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ABSTRACT. Land cover mapping has benefited a lot from the introduction of the GEOBIA paradigm,
that allowed to move from a pixelwise analysis to a processing of elements with richer semantic
content, namely objects or regions. However, this paradigm requires to define an appropriate
scale, that can be challenging in a large-scale study where a wide range of landscapes can be
observed. We propose here to conduct the multiscale analysis based on tree-based representa-
tions, from which features are derived over each single pixel. Efficient and scalable algorithms
for tree construction and analysis, together with an optimized usage of the random forest, pro-
vide us with a semi-supervised framework in which a user can drive mapping of elements such
as Small Woody Features at a very large scale. Indeed, the proposed open-source methodology
has been successfully used to derive a part of the HRL product of the Copernicus Land Mon-
itoring service, thus showing how the GEOBIA framework can be used in a big data scenario
made of more than 30,000 VHR satellite images representing more than 120 TB of data.
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profiles; random forest; open source

GEOBIA’2018, Montpellier, 20-22 June 2018



2 GEOBIA’2018

1. Introduction

While the GEOBIA paradigm has led to significant improvements in the analysis
and understanding of remote sensing images thanks to the processing of objects (i.e.,
regions) instead of pixels (Blaschke, 2010), it still requires to identify the objects (or
segment the image into regions) before applying rules for classifying the extracted
objects. This segmentation step is not straightforward and relies on user expertise
or empirical tuning to be adapted to each new scene to be processed (Dragut et al.,
2014; Ming et al., 2015). Thus, it cannot be used for Big GeoData where large-scale
analyses require methods that are both very efficient and robust to the wide variety of
scenes to be observed.

We address here these multiple issues by relying on a multiscale image represen-
tation that embed in a tree structure, with no need of parameter tuning, the different
(nested) objects to which a pixel can belong (Bosilj et al., 2018). Computation of
such a stack of segmentations benefit from some recent scalable implementations that
make realistic their very fast extraction from large-scale image datasets (Havel et al.,
2016; Carlinet, Géraud, 2014). Once the tree structure has been extracted, further im-
age analysis is conducted at a very low computational cost, and relies on Differential
Attribute Profiles (DAP). These state-of-the-art features (Dalla Mura et al., 2010), or
more precisely on only the most relevant features. We benefit from the efficiency of
the different steps (tree construction, feature extraction, training, prediction) to pro-
pose a semi-supervised strategy (Merciol et al., 2017) where we retrain the model for
each kind of landscape, thus allowing to tackle the great variety in appearances of
objects at a very large-scale (e.g. VHR imagery at Pan-European scale). Due to the
low computational cost (e.g. a few minutes for a Pleiades or WorldView-2/3 scene), a
user can then interactively improve the classification by updating the reference sam-
ples used for training the model. The proposed scalable solution fully relies on open
source components (Orfeo ToolBox, Boost, GDAL, Shark, Triskele OTB remote mod-
ule) and so can be used in any GEOBIA applications.

To illustrate our methodology, we consider here the Mapping of Small Woody
Features (SWF), that is to be included as part of a new High-Resolution Layer (HRL)
covering the whole of Europe from Iceland to Turkey within the Copernicus pan-
European component of the land monitoring service. SWF represent some of the most
stable vegetated linear and small landscape objects providing numerous ecological
and socio-cultural functions related to soil and water conservation, climate protection
and adaptation, biological diversity and cultural identity. Extracting these objects over
such a large area (almost 6 million sq.km) from VHR imagery brings numerous chal-
lenges: large amount of data (greater than 120 TB), large number of individual image
scenes (greater than 30,000), diversity of the European landscapes, and need to pro-
cess these data in a timely manner whilst ensuring a satisfactory degree of precision.

This paper is organized as follows. We review the proposed methodology in Sec. 2.
The thematic application on SWF mapping is addressed in Sec. 3, where quantitative
results are also provided. Finally we conclude the paper in Sec. 4.
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2. Method

In this section, we present the proposed methodology with a focus on the over-
all architecture, before describing in more details the two main components that are
feature extraction with attribute profiles and semi-supervised classification.

2.1. Overall architecture

To make the GEOBIA paradigm compliant to very large-scale analysis, we pro-
pose here to perform a pixelwise analysis of object-based features, in a semi-supervised
classification framework instead of the standard application of GEOBIA rulesets. The
overall methodology is given in Fig. 1.
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Figure 1. General flowchart of the proposed approach
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In a first step, the input image is enriched with the computation of some predefined
indices to derive new image channels. Among the considered measures, we rely on
the well-known and low-cost NDVI vegetation index as well as the Sobel gradient for
texture characterization. While Haralick features are popular to describe texture1, they
are not compliant with very efficient process. We have thus preferred to rely on the
Sobel operator, that can be efficiently computed with a set of optimized, 1-D linear
convolutions that consists of only 4 computations per pixel. This first step also allows
to derive a binary mask that will be useful to discard the no-pixel data in subsequent
processing steps.

From the set of selected bands, we then build multiscale representations through
the model of morphological trees from which we derive multiscale features called at-
tribute profiles. Such trees can be seen as a stack of nested segmentations and thus
a generalization of the concept of monoscale segmentation layer in GEOBIA tools.
Each pixel is then assigned with some features derived to the different objects it be-
longs to in the different scales. Computation of the trees and the attribute profiles is
described in more details in Sec. 2.2. Complementary to attribute profiles, we also
compute textural features with efficient algorithms based on integral image represen-
tations (Viola, Jones, 2001), such as Haar-like features and local statistics (mean, stan-
dard deviation, entropy).

The next step is the use of the random forest classifier in a semi-supervised frame-
work. The advantage of using supervised classifier over predefined rulesets is the abil-
ity to adapt to a wide range of landscapes without explicit definition of the properties
of mapped objects. However, it also requires labeled samples that describe the sought
class and the background. Since labeling a full high-resolution image is tremendous,
we rather propose a semi-supervised strategy where the training samples are generated
by extending the initial sets provided by the user. Given the low computation time of
the classification process over the labeled samples, the user can then easily improve
the quality of the training set by providing new samples. Once the model is accurate
enough, the final prediction is performed. More details are given in Sec. 2.3.

The overall process is very efficient due to a high-level of parallelism in the differ-
ent steps. The reader interested in the algorithmic details and the optimization of the
overall pipeline is referred to a companion paper (Merciol et al., 2017).

2.2. Feature extraction

The GEOBIA paradigm is usually based on some features that are extracted from
each single object or region in a segmentation map. Such features describe the object
properties such as its shape, spectral and/or textural content, etc. We propose here to
rely on attribute profiles that have been very popular image features in remote sensing.
The main difference with the standard GEOBIA workflow consists in the fact that the

1. Let us note that in a recent study, we have further shown the interest of measuring attribute profiles over
textural features (Pham, Lefèvre, Merciol, 2018).
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attribute profiles are measured over each single pixel. One can wonder how such a
pixelwise analysis can be compliant with the object-based paradigm. Indeed, while
being computed over each single pixel, these features are made from the properties
of the objects the pixels belong too in the different segmentations. Feature extraction
with attribute profiles can thus be seen as a strategy to derive object-based features
in each pixel. It provides a generic framework that allow for robust features that can
be extracted in a very efficient way from input images through their modeling into
tree-based representations.

There exist different tree models, and we focus here on the inclusion trees, namely
min-tree, max-tree, and tree of shapes. These models describe the level sets of an input
image, and the nested segmentations are partial (i.e. there could be some parts of an
image that do not correspond to any segmented region). A min-tree will highlight
the local minima that will correspond to the leaves of the tree. Conversely, a max-
tree emphasizes the local maxima in its leaves. These dual representations can be
replaced by a self-dual model called the tree of shapes that contain extrema in its
leaves. In all cases, the root of the tree is made of the whole image. While we could
have also considered partition trees (that would include the standard multiresolution
segmentation used in GEOBIA framework), our choice is motivated by the fact that
the features extracted from the tree (attribute profiles) have been extensively built from
inclusion trees, and their computation from partition trees remains challenging (Bosilj
et al., 2017). A recent comprehensive survey on the various tree-based representations
is given in (Bosilj et al., 2018).

Once a tree is built, the computation of attribute profiles (Dalla Mura et al., 2010)
is as follows. First some attributes are measured within each node. They can be in-
creasing (such as the size) from the leaves to the root, or non-increasing (such as the
standard deviation or moment of inertia). Furthermore, they can describe the shape,
the heterogeneity, or any other property of the underlying object. A set of thresholds
is then defined to filter the tree and retain selected nodes that have attribute values
corresponding to the threshold. This step called filtering aims to prune the initial tree
to build a very small subset of nodes. Each pixel belongs to a few of them, and can be
characterized by their properties (in the standard attribute profile approach, their gray
values). Since the filtering may lead to similar images between two successive thresh-
olds, it is often relevant to rely on differential attribute profiles instead of standard
attribute profiles. The differential representation is built by computing the difference
between two successive values in the filtered tree.

In our scenario, and in order to limit the computational cost, we rely on some ef-
ficient implementations of the tree construction and attribute computation steps. Such
algorithms have been described in (Merciol et al., 2017) and made available as an
open-source library called Triskele2 that can be used as a remote module in OTB. Fur-
thermore, we limit the computation of the attributes to the subset of pixels relevant in
the learning phase.

2. https://sourcesup.renater.fr/triskele
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2.3. Semi-supervised classification

Conversely to the standard GEOBIA methodology that makes use of predefined
rulesets to be applied on the objects extracted from a prior segmentation, we rather
rely here on a supervised classifier. This choice is motivated by the fact that is it not
easy to define an appropriate ruleset for the sought objects, given the context of a very
large scale study where the objects appearance might vary a lot from one landscape to
the other.

Among the different supervised classifiers available, we have decided to rely on
random forest that have shown great success in remote sensing (Belgiu, Drăguţ, 2016).
The random forest is an ensemble method (Breiman, 2001) that combines multiple
decision trees to increase the robustness of the overall classification process. Each
decision tree will operates on a subset of the training samples, with a subset of the
available features, and can be used to derive a prediction from an input instance. The
set of individual predictions can then be gathered through a majority voting procedure.

The random forest classifier is known to be easy to tune with only a few parameters
to be set, namely the number of trees in the forest (usually 100, 200 or 500), and the
number of random variables used in each tree (usually set as the square root of the
feature vector length). Furthermore, it comes with parallel, scalable, open-source
implementations such as the Shark library3. We use here this library, that has been
also recently embedded into the OTB framework4.

Another advantage of the Random Forest classifier is its ability to measure the
importance of the different features. Indeed, it is possible to identify the role of each
individual feature in the ensemble method (in other words, how many times it has
been used to derive the prediction). We thus allow the user to select the appropriate
features when dynamically adapting its training set. With a lower number of more
discriminant features, we both achieve higher accuracy and lower computational cost.

As already indicated, we consider here the random forest classifier in a semi-
supervised framework. From the labeled samples provided by the user to charac-
terize foreground (class of interest) and background (other classes), we only consider
a random subset (defined by fg_rate and bg_rate parameters) of them to limit the
computation time. In order to alleviate the negative effect brought by errors in the
training set, we also allow to discard positive samples that led to a low classification
accuracy. Besides, the background set has to be heterogeneous to adequately represent
all classes in the scene but the sought one. While the user can provide such samples,
it barely corresponds to all background classes. Thus, we allow for automatic selec-
tion of background pixels among those that the random forest classifier assigns to the
sought class with a very low confidence.

3. http://image.diku.dk/shark
4. https://www.orfeo-toolbox.org
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Thanks to the low computational time of the random forest learning step, it is
possible for the user to judge the quality of the prediction over the training set, and to
adapt the content of the set if necessary. Once the prediction model is satisfactory, it
can be applied over the whole image to get the final map.

3. Application

3.1. Context

Small Woody Features (SWF) represent some of the most stable vegetated lin-
ear and small landscape features providing numerous ecological and socio-cultural
functions (Forman, Godron, 1981; Van der Zanden et al., 2013; Jongman, 2004). Al-
though a single linear feature cannot ensure all these functions on its own, SWF are
ecologically significant, structural landscape elements that act as important vectors of
biodiversity and provide vital habitats and ecosystem services. Hedgerows and tree
groups are linked to landscape richness and fragmentation of habitats with a direct
potential for restoration while also contributing to hazards protection and Green In-
frastructure, amongst others. The specific ecological importance of SWF underpins
the need for reliable, detailed geospatial information on the occurrence and distribu-
tion of linear landscape features. SWF are an elementary part of a landscape’s green
infrastructure and are therefore addressed through a range of policies and directives.
EU’s 2020 Biodiversity Strategy and specifically its Target 2 with regard to ecosys-
tem maintenance, restoration and the establishment of a green infrastructure, clearly
expresses the requirement for systematic monitoring of such features being crucial for
ecosystem condition and the delivery of ecosystem services.

In past years, remote sensing has been increasingly acknowledged to provide ob-
jective and cost-efficient approaches for mapping of small landscape elements, how-
ever, there is still no consistent inventory of SWF throughout Europe. Through initia-
tives such as Coordination of information on the environment (CORINE) Land Cover,
and even more since the start of Copernicus and its Initial Operations with the High
Resolution Layers (HRL) and the Urban Atlas, Europe has significantly improved its
knowledge base on land cover/use and vegetation patterns based on EO data. While
the overall landscape heterogeneity is defined by the spatial arrangement of homoge-
neous land cover patches, as measured by the Copernicus continental land monitoring
component, its interconnections are constituted by linear structures that portray the
joint role of nature and mankind in shaping the countryside (Turner, 1989). Both the
spatial arrangement of land cover and the presence of linear structures are the two
most relevant elements characterizing landscape structures. Geospatial information
on SWF is however still lacking and only available in the form of limited national
investigations mostly with a focus on farmland features (Jongman, Bunce, 2009) or
other thematically focused small-scale landscape inventories, e.g., fragmentation stud-
ies such as (Jaeger et al., 2008).

The only quantitative information on pan-European level is available through ground
observations from the LUCAS (Land Use/Cover Area frame Statistical survey) database
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(Eurostat, 2009). Recent studies such as (Van der Zanden et al., 2013) have derived
density maps of the spatial distribution of linear landscape elements for Europe based
on spatial interpolation of LUCAS data, but the resolution of such information (1 km)
is too coarse for detailed assessments and does not provide factual quantitative infor-
mation on their location and extent.

As part of the pan-European Copernicus Land Monitoring Service, the High Res-
olution Layers (HRLs) provide maps of multi-temporal land cover characteristics for
5 thematic areas including SWF in a consistent manner for 39 European countries
(EEA39 with more than 6 million sq.km). SWF is a completely new product as part
of HRLs for the 2015 reference year, which is based on extended demonstrated exper-
tise in the production of HRLs at Pan-European level (Lefebvre et al., 2013) and with
dedicated exploratory work specifically on SWF (Lefebvre, 2014). The mapping of
SWF is using Very High Resolution (VHR) data as primary input with a pan-European
coverage as well as in-situ data. The VHR_IMAGE_2015 dataset made available in
the ESA Copernicus Data Warehouse (DWH) is the main data source for the detec-
tion of Small Woody Features identifiable within the given image resolution (≤ 1m
panchromatic, 2-4m multi-spectral). This dataset includes more than 30,000 VHR
images which corresponds to more than 120 TeraBytes of data.

The main difficulty when dealing with VHR images comes from the internal vari-
ability of the information for a single land-use. For instance, woody elements are
represented by a high number of heterogeneous pixel values hampering usual pixel-
based techniques. Nevertheless, even though object-based image analysis (OBIA)
appears to be the most suitable approach to delineate SWF with VHSR images, it can
potentially represent some serious drawbacks related to the heterogeneous size and
shape of SWF objects and the difficulty to determine suitable segmentation parame-
ters (Fauvel et al., 2013). In addition, for very small objects close to the resolution
of the imagery, the segmentation can lead to separate SWF or non-SWF objects to
be merged together due to mixed pixel values. This makes it particularly difficult to
define a suitable segmentation scale in different landscapes particularly if it is to be
applied for the EEA39 area. Therefore, a multi-scale approach conducted both at pixel
and object level is suggested to ensure the correct identification of small and irregular
shaped SWF (pixel based) and larger SWF (OBIA) such as small patches of trees or
scrub or larger hedges.

3.2. Automatic classification

A dedicated processing chain has been developed and implemented in order to
process large dataset of VHR images (> 30, 000 scenes) to produce the SWF layer.
The workflow is shortly described as follows: (1) VHR Image Pre-processing, (2)
Reference database preparation, (3) Automatic classification, (4) Post-processing, (5)
Thematic manual enhancement and (6) Internal Validation.

The proposed paper focuses on the automatic classification step, a supervised clas-
sification, which classifies each VHR image into woody and non-woody vegetation.
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The overall methodology to produce such a map has been provided in Sec. 2. We re-
call that it proceeds in two steps. In a first step, feature extraction is achieved through a
novel, efficient implementation of differential attribute profiles (DAP) that are among
the state-of-the-art image descriptors in remote sensing. In a second step, SWF are
extracted in a semi-supervised context using an open source implementation of the
popular Random Forests classifier. Besides demonstrating the strength of open source
software for helping the large-scale production of land cover maps, we also introduce
several new developments related to the DAP features. Those features are straightfor-
wardly extracted from a prior tree-based, multiscale representation of the image. They
allow to gather both spectral and spatial information in an efficient manner.

3.3. Experiments

3.3.1. Data

The proposed strategy has been applied and evaluated on a dataset covering two
study sites, one in Romania (Large Region 9—LR09) and one in Germany (LR61).
The dataset contains 37 VHR images in total which covers respectively about 7,000
and 10,200 sq.km. The images were acquired by different satellites, Pleiades and
WorldView, but all scenes include 4 spectral bands (Blue, Green, Red and Near-
InfraRed) and have 2m spatial resolution. The area covered by the images varies
from 192 to 1223 sq.km (ca. 48 to 306 Mpixels).

3.3.2. Results

Figure 2. VHR images (left) and corresponding classification results (right) over the
Romanian site (LR09)

Figure 2 shows the results of the classification over the Romanian site, with a
close-up given in Fig. 3. The automatic classification was applied based on refer-
ence database extracted from several land cover datasets including the Copernicus
HRL Tree Cover Density Layer (TCD), the Riparian Zone and Natura 2000 from the
Copernicus Local components and LUCAS database. The classification is trained on
70% of the reference sample dataset and the remaining 30% are used for the accuracy
assessment in order to derive the accuracy figures.
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Figure 3. Sample of the VHR image (acquired by 21/07/2014) (left) and
corresponding classification results (right) over the Romanian site (LR09)

Given the operational purpose of the tool, the combination of fast processing time
and high classification accuracy is essential. Tables 1 and 2 show the classification
results for each analysed VHR image in terms of processing time and classification
accuracies. The computing time is based on a dedicated server infrastructure with high
computing capabilities (Bi-CPU Xeon, 24 cores). Whereas the processing time for
classifying a Pleiades image (training + classification) on the Romanian site is around
5 minutes, this time is double for the Worldview images on the German site which
cover around twice the Pleaides area (481 versus 867 sq.km). Given such reasonable
processing times, a Large Region of about 40,000 sq.km can be processed within one
day considering an image overlap of about 50%.

The classification quality is measured by the Producer Accuracy (P.A., related to
the omission errors) and the User Accuracy (U.A., related to the omission errors). The
number of reference pixels gives an indication of the confidence of the accuracy figure
(low reference number means less confidence). On Romanian site (Table 1), the P.A.
ranges from 77 to 99% whereas U.A. from 83 to 100%. The average P.A. and U.A
is respectively 89.4% and 95.7%. On German site (Table 2), the P.A. ranges from
84 to 95% whereas U.A. from 75 to 99%. The average P.A. and U.A is respectively
89.9% and 91.4%. For both sites, the classification accuracy is high (>80%) even if
the accuracy figures are slightly higher for the Romanian site. This can be explained
by the higher commission errors due to highly vegetated agricultural fields on the
German site.
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Table 1. List of the 20 analysed Pleiades VHR images covering the Romanian study
site (LR09) with their characteristics (identifier, acquisition date, and covered area),
classification processing time and accuracies (P.A. as Producer Accuracy, U.A. as

User Accuracy and # as number of references for each validation)

ID Date Area Time P.A. U.A. # P.A. # U.A.
(sq.km) (m:s) (%) (%) nbpix nbpix

3aa6 29/06/2014 553.6 07:57 92.1 93.4 20,734 6,861
e643 29/06/2014 534.0 07:04 95.6 97.2 17,549 6,888
c514 20/08/2014 404.6 05:52 82.7 100.0 21,634 1,015
55f4 02/06/2015 537.6 04:11 92.3 95.4 28,082 2,564
811a 02/06/2015 192.1 01:21 98.8 86.3 7,392 1,335
1524 02/09/2015 348.1 03:05 82.0 99.6 45,900 778
32bd 02/09/2015 427.7 03:36 88.3 100.0 45,429 79
6390 02/09/2015 437.1 03:31 90.7 100.0 23,952 1,175
94a2 12/07/2016 1,141.7 09:56 79.7 85.5 247,163 159
d34e 30/06/2014 501.7 04:11 87.0 96.8 55,706 1,338
2b88 30/06/2014 418.2 03:43 79.5 92.6 33,250 766
9fc6 30/06/2014 531.0 04:26 91.3 99.5 29,621 4,206
3d9c 21/07/2014 435.4 04:07 94.3 99.2 20,730 392
c55a 21/07/2014 443.2 05:04 97.7 99.1 17,806 4,620
878e 05/06/2015 465.3 04:48 94.9 83.0 26,114 5,775
8ac0 06/08/2015 474.9 06:24 77.3 100.0 85,776 78
d3e6 06/08/2015 416.7 05:11 79.6 100.0 43,288 467
ed14 27/08/2015 412.2 04:20 93.5 99.3 37,394 4,080
1c33 03/09/2015 489.9 05:00 93.6 95.0 23,404 6,031
87ef 03/09/2015 470.4 04:25 96.6 92.4 14,445 7,404

Average 481.8 04:54 89.4 95.7 42,268 2,801
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Table 2. List of the 17 analysed Worldview-2/3 VHR images covering the German
study site (LR61) with their characteristics (identifier, acquisition date, and covered

area), classification processing time and accuracies (P.A. as Producer Accuracy,
U.A. as User Accuracy and # as number of references for each validation)

ID Date Area Time P.A. U.A. # P.A. # U.A.
(sq.km) (m:s) (%) (%) nbpix nbpix

39CC 07/06/2014 1,190.5 11:38 87.7 91.4 249,204 61,635
9A7B 11/06/2015 751.1 06:50 87.8 88.5 30,456 3,893

CBAA 02/07/2015 998.2 09:44 89.5 90.4 45,596 7,187
4DBA 02/07/2015 1,036.3 10:08 91.2 94.8 32,568 11,106
03CA 05/07/2015 1,148.0 11:27 85.5 87.5 44,715 3,057
D92F 05/07/2015 804.5 08:08 84.5 91.0 46,920 3,174
D98A 05/07/2015 809.5 07:41 92.5 90.4 33,555 1,960
400B 13/08/2015 771.0 06:32 93.2 94.9 36,841 2,574
965F 13/08/2015 1,079.8 10:33 92.8 93.9 36,861 3,421
7C04 01/06/2016 659.4 07:19 85.1 75.4 29,975 2,435

E0EA 01/06/2016 1,223.5 13:29 84.8 87.5 185,722 22,349
D7B9 04/06/2016 665.6 06:37 94.8 99.3 32,835 724
837C 26/08/2016 1,048.7 10:19 91.1 91.2 57,338 2,181
97C4 31/08/2016 507.1 05:10 94.2 96.8 71,879 47,140
CF66 09/08/2015 170.6 02:00 95.1 96.4 22,440 23,690
C878 22/08/2015 919.9 09:23 90.1 93.4 158,773 72,212
D84C 22/08/2015 959.4 10:00 89.1 91.3 87,053 21,658

Average 867.2 08:38 89.9 91.4 70,749 17,082
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4. Conclusion

In this paper, we have presented a use case where the GEOBIA methodology has
been conducted at a very large scale, i.e. over more than 30,000 scenes and 120 TB.
To address the wide range of landscapes encountered at the pan-European scale, we
propose to rely on multiscale image representations known as morphological trees
such as min-tree, max-tree or tree of shapes. Once built, such representations allow
to efficiently derive some image feature that are fed into a random forest classifier.
Thanks to the low computational cost of all the individual steps of the overall pro-
cess (tree construction, feature extraction, supervised learning and prediction), it is
possible to have the user in the loop, to updated the classification model and assess
the produced results. The presented methodology has been validated on a very large
scale use case, namely the mapping of Small Woody Features for the High Resolution
Layers product of the Copernicus Land Monitoring service. Our work shows that the
concepts of GEOBIA can be employed at a very large scale, if adequate efficient tools
and representation models are used.

We consider now to build upon this work and include more advanced features such
as local-feature attribute profiles (Pham, Lefèvre, Aptoula, 2018b) or feature profiles
(Pham, Lefèvre, Aptoula, 2018a). Indeed, the framework of attribute profiles has
benefit from many recent developments (Pham, Aptoula et al., 2018) that still need to
be validated on large-scale experiments.
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