renewed.

To this end, we refer to the model presented in [7],
where the role of affinity among individuals is introduced
as an additional ingredient. This novel quantity measures
the degree of inter-personal intimacy and sharing, an effect
of paramount importance in real social system [8] . Indeed,
the outcome of an hypothetic binary interaction relies on
the difference of opinions, previously postulated, but also
on the quality of the mutual relationships. The affinity is
dynamically coupled to the opinion, and, in this respect, it
introduces a memory bias into the system: affinity between
agents increases when their opinion tends to converge.

The aforementioned model is here modified to accom-
modate for a death/birth like process. In this formulation,



M agents are randomly eliminated from the system, every
T time steps. When an agent exits from the community
(virtually, dies), he is immediately replaced by a new ele-
ment, whose opinion and affinity with respect to the group
are randomly assigned. As we shall see, the perturbation
here prescribed alters dramatically the behavior of the sys-
tem, with reference to the ideal close-system configuration.
To understand such modifications via combined numerical
and analytical tools, constitutes the object of the investi-
gations here reported.

We shall mainly explore the parameters setting that
would lead to an asymptotic consensus state (all agents
eventually bearing the shared opinion 0.5), in absence of
the external perturbation. The underlying model [7] dis-
plays however a richer phenomenology, exhibiting in par-
ticular stable polarized states in the late time evolution
and long-lived metastable regimes. Though it would be
extremely interesting to extend the present analysis and
hence cover those additional scenarios, we chose to only
briefly touch upon this issue when commenting the details
of the transition between single and fragmented phases.

The paper is structured as follows. We first introduce
the model, then we present the obtained analytical and
numerical results and, finally, we sum up and draw our
conclusions.

2 The model

In the following, we will review the model previously in-
troduced in [7] and present the additional features that
are here under inspection. The interested reader can thus
refer to the original paper [7] for an additional account on
the model characteristics.

Consider a population of N agents and assume that at
time t they bear a scalar opinion Ot

i ∈ [0, 1]. We also intro-
duce the N×N time dependent matrix αt, whose elements
αt

ij belong to the interval [0, 1]. The quantities αt
ij specify

the affinity of individual i vs. j, at time t: Larger values
of αt

ij are associated to more trustable relationships.
Both the affinity matrix and the agents opinions are

randomly initialized time t = 0. At each time step t, two
agents, say i and j, are chosen according to the following
extraction rule: first the agent i is randomly identified,
with a uniform probability. Then, the agent j which is
closer to i in term of the social metric Dη

ij is selected
for interaction. The quantity Dη

ij results from the linear
superposition of the so-called social distance, dij , and a
stochastic contribution ηj , namely:

Dη
ij = dt

ij + ηj(0, σ). (1)

Here ηj(0, σ) represents a normally distributed noise, with
mean zero and variance σ, the latter being named social
temperature. The social distance is instead defined as:

dt
ij = |ΔOt

ij |(1 − αt
ij) j = 1, ..., N j �= i, (2)

with ΔOt
ij = Ot

i − Ot
j .

The smaller the value of dt
ij the closer the agent j

to i, both in term of affinity and opinion. The additive
noise ηj(0, σ) acts therefore on a fictitious 1D manifold,
which is introduced to define the pseudo-particle (agent)
interaction on the basis of a nearest neighbors selection
mechanism and, in this respect, set the degree of mixing
in the community.

When the two agents i and j are extracted on the basis
of the recipe prescribed above, they interact and update
their characteristics according to the following scheme1:

Ot+1
i = Ot

i −
1
2
ΔOt

ijΓ1

(
αt

ij

)

αt+1
ij = αt

ij + αt
ij [1 − αt

ij ]Γ2 (ΔOij) , (3)

where the functions Γ1 and Γ2 respectively read:

Γ1

(
αt

ij

)
= Θ

(
αt

ij − αc

)
(4)

and

Γ2 (ΔOij) = Θ
(
ΔOc − |ΔOt

ij |
)− Θ

(|ΔOt
ij | − ΔOc

)
(5)

and the symbol Θ(·) stands for the Heaviside step-
function2. More specifically, Γ1 is 0 or 1 while Γ2 is −1 or
1, depending on the value of their respective arguments.
In the above expressions αc and ΔOc are constant param-
eters. Notice that, for αc → 0, the opinion is formally de-
coupled from affinity in (3) being Γ1 = 1 irrespectively
of the actual value of αt

ij , and the former evolves fol-
lowing the Deffuant et al. scheme [6] with convergence
rate μ = 0.5 and interaction threshold d = 1 (confidence
bound). The latter scheme pioneered the broad class of
models inspired to the so-called bounded confidence hy-
pothesis, an assumption which, though revisited, also en-
ters the self-consistent scenario of equations (3).

In [7], a preliminary analysis of the qualitative behav-
ior of the model as a function of the involved parameters is
reported. Asymptotic clusters of opinion are formed, each
agglomeration being different in size and centered around
distinct opinion values. Individuals sharing the same be-
lieves are also characterized by a large affinity scores, as
it is exemplified in Figure 1.

More quantitatively, the system is shown to undergo
a continuous phase transition: above a critical value of
the control parameter (σαc)−1/2 it fragments into several
opinion clusters, otherwise convergence to a single group is
numerically shown to occur3. We shall here simply notice

1 The evolution of the quantities Oj(t) and αji(t) is straight-
forwardly obtained by switching the labels i and j in the equa-
tions.

2 In [7], the switchers Γ1 and Γ2 are smooth functions con-
structed from the hyperbolic tangent. We shall here limit the
discussion to considering the Heaviside approximation, which
is recovered by formally sending β1,2 to infinity in equations (3)
and (4) of [7].

3 Strictly speaking, it should be noted that the fragmented
state is metastable, if the mean separation between the
adjacent peaks is smaller than the interaction distance ΔOc.



Fig. 1. Upper panel: typical evolution of the opinion versus
time, i.e. number of iterations and the asymptotic distribution
of agents’ opinion in a closed community. Bottom panel: final
affinity matrix, represented by the underlying network: node i
is linked to node j if αij > ᾱ = 0.8. Here σ = 4 · 10−4, ΔOc =
0.5, αc = 0.5 and ρ = 0, i.e. no agent can leave the group.
Initial opinion are (random) uniformly distributed within the
interval [0, 1], while α0

ij is initialized with uniform (random)
values between 0 an 0.5.

that a significant degree of mixing (large social tempera-
ture σ) brings the system towards the single-cluster final
configuration.

Starting from this setting, we introduce the birth/
death process, which in turn amounts to place the sys-
tem in contact with an external reservoir. The pertur-

There always exists in fact a finite, though small, probabil-
ity of selecting two individuals which belong to different ag-
glomerations. When the above condition applies, i.e. when the
agents’ opinions are closer than the threshold amount ΔOc,
such rare encounters produce a gradual increase of the mutual
affinity scores, a tendency which asymptotically drives a merg-
ing of the segregated clusters, as ruled by equations (3). This
final convergence is eventually achieved on extremely long time
scales, diverging with the number of agents. Socially relevant
dynamics are hence bound to the metastable phases, which are
being investigated in Figure 2.

bation here hypothesized is periodic and leaves the total
number of agent unchanged. Every T time steps (i.e. en-
counter events) M agents, randomly selected, are forced
to abandon the system (death). Every removed individ-
ual is instantaneously replaced by a new element, whose
initial opinion and affinity are randomly fished, with uni-
form probability, from the respective intervals [0, 1] and
[0, αmax]. Further, we introduce ρ = M

T to characterize
the departure density, a crucial quantity that will play the
role of the control parameter in our subsequent develop-
ments. As a final remark, it should be emphasized that
no aging mechanisms are introduced: agents are mature
enough to experience peer to peer encounters from the
time they enter the system.

3 Results

Numerical simulations are performed for a system of
N = 100 individuals and its evolution monitored4. Quali-
tatively, the system shows the typical critical behavior as
observed in the original formulation [7]. However, pecu-
liar distinctions are found, some of those being addressed
in the following discussion. First, an apparently smooth
transition is also observed within this novel formulation,
which divides the mono- and multi-clustered phases. In-
terestingly, the transition point is now sensitive to the de-
parture density ρ. To further elucidate this point, we draw
in Figure 2 the average number of observed clusters ver-
sus a rescaled temperature. A clear transition towards an
ordered (single-clustered) phase is observed, as the tem-
perature increases. The parameter σc in Figure 2 plays
the role of an effective temperature, and it is numerically
adjusted to make distinct curves collapse onto the same
profile, which hence applies to all values of ρ. The inset
of Figure 2 shows that there is a linear correlation be-
tween σc and ρ. The larger the departure density ρ, the
larger the effective temperature σc. In other words, when
ρ is made to increase (i.e. the system is experiencing the
effect of a more pronounced external perturbation), one
needs to augment the degree of mixing, here controlled
by the social temperature σ, if a convergence to the fi-
nal mono-cluster is sought. The death/birth process is in
fact acting against the thermal contribution, which brings
into contact otherwise socially distant individuals. While
this latter effect enhances the chances of convergence, the
former favors the opposite tendency to spread.

4 The chosen value of N could be in principle considered
too small to allow us extracting sound statistical information
from the model at hand. As we shall however discuss, already
at such relatively small value of N , one observes a satisfy-
ing matching between numerics and statistical based predic-
tions. No substantial differences are detected when simulating
a larger system, this observation motivating our choice to stick
to the N = 100 case study. Notice also that potentially inter-
esting applications in social sciences would often deal with a
finite, possibly limited, number of agents, as for the case being
addressed at present.
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σc
for different values of the density ρ.

Simulations have been performed with parameter values: ρ = 0
(�), ρ = 0.0025 (∗), ρ = 0.0033 (+), ρ = 0.005 (×), ρ = 0.01
(◦) and ρ = 0.05 (�). In all simulations, here and after re-
ported, unless otherwise specified, αc = ΔOc = 0.5; O0

i and
α0

ij are random variables uniformly distributed in the intervals
[0, 1] and [0, αmax] – being αmax = 0.5 – respectively. Inset:
σc as a function of ρ. The open circles, ◦, represent the values
calculated from the transitions shown in the main plot. The
dotted lines represent the best linear fit: σc = 0.3ρ + σco, with
σco = 5.5 × 10−4. Notice that σc = σco is eventually recov-
ered in the closed-system setting, which in turn corresponds to
ρ = 0.

To further elucidate the role of the external pertur-
bation, we shall refer to the dynamical regime where the
agents converge to a single cluster. When ρ is set to zero,
the final shared opinion is 0.5 to which all agents eventu-
ally agree, see Figure 3a. In other words, the final distribu-
tion is a Dirac delta, with the peak positioned in O = 0.5.
Conversely, for positive, but small, values of ρ, the final
distribution of opinions presents a clear spreading around
the most probable value, still found to be 0.5. This sce-
nario is clearly depicted in Figure 3b. For larger ρ, when
the birth-death perturbation becomes more frequent, the
opinion profile cannot relax away from the initial distri-
bution, the agents believes being uniformly scattered over
the allowed interval, i.e. [0, 1].

The associated standard deviation υ is deduced, from
a series of simulations, and shown to depend on the se-
lected value of ρ. The result of the analysis is reported
in Figure 4, where the calculated value of υ (symbols) is
plotted versus the departure density amount ρ.

For small values of the control parameter ρ, the stan-
dard deviation υ of the cluster scales proportionally to√

ρ, Figure 4. Numerics indicate that the proportionality
coefficient gets smaller, as αc grows. In the opposite limit,
namely for large values of the density ρ, the standard de-
viation υ rapidly saturates to a asymptotic value, υc. The
latter is universal, meaning that it neither scales with αc,
nor it does with the social temperature σ. Our best nu-
merical estimates returns, υc = 0.28 � 1/

√
12 which, as

expected, corresponds to the standard deviation of the
uniform distribution in the interval of length 1.

The solid lines in Figure 4 represent the function:

υ2 =
M

12N [1 − N−M
N (Tc−T

Tc
)2]

, (6)

which straightforwardly follows from an analytical argu-
ment, developed hereafter. In the above expression Tc,
stands for an effective estimate for time of convergence
of the opinion cluster, and is deduced via numerical fit
(see caption of Fig. 4 and [10] for further details). In [9],
working within the Deffuant’s scheme [6], i.e. closed com-
munity case without affinity, the time needed to form a
coherent assembly from a sequence of binary encounters
was shown to diverge with the population size N , with
a super-linear scaling. Moreover, it was also proven that
the affinity slows down the convergence rate, a fact that
can be successfully captured by accounting for an addi-
tional dependence of Tc over αc: the larger αc the longer
the convergence time, as reported in [7]. A comprehen-
sive discussion on the analytical derivation of Tc(αc) falls
outside the scope of the present discussion and will be
presented in a forthcoming contribution [11].

Before turning to discuss the analytical derivation of
equation (6), we wish to test its predictive adequacy with
reference to the two limiting cases outlined above. Indeed,
for ρ � 1 and T � Tc, equation (6) can be cast in the
approximated form:

υ =

√
Tc(αc)
24N

√
M

T
= γt

√
ρ, (7)

which presents the same dependence of υ versus
√

ρ, as
observed in the numerical experiments. Moreover, the co-
efficient γt is expected to decay when increasing the cutoff
in affinity αc, in agreement with the numerics. For ρ � 1,
equation (6) implies:

υ =

√
1
12

, (8)

thus returning the correct result.
To derive equation (6) let us suppose that at time t the

death/birth process takes place and the system experience
an injection of new individuals. Label with υt the stan-
dard deviation of the agents opinion distribution f t(O),
at time t. It is reasonable to assume that f t(O) is centered
around 1/2. After T interactions between agents, when the
next perturbation will occur (M agents are randomly re-
moved from the community and replaced by M new actors
with random opinion and affinity scores) the distribution
has been already modified, because of the underlying dy-
namical mechanism specified through equations (3). More
concretely, the opinions slightly converge around the peak
value 1/2, an effect that certainly translates into a reduc-
tion of the associated standard deviation. To provide a
quantitative estimate of such phenomenon, we recall that
in the relevant (O, t) plan, the convergence process fills an
ideal triangular pattern, whose height measures Tc. This
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agreement with the simulation results [10], which confirms the
validity of the proposed analytical scheme. Inset: υ versus

√
ρ,

for ρ ∈ [0, 0.5]. This zoomed view confirms the correctness of
the scaling dependence derived in (7).

topological observation enables us to put forward the fol-
lowing linear ansatz:

υconv
t+T = υt

(
1 − T

Tc

)
, (9)

where υconv
t+T labels the standard deviation just before the

insertion of the next pool of incoming agents5
Recalling that the newly inserted elements are uni-

formly distributed, and labeling with G(·, ·) the opinion
distribution (the two entries referring respectively to mean
and the standard deviation), the updated variance is:

υ2
t+T =

M

N

∫ 1

0

(
O − 1

2

)2

dO

+
N − M

N

∫ 1

0

G

(
1
2
, υconv

t+T

) (
O − 1

2

)2

dO

=
M

12N
+

N − M

N

(
1 − T

Tc

)2

υ2
t .

5 Numerical simulations (not reported here) show that in the
closed model, the standard deviation of the opinions’ distribu-
tion exhibits a exponential decay as a function of a power of
time. This latter is approximately interpolated by the proposed
linear relation (9), a choice which eventually allows us to carry
out the analytical calculation resulting in expression (6) (see
also the discussion in Appendix A). Formally, equation (9) ap-
plies only for t = 0, when agents are populating the interval
[0, 1] with a uniform distribution. During the subsequent evolu-
tion, the convergence still gives rise to a macroscopic triangular
pattern but, now, the associated triangle height Tc gets slightly
reduced. At time t agents are still confined in the relevant in-
terval [0, 1] and experience a certain degree of spreading, effect
of the perturbation externally imposed. However, and espe-
cially for intermediate values of ρ, the progressive bunching
opposes the birth/death disturb (which would tend to restore
the t = 0 variance) and drives an instantaneous reduction of
Tc, as t grows. In the following, and to account for this self-
consistent effect not captured by analytical framework, Tc is
hence regarded as an effective parameter to be numerically
adjusted: as commented below however, the best fit values of
Tc correlate well with direct measurements of the convergence
(aggregation) time of the unperturbed system, a finding which
a posteriori confirms the plausibility of equation (9).
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The asymptotic stationary solution correspond to υt+T =
υt, a condition that immediately leads to equation (6)
when plugged into (10). The above analysis also suggests
that the final fate of the system is not affected by the
time when the perturbation is first applied, tin. This con-
clusion is also confirmed by direct numerical inspection:
The asymptotic value of the standard deviation υ does
not depend on tin, but solely on ρ. Even in the extreme
condition, when the death/birth perturbation is switched
on after the agents have already collapsed to the mean
opinion 0.5, one observes that, after a transient, the clus-
ter spreads and the measured value of υ agrees with the
theoretical prediction (6).

Aiming at further characterizing the system dynam-
ics, we also studied the case where, initially, agents share
the same belief O0. The initial distribution of opinions is
therefore a Dirac delta f0(O) = δ(O − Oo). Such condi-
tion is a stationary solution, for any given Oo when the
death/birth process is inactivated. Conversely, when the
death/birth applies, the system evolves toward a state,
characterized by a single cluster (localized, if ρ is small,
uniformly spread over the allowed region as ρ > 1, see pre-
ceding discussion), centered in O = 0.5 and with standard
deviation given by equation (6). It is also observed that
the time needed by the system to complete the transition
Tconv depends on the value of ρ and the critical affinity
αc, see Figure 5. A simple theoretical argument enables us
to quantitatively explain these findings. The initial distri-

bution of opinions is modified after the first death/birth
event as:

f1(O) =
M

N
+

N − M

N
δ(O − Oo). (10)

The first term refers to the freshly injected actors, while
the second stands for the remaining Delta-distributed in-
dividuals. Hence, the mean opinion value reads:

Ō1 =
∫ 1

0

f1(O)OdO =
M

2N
+

N − M

N
Oo. (11)

We can suppose that between the occurrence of two con-
secutive perturbations (separated by T iterations), the
group average opinion does not significantly change. No-
tice that the probability of interaction of a newborn agent
with another belonging to the main group is in fact pro-
portional to M/N . Moreover several consecutive encoun-
ters of this type are necessary to induce a macroscopic
change of the averaged opinion. Under this hypothesis
the next death/birth event makes the average opinion
change as:

Ō2 =
M

2N
+

N − M

N
Ō1. (12)

After n death/birth iterations, the opinion mean value
reads:

Ōn =
M

2N
+

N − M

N
Ōn−1. (13)

From equation (13) one easily gets that the asymptotic
equilibrium is reached for Ō∞ = 0.5, as found in our
numerical experiments; in fact the following relation is
straightforwardly obtained:

Ōn =
(

N − M

N

)n

Oo +
n−1∑

l=0

M

2N

(
N − M

N

)l

, (14)

being Oo the initial common believe. By setting α = N−M
N

and β = M
2N , the solution of equation (14) reads:

Ōn = β
1 − αn

1 − α
+ αnOo, (15)

whose asymptotic solution is given by Ōn → Ō∞ = 0.5.
Expression (15) reproduces quite well the dynamics of

the cluster mean, as seen in the simulations. The adequacy
of (15) is in fact clearly demonstrated in Figure 5a. Let
us define the convergence time Tconv as the number of
iterations needed to bring the average opinion ε close to
its asymptotic value 1/2. Solving equation. (15) for n and
recalling that Tconv = nT yield:

Tconv = T logα

[
1

|Oo − 1
2 |

(ε − β

1 − α
)
]

, (16)

The above estimate is in excellent agreement with the nu-
merical results reported in Figure 5b.



4 Conclusions

In this paper we have discussed the process of opinion
making in an open group of interacting subjects. The
model postulates the coupled dynamical evolution of both
individuals’ opinion and mutual affinity, according to the
rules formulated in [7]. At variance with respect to the toy-
model [7], the system is now open to contact with an exter-
nal reservoir of potentially interacting candidates. Every
T iterations the M agents are instantaneously replaced
by newborn actors, whose opinion and affinity scores are
randomly generated according to a pre–assigned (here uni-
form) probability distribution. The ratio ρ = M/T , here
termed departure density plays the role of a control pa-
rameter. The occurrence of a transition is found which sep-
arates between two macroscopically different regimes: for
large values of the so-called social temperature the system
collapses to a single cluster in opinion, while in the oppo-
site regime a fragmented phase is detected. The role of ρ is
elucidated and shown to enter in the critical threshold as
a linear contribution. Two phenomena are then addressed,
with reference to the single clustered phase. On the one
side, the external perturbation, here being hypothesized to
mimic a death/birth process, induces a spreading of the fi-
nal cluster. The associated variance is numerically shown
to depend on the density amount ρ, the functional de-
pendence being also analytically explained. On the other
side, we also show that the birth/death events imposed at
a constant pace can produce the progressive migration of
a cluster, initially localized around a given opinion value.
A theoretical argument is also developed to clarify this
finding. As a general comment, we should emphasize that
the effect of opening up the system to external influences
changes dramatically its intrinsic dynamics revealing pe-
culiar, potentially interesting, features which deserves to
be further explored.

Appendix A

This appendix is devoted to discussing a straightforward
extension of the above analysis to the case of the orig-
inal Deffuant et al. model, which is made open via a
birth/death mechanism as outlined above. The interested
reader can consult [6] for a detail account onto the closed
model specifications. We shall here solely recall that the
Deffuant’s setting μ = 1/2 and d = 1, is formally recov-
ered by setting αc = 0 into the affinity model.

In the closed Deffuant’s setting, assuming d = 1, the
standard deviation of the opinion distribution decays as
an exponential function [12], namely:

v(t) = e−t/τcv(0), (17)

where τc plays the role of a characteristic time. Dedicated
numerical simulations, relative to the case study d = 1,
return τc = 191.52.

Assume now that every T -steps the system opens:
M agents are randomly removed. New actors enter the
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Fig. 6. Final standard deviation, υ, of the opinion cluster as
a function of the departure density ρ. Each point results from
averaging out 100 independent runs, each relative to N = 100
agents. Symbols refer to numerical simulations performed with
d = 1, μ = 1/2 and different M : (◦) M = 1, (�) M = 2 and (�)
M = 5. The solids line refers to the theoretical prediction (19)
with τc = 191.52, this latter being independently estimated as
discussed in the main text.

systems, their opinions being randomly sampled from a
uniform distribution in the interval [0, 1]. Let us denote
ρ = M/T , the departure density. Furthermore, label with
υconv

t+T the standard deviation of the opinions just before
the insertion of the next pool of incoming agents. Hence,
in analogy with the preceding discussion, one can straight-
forwardly write the recursive relation:

υ2
t+T =

M

12N
+

(
1 − M

N

)
e−2T/τcυ2

t , (18)

whose asymptotic stationary solution corresponds to

υ2 =
M

12N

1
1 − (1 − M/N) e−2T/τc

, (19)

if T is small enough. This result can be compared to the
result of direct numerical simulation, returning an excel-
lent agreement, as displayed in Figure 6.
Remark. As a final remark, let us observe that in the gen-
eral case, i.e. αc > 0, an equation formally analogous
to (18) can be derived, by invoking the correct exponen-
tial ansatz (see main text). To obtain a closed analytical
form for the asymptotic stationary standard deviation we
however decided to resort to a linear approximation for
the opinions convergence, as commented above.

Clearly, when starting from a preformed cluster of
opinions the injection of new actors determines an effec-
tive migration of the mean, also ruled by equation (13) in
the original Deffuant et al. scheme.
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