
HAL Id: hal-01924566
https://hal.univ-reunion.fr/hal-01924566v1

Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating Ontology Completeness via SPARQL and
Relations-between-classes based Constraints

Philippe Martin

To cite this version:
Philippe Martin. Evaluating Ontology Completeness via SPARQL and Relations-between-classes
based Constraints. 11th International Conference on the Quality of Information and Communica-
tions Technology, Sep 2018, Coimbra, Portugal. pp.255-263. �hal-01924566�

https://hal.univ-reunion.fr/hal-01924566v1
https://hal.archives-ouvertes.fr

Evaluating Ontology Completeness via SPARQL and
Relations-between-classes based Constraints

Philippe A. Martin
EA2525 LIM, Uni. of La Réunion

(and adjunct researcher of the School
of ICT, Griffith University, Australia)

F-97490 Sainte Clotilde, France

Abstract—This article first distinguishes constraints from
rules, and descriptive constraints from prescriptive ones. Both
kinds can be used to calculate a constraint-based completenesses
(as opposed to a real-world-based completeness), i.e. evaluating
how much of a knowledge base is complete with respect to some
constraints, e.g. for evaluating how well this base follows given
ontology design patterns or best practices. Such evaluations may
also guide knowledge elicitation and modelisation. This article
explores the ways constraints can be represented via relations
between classes, hence via any knowledge representation language
(KRL) that has an expressiveness at least equal to RDF or RDFS.
Compared to the popular practice of both representing and
checking constraints via queries, this approach is as simple, offers
more possibilities for exploiting both knowledge and constraints,
and permits the selection and use of inference engines adapted to
the expressiveness of the exploited knowledge instead of the use
of restricted or ad hoc constraint-validation tools. This approach
is also modular in the sense it separates content from usage: the
represented “content focused constraints” can then be exploited
via few “content independent” queries, one for each usage and
kind of constraint. This approach provides more possibilities.

Keywords—constraints, ontology completeness, OWL, SPARQL

I. INTRODUCTION

Knowledge representations (KRs) are formal descriptions
enabling automatic logical inferencing, and thus automatic KR
comparison, search, merge, etc. KRs are logic formulas, e.g. the
binary predicates of 1st-order logic; these predicates are called
triples or property instances in RDF and binary relations in
Conceptual Graphs (CGs) [1]. For the purpose of clarity, this
article uses the intuitive terminology of CGs: (information)
objects are either types or individuals, and types are either
relation types or concept types (classes and datatypes in RDF).
A formal knowledge base (KB) is a collection of such objects
written using a KR language (KRL). An ontology is a KB that is
essentially about types, rather than about individuals.

Creating a KB or evaluating its quality – for knowledge
sharing or exploitation purposes, or for designing or generating
software, or evaluating their qualities – are difficult. Models and
constraints (e.g. design patterns) help these tasks and can be
stored into an ontology. E.g., the author of this article is building
an ontology representing and organizing ontology design
patterns as well as software design patterns. Reference [2], a
survey on quality assessment for Linked Data, provides many
dimensions and metrics for evaluating the quality of KBs and
hence helping the selection or design of KBs. One of the quality
dimensions is the (degree of) completeness of a KB with respect
to some criteria or constraints: concisely, “its completeness”.

Evaluating this degree is common in various tasks or fields but
is performed differently by different tools and sometimes in
implicit or ad hoc ways. Examples of such tasks or fields are:
i) the automatic/manual extraction of knowledge or the creation
of a KB, ii) the exploitation of ontology design patterns, KB
design libraries (e.g., the KADS library) or top-level ontologies
(e.g., DOLCE), and iii) the evaluation of ontologies or, more
generally, datasets. In this last field, as noted in [2], completeness
commonly refers to a degree to which the “information required
to satisfy some given criteria or a given query” are present in the
considered dataset. To complement this very general definition,
this article distinguishes two kinds of completeness:

 Constraint-based completeness measures the percentage
of elements in a dataset that satisfy explicit
representations of what must or must not be represented
in the dataset. These representations are constraints such
as integrity constraints or, more generally, those
expressed by ontology design patterns and schemas of
databases or of structured documents. E.g.: the constraint
that, in a particular dataset, at least one movie must be
associated to each movie actor.

 Real-world-based completeness measures the degree to
which certain real-world information are represented in
the dataset. E.g., regarding movies associated to an actor,
calculating the completeness may consist in dividing
“the number of movies associated to this actor in the
dataset” by “the number of movies he actually played in”.
Either the missing information are found in a gold
standard dataset or the degree is estimated via
completeness oracles [3], i.e. rules or queries estimating
what is missing in the dataset to answer a given query
correctly. The four kinds of completeness collected by [2]
– schema/property/population/interlinking completeness
– assume a closed-world-assumption and a gold standard
dataset. Thus, they are real-world based completenesses.

One way to define or calculate the constraint-based
completeness of a KB is to divide “the number of statements
satisfying the constraints in that KB” by “the total number of
statements in the KB”. As a variant, instead of statements only,
one may want to consider objects, i.e. measure the percentage of
objects for which all relations from/to them satisfy the
constraints. Other variants may be defined by considering only
certain kinds of objects or statements. Defining constraints via
KRs, instead of via queries, permits the definition of “content-
independent (alias, domain-independent) queries” to exploit
these constraints. Otherwise, a different (content-dependent)
query has to be created for each variant of constraint based
checking or completeness. Because of this lack of modularity,

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

when stored in an ontology, content-dependent queries are also
less easily organized than content-independent ones.

This article does not address real-world based completeness
but the techniques this article proposes may also be used for
representing certain domain-specific parts of the rules used for
calculating real-world based completeness. From now on,
“completeness” refers to constraint-based completeness.

Section II explores the first research question of this article:
what does the expression “must and must not be represented in
the dataset” entail or, more precisely, given the “descriptive vs.
prescriptive” distinction, what kinds of constraints need to be
considered for evaluating constraint-based completeness via
content-independent queries?

Section III proposes an approach to answer a second
research question: how to represent constraints in a KRL
independent way – or, more precisely, in any KRL that has an
expressiveness at least equal to RDF or RDFS – even though
actually defining the semantics of some of these constraints
would require much more expressive logics? The proposed
solution relies i) on the representation of constraints via
restricted constructs based on relations between classes (or to
classes), e.g. rules using the rdfs:subClassOf relation for
representing a restricted implication between the condition and
conclusion of the rule, ii) on the use of certain special types for
specifying that a statement is a constraint of a certain kind, and
iii) on the exploitation of these types in content-independent
queries. Such constraint representations can then be exploited
via most inference engines and KR query languages instead of
tools tied to a particular KRL or goal (knowledge acquisition,
ontology design pattern application, ontology evaluation, etc.).

Section IV shows commands (queries or update requests)
answering a third research question: how to implement the
above cited approach in SPARQL or slight extensions of it.

Section V.A illustrates applications or use cases for the given
content-independent queries. It is actually a summary of
Section IV in [4], an unpublished extension of this article and a
companion Web site for this article. Section V.B evaluates the
proposed approach and compares it to other ones.

II. DEFINITIONS FOR THE CONSIDERED CONSTRAINTS

A. Considered Constraints: Just For Checks, Not Inferences

In this article, as in KIF (Knowledge Interchange Format)
[5], a rule is a statement that can be represented in the form
“X =>> Y” where “=>>” is a restricted version of the logical
implication (“=>”): it supports modus ponens, not modus tollens.

A rule allowing the derivation of a non-modal statement is a
rule that can be represented in the form “X =>> Y” where Y
does not include a modality (e.g., must). An example is “if x is a
Person then x has a parent”. If this statement and “Tom is a
Person” are in a KB, an inference engine can derive the non-
modal statement “Tom has a parent”.

Reference [6] defines constraints as positive or negative,
respectively expressing statements of the form “if A, B must be
true” and “if A, B must be false”. Thus, [6] defines constraints
as rules where the conclusion has a “must” modality. These are
the kinds of constraints considered in this article, with the
interpretation that in such constraints the “must” entails that the

constraints can only be used for checking statements, i.e. that
they are not rules allowing the derivation of non-modal
statements. More formally, this means that such positive and
negative constraints can respectively be translated into the
forms “A ∧ ¬B =>> false” and “A ∧ B =>> false” where A and B
do not contain a “must” modality and A may be empty. As an
example, consider the positive constraint “if x is a Person, x
must have a parent”. From this constraint and the fact “Tom is a
Person”, an inference engine must not derive “Tom has a
parent”. It may derive “Tom must have a parent” but, in practice,
such derivation is not made. As a somewhat opposite example,
RDFS-aware engines do not exploit relations of type rdfs:domain
or rdfs:range as relation signature constraints but as inference
supporting statements: when a relation r has a type partially
defined by an rdfs:domain (vs. rdfs:range) relation, RDFS-aware
engines may infer a type for the source (vs. destination) of r.

In this article, constraints that are directly represented in a
form ending by “=>> false” – or, equivalently, “=>> ⊥” – are
called constraints in inconsistency-implying form. Not all KRLs
allow to represent rules (instead of – or in addition to –
implications); in those that do, representing negative constraints
using the inconsistency-implying form is easy but using this
form for representing positive constraints may not possible: the
KRL may not permit the representation of the negation in the
“¬B” part. This in why in this article i) negative constraints are
represented in inconsistency-implying form, and ii) positive
constraints are in the form “A =>> B” but with a representation
supporting the distinction between a constraint and an actual
rule. Furthermore, as in most rule-based systems, in the rest of
this article the A and B parts share variables. More precisely,
these parts are representations of relations from a same object
(i.e. from a type or an individual, including a relation or a more
complex statement since they are particular kinds of individuals).

In the research literature on constraints, these ones are
generally not represented – or checked – via modal logic based
KRLs but rather using queries, e.g. via SPARQL or the
nonmonotonic-epistemic-logic query language EQL-Lite [7]. In
(unidirectional) rule based systems, rules with empty
conclusions (or “false” as conclusions) are handled like
constraints. However, this is a particularity of these systems. It
should not be relied upon for general knowledge representation
purpose. For such a purpose, the special semantics of constraints
has to be made explicit via special syntactic sugar or special
types. Since KRLs rarely propose syntactic sugar for expressing
constraints, a more generic approach for expressing that a
statement is a constraint, as opposed to an inference supporting
statement, is to state that this statement is an instance of a type
expressing a particular kind of constraint (as explained in
Section III.A). Then, these constraints can be retrieved and
exploited by content-independent queries such as those provided
below. These constraints can also be directly interpreted and
exploited by inference engines designed to take into account the
used constraint types. In any case, either i) constraints are not
represented in a way they can be exploited as inference
supporting statements, or ii) the results of these inferences must
not be detrimental, i.e., must not influence the checking of
constraints. Both techniques will be illustrated below.

B. Prescriptive (i.e. Not Using All Inferences) vs. Descriptive

As noted in [8], a common distinction between engineering
models is whether they are i) descriptive of some reality, e.g.
like most ontologies (e.g., by default, ontologies written in RDF

or OWL), or ii) prescriptive of what must be in the considered
dataset, as with system specifications, meta-models, XML
schemas, database schemas, SHACL statements, etc. Similarly,
this article distinguishes two kinds of constraints. First, like
definitions or axioms, descriptive constraints enable inference
engines to check the use of certain formal terms, if and only if
these terms are used. On the other hand, prescriptive constraints
enable inference engines to check that certain formal terms are
actually used (not just inferred) or not used, under certain
conditions. E.g., prescriptive constraints can be used for checking
that if the instances of a type are defined as (necessarily) having
certain relations, these relations are explicitly given by users
whenever they create an instance of such a type. Here,
“explicitly” emphasizes that these relations must not exist just
because they were automatically deduced, e.g. by inheritance,
but only because they were set by a user (manually or
automatically). As an example, assume that a KB includes the
rule “if x is a Person, x has a parent” and that a user enters that
“John is a Person” in the base of facts of this KB (this base is
the set of relations from/to individuals; for a description-logic
based KB, this is its A-box). Even if this KB also includes the
descriptive constraint “if x is a Person, x must have a parent in
the represented world (descriptive-must)”, an error message
should not be given by a KB checking mechanism since this
constraint is satisfied (by inferencing) without the user having to
represent a parent for John. On the other hand, if the KB
includes the prescriptive constraint “if x is a Person, x must
have a parent in the base of facts (prescriptive-must)”, the adding
of a new person without a relation to a parent must be rejected.
For constraints in inconsistency-implying form, there is no
distinction between descriptive and prescriptive: they enable the
detection of an incorrect KR whether it has been inferred or not.

To check a positive prescriptive constraint, any inference
may be useful for testing the condition of this constraint, i.e. for
matching objects in the KB against this condition. As illustrated
in the previous paragraph, this is not the case when testing the
main (alias, first) object of the conclusion of the constraint, i.e.
the object whose relations are mandatory for all objects
matching the condition of the constraint. When testing this first
object, if some mechanism automatically associates relations to
some of the checked objects – e.g., by dynamic lookup for
inherited relations during each object matching, or by forward
chaining saturation – this mechanism must be temporarily
disabled or bypassed. However, disabling or changing these
mechanisms (or, in other words, the used entailment regime [9])
generally cannot be done in the middle of a query. E.g.,
SPARQL does not permit such a change. Hence, instead,
bypassing methods are needed. Section III.B proposes one.

To sum up, such prescriptive constraints are original, enable
checks that descriptive constraints cannot, and are not equivalent
to the use of the closed world assumption. The techniques
presented by this article for defining and checking prescriptive
constraints can be performed with open-world assumption. Non-
modal logical expressions are only descriptive. E.g., simply
stating that “any Person (necessarily) has a parent” is only
descriptive. Content-independent queries, special procedures or
inference engines exploiting prescriptive constraints need to
distinguish them from descriptive ones via their types.

C. Descriptive Constraints Restricted To Named Individuals

When using a constraint to check if certain objects in a KB
satisfy a methodology or an ontology design pattern, one might

want to take into account automatically deduced relations but
only if they are from or to named individuals (“IRIs” in RDF
terminology), not if they are between anonymous individuals
(“blank nodes” in RDF terminology). Such a “partly descriptive
- partly prescriptive” constraint may be termed “descriptive but
restricted to named individuals”. It requires the author of the
constraint to represent which individuals must be named.

Although RDFS provides the type rdfs:label for relations
between an individual and its names, it does not provide a type
for relating an individual to its identifiers (even though they are
unique names) since IRIs (International Resource Identifiers)
are directly interpreted as named individuals in RDF. OWL also
does not provide such a relation type which could be used for
distinguishing which individuals are (or must be) named from
those who are not (or need not be). In OWL2-DL, this
distinction can be made if each named individual is declared as
instance of the class owl:NamedIndividual. However, doing so in
OWL2 Full still does not permit to make the distinction.
SPARQL supports the distinction via the operators isIRI and
isBlank. Hence, the solution proposed in this article is to provide
i) the relation type cstr:id for enabling the authors of a constraint
to specify which individual must have an identifier (as
illustrated in the second to last paragraph of Section III), and
ii) a SPARQL update request permitting the adding of cstr:id
relations to each named individual type in a KB (cf.
Section IV.B). Thus, if some descriptive constraints use cstr:id
relations and if this last SPARQL update request is run, these
constraints will correctly be checked by content-independent
queries for descriptive constraints (e.g., see Section IV.D.1).

III. APPROACH FOR REPRESENTING AND EXPLOITING
THE CONSIDERED CONSTRAINTS

A. Using Constraint Types

Reference [10] shows that SPARQL queries can represent
and check certain kinds of integrity constraints that exploit
some forms of the Unique Name Assumption or Closed World
Assumption. Instead, as explained in the introduction, the goal
is here to enable the representation of constraints that i) can be
exploited via content-independent queries, ii) can be represented
via any KRL that has an expressiveness at least equal to RDF or
RDFS, and iii) can be marked as descriptive or prescriptive (this
distinction is not made in [10]).

To that end, the proposed approach is to introduce a few
types for constraints. By setting instanceOf or subtypeOf
relations from certain KRs to some of those types, KB authors
can state that these KRs are constraints and can indicate which
kind of constraints. Thus, these constraints can be exploited by
content-independent queries or inference engines that understand
the used constraint types. For these engines, the types change
the way the statements must be interpreted. This approach is
similar to the use of OWL2 types in RDF statements and their
exploitation by OWL2-aware inference engines. The name of
the proposed ontology of constraint types is CSTR. In this
ontology, cstr:Constraint is the supertype of all types of
constraints. Similarly, the type cstr:Prescriptive_constraint, a
subtype of cstr:Constraint, enables one to state that some rules are
actually prescriptive constraints or to retrieve all and only such
constraints. The prefix “cstr:” in these identifiers is an
abbreviation for the namespace http://www.webkb.org/kb/it/CSTR.
Other types are later referred to, when needed. Presenting the
rest of CSTR is not needed in this article.

B. Using “Clones Without Types” For Bypassing Certain
Inferences When Checking The Conclusions Of Positive
Prescriptive Constraints

For adequately checking positive prescriptive constraints
Section II.B introduced the need for temporarily disabling or
bypassing “inference mechanisms that automatically associate
relations to objects” when testing the first object of the
conclusion of the constraint. This subsection proposes a method
to so. Statically (i.e. via a pre-treatment of the KB like the one
given in Section IV.C) or dynamically (i.e. during the checking
of such constraints), this method creates a “clone without type”
of each object matching the condition of such a constraint and
then, when checking its conclusion, does so on the clone instead
of the original object. The clone has the same relations as the
original object except for instanceOf relations (it has none;
furthermore, if it is a named individual, it has an identifier
different from the original object). Thus, by so using clones
without types, “inferences exploiting types to associate relations
to an object” are avoided. As an abbreviation, from now on, this
is referred to as avoiding inheritance. In the case of RDFS or
OWL entailments, “avoiding inheritance” means that, when
searching relations associated to an object, the types of this object
and their superclasses are not exploited. Creating clones without
types is not necessarily easy since there may be information in
the KB that lead certain inference engines to regenerate types
for some clones. E.g., assuming there is an rdfs:domain relation
from the relation type parent to Person, if an object of type Person
is source of a parent relation and this object has its type
removed, an inference engine may set it again. To avoid such a
case, instead of using rdfs:domain or rdfs:range relations, one may
write inconsistency-implying constraints that are equivalent to
these relations except that they are usable only for checking
purposes. When SPARQL is used for creating a clone without
type, as illustrated in Section IV.C, another potential problem is
that the whole KB is duplicated, not just one object. Finally, this
method based on clones without types does not work if there are
inferences that do not exploit types (e.g. via duck typing instead
of inheritance) or if a forward chaining saturation on the KB is
automatically run before the above cited pre-treatment.
However, these last two cases are rare.

This method relies on a temporary update of KRs before
their checking by an inference engine. Thus, this method does
not rely on a particular KRL, inference engine or tool feature.
I.e., this solution is KRL independent and tool independent: it
can be used with any KRL and any tool. Hence, depending on
the domain and application, different inference engines can be
reused to check or evaluate ontology completeness. However,
with some query languages such as current standard versions of
SPARQL, the temporary update cannot be done dynamically: a
KB pre-treatment is necessary. This is a limitation since KB
servers, e.g. SPARQL endpoints, rarely allow their users to
modify a KB for checking it. With LDScript [11], an extension
of SPARQL, the temporary update can be done dynamically. As
with SPARQL, the whole KB is duplicated but now it is
temporary and done every time an object is matched with the
conclusion of a prescriptive constraint (cf. Section IV.D.2).

C. Representing Constraints Via Relations Between Classes

1) Approaches:
One way to represent and exploit (simple) rules in a KRL

that has an expressiveness at least equal to RDF or RDFS is to
use an rdfs:subClassOf relation for representing the implication

between the condition and conclusion of a rule (as in OWL-ER
[12], an intersection between OWL2, Datalog+ and RuleML).
However then, either this implication must not be used for
modus tollens or the results must not be detrimental. The
situation is not much more complex when subclassOf rules are
used as a way to represent constraints. There are three cases.

 If the conclusion is (equivalent to) owl:Nothing, i.e. if
the inconsistency-implying form is used, the rule is
semantically a constraint and, depending on the inference
engines, modus tollens may or may not be a danger,

 Otherwise, if a prescriptive constraint is represented,
the “Clones Without Types” based method prevents the
results of modus ponens or modus tollens to influence
the checking of constraints (this is where these results
could have been detrimental).

 Otherwise, i.e. if a descriptive constraint is represented,
one must use an inference engine that does not exploit
rules for modus ponens nor modus tollens when the
condition of the rule is subtype of cstr:SubclassOf-
based_constraint_condition or instance of
cstr:Type_of_subclassOf-based_constraint_condition.

In other words, using subclassOf-based constraints when
inferences based on subclassOf relations then have to be ignored
is generally not relevant. However, the idea of using classes for
representing the conditions and conclusion of a constraint
without using variables is interesting. Here are two simple ways.

 The “subclassOf-analogous” way: it consists in relating
the condition class and the conclusion class by a relation
that is not a subclassOf one. To do so, CSTR proposes
the relation types cstr:descriptive_constraint_conclusion and
cstr:prescriptive_constraint_conclusion.

 The “individual-based constraint” way: it consists in
creating a constraint individual and, from it, relations to
express its type (i.e., descriptive vs. prescriptive) and the
classes for its condition and its conclusion. To support
this, CSTR proposes the relation types cstr:condition_class
and cstr:conclusion_class. Here, the classes are not directly
connected by a relation but indirectly connected. A type
could be used instead of an individual but, in the general
case, this would not bring more advantages.

A disadvantage of any solution using relations from/to
classes when these relations are not subclassOf ones is that the
result requires a KRL with an expressivity at least equal to RDF.
For OWL-based representations, this means interpreting them
with the RDF-Based Semantics, not the OWL2 Direct Semantics.
Reference [4], the companion Web site for this article, proposes
and categorizes types and requests to represent and exploit
constraints in the three above ways. Because of their similarities,
in this article mainly only the requests for the last way are given
and the CSTR ontology needs not be further detailed.

2) Examples of Individual-based Constraints:
In this article, the Turtle notation is used when SPARQL is

not used since SPARQL is an extension of this notation. For
clarity purposes, the names of relation types have a lowercase
initial while other names have an uppercase initial. In SPARQL,
Turtle or other graph-based notations, a statement of the form
“SourceConcept rel1 DestConcept1a, DestConcept1b; rel2
DestConcept2a, DestConcept2b” can for example be read

“SourceConcept has for rel1 DestConcept1a and DestConcept1b, and
has for rel2 DestConcept2a, and has for rel2 DestConcept2b”.

Here is the positive prescriptive constraint “if x is a Person,
x must have a parent in the base of facts (prescriptive-must)”
represented as an individual-based constraint (using CSTR):
[] rdf:type cstr:Prescriptive_constraint; cstr:condition_class :Person;
 cstr:conclusion_class [rdf:type owl:Class; owl:equivalentClass
 [rdf:type owl:Restriction; owl:onProperty :parent;
 owl:someValuesFrom :Person]].

For the general descriptive version of this constraint, it is
sufficient to replace “prescriptive” by “descriptive” in the
previous representation. Here is a version where parents are
restricted to be named individuals (i.e. to have a cstr:id relation):
[] rdf:type cstr:Descriptive_constraint; cstr:condition_class :Person;
 cstr:conclusion_class [rdf:type owl:Class; owl:equivalentClass
 [rdf:type owl:Restriction; owl:onProperty :parent;
 owl:someValuesFrom :Named_person]].

The negative constraint “if x is a Person_without_parent, x
must not have a parent” may be translated into the inconsistency-
implying form “x is a Person_without_parent =>> false”. Here is its
representation as an individual-based constraint:

[] rdf:type cstr:Descriptive_constraint; #optional rdf:type relation
 cstr:condition_class [rdf:type owl:Class; owl:equivalentClass
 [rdf:type owl:Restriction; owl:onProperty :parent;
 owl:maxCardinality "0"^^xsd:nonNegativeInteger]];
 cstr:conclusion_class owl:Nothing.

IV. IMPLEMENTATION IN SPARQL OR SLIGHT EXTENSIONS OF IT

In some extensions of SPARQL, e.g. LDScript [11], the next
commands (queries or update requests) can be grouped into
scripts or functions. Variable names begin by “?”.

A. First Example of KB Pre-treatment: Creating “Identifier
Relations” for Named Individuals

From each selected named individual, the next command
adds a cstr:id relation with destination the identifier of that
individual. Thus, as explained in Section II.C, queries checking
descriptive constraints also work on those that include cstr:id
relations, i.e. that have restrictions to named individuals. Here,
only an individual that has a type with a superclass and that has
other relations is selected since in practice only such an
individual might violate a constraint. To search for individuals,
just looking for each object that is not a relation and that does
not have rdfs:Class as type would be an incomplete strategy and
many conditions would have to be added for filtering out objects
such as i) classes defined via an equivalence to a restriction, and
ii) owl:Thing and some other types from OWL, RDFS or XSD.
INSERT { ?o cstr:id ?id } WHERE #?o is an individual that
{ ?o rdf:type ?t . FILTER NOT EXISTS { ?o rdf:type rdfs:Class } # is typed,
 ?t rdfs:subClassOf ?superClass . FILTER isIRI(?o) # is named by an IRI,
 FILTER NOT EXISTS { ?o cstr:id ?id } # had no cstr:id relation,
 {?o ?r ?o2 FILTER(?r!=rdf:type)} UNION {?o1 ?r ?o} # has other relations.
 BIND(str(?o) as ?id) #?id is now the IRI identifying ?o
}

B. Second Example of KB Pre-treatment: Creating “Clones
Without Types” of Objects For Exploiting These Objects
Without Inheritance Mechanism

Section III.B introduced a method for handling positive
prescriptive constraints, i.e. for bypassing or avoiding the

relation lookup mechanism above abbreviated as “inheritance”.
The next command implements the KB pre-treatment
supporting the “clones without types” based method when, as is
the case with SPARQL, i) a particular entailment regime cannot
be changed within a query, and ii) clones cannot be temporarily
created within a query. For the sake of clarity, this command
assumes that the KB does not include user-defined 2nd-order
types. For every object ?o in the KB, if this object is an
individual, this command creates ?o2, a partial copy of ?o that
has the same relations except for rdf:type relations. This partial
copy has for identifier the one of ?o but with the suffix
“_cloneWithoutType”. This command also relates ?o to ?o2 by a
relation of type cstr:cloneWithoutType.
INSERT {?o cstr:cloneWithoutType ?o2 . ?o2 ?r ?dest .
 ?o2 cstr:cloneWithoutTypeOf ?o} WHERE #?o is an individual that
{ ?o rdf:type ?t . FILTER NOT EXISTS { ?o rdf:type rdfs:Class } # has a type
 ?t rdfs:subClassOf ?superClass . # (which has a superclass),
 FILTER NOT EXISTS { ?o cstr:cloneWithoutType ?c1 } # is not a clone,
 FILTER NOT EXISTS { ?c2 cstr:cloneWithoutType ?o } # has not a clone

 { #Case 1: cloning each individual having at least 1 relation different from
 # rdf:type and owl:sameAs; "?o2 ?r ?dest" is inserted
 ?o ?r ?dest. FILTER(?r!=rdf:type) FILTER(?r!=owl:sameAs)
 }
 UNION #Case 2: cloning each individual not having a relation different from
 # rdf:type and owl:sameAs; "?o2 ?r ?dest" is not inserted
 { ?o ?r1 ?dest #?o has at least one relation from it
 FILTER NOT EXISTS
 {?o ?r ?dest2. FILTER(?r!=rdf:type) FILTER(?r!=owl:sameAs) }
 }

 BIND(uri(concat(str(?o),"_cloneWithoutType")) as ?o2)
}

C. Checking Individual-based Positive Descriptive Constraints

The next query lists every object violating at least one of the
individual-based positive descriptive constraints – including
those restricted to named individuals if cstr:id relations have been
added to named individuals. As shown by the code, such an
object satisfies two conditions. First, this object matches – hence,
has for type – the condition of a constraint ?posConstr that is of
type cstr:Descriptive_constraint. Second, this object does not match
the conclusion of the constraint. This query requires a SPARQL
engine with an entailment regime enabling the matching (alias,
categorization) of an individual with respect to a class expression
and thence the deduction of an rdf:type relation between them.
In the code of the commands in this Section IV, such deduced
rdf:type relations are highlighted in bold. For inferencing
completeness purposes, such deductions require an entailment
regime able to handle the expressiveness used in the constraints
and the rest of the KB. The code for checking subclassOf-based
or subclassOf-analogous positive descriptive constraints is similar.
SELECT ?objectNotMatchingPosConstr ?posConstr_condition
 ?posConstr_conclusion WHERE
{ ?posConstr rdf:type cstr:Descriptive_constraint;
 cstr:condition_class ?posConstr_condition;
 cstr:conclusion_class ?posConstr_conclusion.
 FILTER (?posConstr_conclusion != owl:Nothing)
 ?objectNotMatchingPosConstr rdf:type ?posConstr_condition.
 FILTER NOT EXISTS #no objects satisfying the conclusion
 { ?objectNotMatchingPosConstr rdf:type ?posConstr_conclusion }
}

D. Checking Individual-based Positive Prescriptive Constraints

The next query assumes that the “clones without types” have
been statically created as seen in Subsection B. In the rest of this

Section IV, when a command has some code that has not been
used in a previous command, this code is in italics.
SELECT ?objectNotMatchingPosConstr ?posConstr_condition
 ?posConstr_conclusion WHERE
{ ?posConstr rdf:type cstr:Prescriptive_constraint;
 cstr:condition_class ?posConstr_condition;
 cstr:conclusion_class ?posConstr_conclusion.
 FILTER (?posConstr_conclusion != owl:Nothing)
 ?objectNotMatchingPosConstr rdf:type ?posConstr_condition.
 ?objectNotMatchingPosConstr cstr:cloneWithoutType ?cloneWithoutType
 FILTER NOT EXISTS #no objects with clones satisfying the conclusion
 { ?cloneWithoutType rdf:type ?posConstr_conclusion }
}

Here is the same query in LDScript, with an embedded
query that temporarily creates the above cited partial copies “on
the fly”, thus removing the necessity to modify the KB.
SELECT ?objectNotMatchingPosConstr ?posConstr_condition
 ?posConstr_conclusion WHERE
{ ?posConstr rdf:type cstr:Prescriptive_constraint;
 cstr:condition_class ?posConstr_condition;
 cstr:conclusion_class ?posConstr_conclusion.
 FILTER (?posConstr_conclusion != owl:Nothing)
 ?objectNotMatchingPosConstr rdf:type ?posConstr_condition.

 BIND(cstr:getCloneWithoutType(?objectNotMatchingPosConstr)
 as ?cloneWithoutType) #the called functions are defined below
 BIND(cstr:copyOfKbIntoTemporaryGraphPlusTheCloneWithoutType
 (?objectNotMatchingPosConstr,?cloneWithoutType) as ?g)

 FILTER NOT EXISTS { GRAPH ?g { ?cloneWithoutType
 rdf:type ?posConstr_conclusion } }
}

FUNCTION cstr:getCloneWithoutType (?object)
{ uri(concat(str(?object),"_cloneWithoutType")) }

FUNCTION cstr:copyOfKbIntoTemporaryGraphPlusTheCloneWithoutType
 (?objectNotMatchingPosConstr, ?cloneWithoutType)
{ LET (?g = CONSTRUCT { ?cloneWithoutType ?r ?dest . ?x ?r2 ?y } WHERE
 { VALUES ?cloneWithoutType { UNDEF }
 ?objectNotMatchingPosConstr ?r ?dest . FILTER (?r != rdf:type)
 ?x ?r2 ?y . FILTER (?x != ?objectNotMatchingPosConstr)
 })
 { xt:entailment(?g) } #triggers inferences on ?g
}

The same “on the fly” cloning technique can be used for
adding cstr:id relations to named individuals. Thus, this
technique also permits the checking of constraints restricted to
named individuals without having to modify the KB.

E. Checking Individual-based Inconsistency-implying Constraints

The next query lists every object violating an individual-
based inconsistency-implying constraint.
SELECT ?objectMatchingNegConstr ?negConstr_condition WHERE
{ ?negConstr cstr:condition_class ?negConstr_condition;
 cstr:conclusion_class owl:Nothing.
 ?objectMatchingNegConstr rdf:type ?negConstr_condition.
}

F. Checking SubclassOf-analogous Constraints

The usable content-independent queries here are identical to
their counterparts in the last three subsections except for the
initialization of ?posConstr_condition and ?posConstr_conclusion
since now they are related by a
cstr:descriptive_constraint_conclusion relation or a
cstr:prescriptive_constraint_conclusion relation. E.g., here is a
query for checking subclassof-analogous positive descriptive
constraints. See the line in italics for the new initialization.

SELECT ?objectNotMatchingPosConstr ?posConstr_condition
 ?posConstr_conclusion WHERE
{ ?posConstr_condition
 cstr:descriptive_constraint_conclusion ?posConstr_conclusion.
 FILTER (?posConstr_conclusion != owl:Nothing)
 ?objectNotMatchingPosConstr rdf:type ?posConstr_condition.
 FILTER NOT EXISTS #no listing of objects satisfying the conclusion
 { ?objectNotMatchingPosConstr rdf:type ?posConstr_conclusion }
}

There are other ways to write the queries. For example:

 Instead of “FILTER (?posConstr_conclusion != owl:Nothing)”,
one may use “FILTER NOT EXISTS { ?posConstr_conclusion
cstr:prescriptiveConclusion owl:Nothing }”. The first way
has the advantage of not being dependent on the
chosen representation for constraint and hence this way
minimizes the difference between the queries. On the
other hand, with this way, owl:Nothing cannot be
replaced by equivalent class expressions (in SPARQL).

 In Subsection D, the line “?objectNotMatchingPosConstr
cstr:cloneWithoutType ?cloneWithoutType” before “FILTER
NOT EXISTS” could be replaced by the line
“BIND(uri(concat(str(?objectNotMatchingPosConstr),
"_cloneWithoutType")) as ?cloneWithoutType)” within
the “FILTER NOT EXISTS” block.

G. Checking SubclassOf-based Constraints

The previous queries do not rely on inference engines to
take into account the special meaning of CSTR classes. Hence,
as explained in Section III.C.1, these queries cannot be
adapted for checking subclassOf-based constraints representing
positive descriptive constraints. For prescriptive constraints, the
queries are the same as their counterparts in the last four
subsections except for the initialization of ?posConstr_condition
and ?posConstr_conclusion. E.g., for a positive rescriptive
constraint, this initialization now is:
?posConstr_condition
 rdfs:subClassOf cstr:SubclassOf-based_prescriptive_constraint_condition,
 ?posConstr_conclusion.

Except as a module for calculating the completeness degree
of a KB, individual-based inconsistency-implying constraints are
useless if, when building the KB, its consistency is already
checked by an inference engine that delivers an error message
when detecting that an object is instance of a subclass of
owl:Nothing. By default, some Description Logic inference
engines such as Corese [11] do not deliver error messages or
warning messages when detecting such objects. Having to make
inferences on instances of a subclass of owl:Nothing also makes
Corese behaves abnormally, e.g., not listing such instances as
results of the previous described queries when these instances
violate positive constraints.

H. Checking Binary Relations Instead of Individuals

To list binary relations violating constraints – instead of
individuals that have some relations violating constraints – it is
sufficient to replace rdf:type by the “logical implication relation
between statements” in the previous content-independent
queries that check positive constraints. For referring to such
relations, Tim Berners-Lee uses the type name log:implies [13]
in his Notation3 KRL. However, for this replacement to work,
the used SPARQL engine must exploit an inference engine that
can deduce the existence of such a relation when it exists

between the matched statements. Description Logic inference
engines generally do not do so.

Like queries on individuals, queries on relations can use
additional filters. E.g., for the last query of Subsection G to
operate only on negative facts, one may add at the end of its body:
?objectMatchingNegConstr rdf:type owl:NegativePropertyAssertion.

I. Evaluating the Completeness of a KB

A simple way to define or calculate a completeness degree
for a KB is to divide “the number of relations (in the KB) that
do not violate prescriptive constraints” by “the total number of
relations”. Another completeness degree may be obtained by
dividing “the number of individuals that do not violate
prescriptive constraints” by “the total number of individuals”.
The next query implements a variant of this last definition:
instead of individuals, it exploits “objects that are source of at
least one relation to another object”. Furthermore, this query
assumes that the constraints are represented as individual-based
constraints. This query can be adapted to implement the above
first definition via the method given in Subsection H. Similarly,
descriptive constraints could also be taken into account.
SELECT (((?nbObjs - ?nbAgainstPosCs - ?nbMatchingNegCs) / ?nbObjs)
 AS ?completeness)
{ { SELECT (COUNT(DISTINCT ?o) AS ?nbObjs)
 WHERE { ?o ?r ?o2 } } #any object source of a relation to another object
 # For considering only objects that have a type:
 # { {?o rdf:type ?t1} UNION {?o cstr:type ?t2}
 }
 { SELECT (COUNT(DISTINCT ?objectNotMatchingPosConstr)
 AS ?nbAgainstPosCs) WHERE
 { ... #the body of a query checking an individual-based positive
 # prescriptive constraint (see Section IV.D) must be copied here

 #if ?objectNotMatchingPosConstr also violates a negative constraint
 # it must not be counted here (otherwise it would be counted twice),
 FILTER NOT EXISTS # hence this code here
 { ?negConstr cstr:condition_class ?negConstr_condition;
 cstr:conclusion_class owl:Nothing.
 ?objectNotMatchingPosConstr rdf:type ?negConstr_condition
 }
 }
 }
 { SELECT (COUNT(DISTINCT ?objectMatchingNegConstr)
 AS ?nbMatchingNegCs) WHERE
 { ?negConstr cstr:condition_class ?negConstr_condition;
 cstr:conclusion_class owl:Nothing.
 ?objectMatchingNegConstr rdf:type ?negConstr_condition
 }
 }
}

V. APPLICATIONS, EVALUATION AND COMPARISONS

A. Examples of Applications or Use Cases

For designing subtype hierarchies, various research works
such as [14] advise the use of tree structures. However, [4] shows
that “systematically using subtype partitions (except for non-
natural types)” instead of tree structures has the same benefits
with less disadvantages. It also shows that following this ontology
design pattern (ODP) means using representations equivalent to
relations of type sub:nonNaturalOrPartitionSubclass (or a subtype
of it; the prefix “sub:” is an abbreviation for the namespace
http://www.webkb.org/kb/it/SUB). Using only OWL2, [4] fully
defines this type as well as the other types necessary for stating

a descriptive constraint for checking that the above cited ODP is
systematically followed. Here is this constraint; it states that
“if a class C1 has a subclass relation, all subclass relations from
C1 must be of type sub:nonNaturalOrPartitionSubclass”:
[] rdf:type cstr:Descriptive_constraint;
 cstr:condition_class # if C is a class that has a subclass ...
 [rdf:type owl:Class; owl:equivalentClass
 [rdf:type owl:Restriction; #"any class that has a subclass"
 owl:onProperty sub:subclass; owl:someValuesFrom rdfs:Class]];
 cstr:conclusion_class # ... then C has no subclass relation that is
 # not of type nonNaturalOrPartitionSubclass
 sub:ClassWithNoRel_subclassButNot-nonNaturalOrPartitionSubclass.

This constraint can also be represented in inconsistency-
implying form, again only using types defined in OWL2:
sub:ClassWithSomeRel_subclassButNot-nonNaturalOrPartitionSubclass
 rdfs:subClassOf owl:Nothing.

Reference [4] then generalizes this constraint (and the types
it exploits) for checking all types of transitive relationships.
More precisely, it proposes a SPARQL INSERT request that
generates a descriptive constraint for each transitive relation type
having a sub:nonNaturalOrPartitionTrRelType relation indicating
which relation types must actually be used. E.g., this may be
used to express that, instead of relations of type sub:subclass or
sub:part, relations of type sub:nonNaturalOrPartitionSubclass or
sub:partitionPart must respectively be used.

Similarly, [4] also proposes a SPARQL command which, for
each instance of the type sub:MandatoryOutRelationType,
generates prescriptive constraints for checking the systematic
use of certain relation types. E.g., based on the following
specification in the KB, the command generates a constraint
indicating that every dividable object – i.e. every instance of
sub:DividableThing – must be the source of a sub:part relation
except for each object marked as an instance of sub:PartDestLeaf.
sub:part rdf:type sub:MandatoryOutRelationType;
 sub:leafObjectType sub:PartDestLeaf;
 rdfs:domain sub:DividableThing.

B. Evaluation and Comparisons

The originality of the approach proposed in this article is
that it enables i) the representation of constraints independently
of their exploitation (this one is represented within content-
independent queries), ii) the representation of both descriptive
and prescriptive constraints with any KRL the expressiveness of
which is at least equal to RDFS, and hence iii) the exploitation
of most inference engines, especially via SPARQL queries.

Since the proposed approach relies on other methods and
tools chosen by each user of the approach, it inherits from their
theoretical or practical improvements. It would thus not be
relevant to focus on theoretical aspects of a particular method or
tool in this article. For a general comparison, [12] and [15] list
theoretical points relevant to the proposed approach. Regarding
the use of SPARQL to check constraints, [10] shows that
SPARQL can be used for both expressing and validating
integrity constraints based on some partial forms of the Unique
Name Assumption and Closed World Assumption. It also shows
that this validation is sound and complete when the
expressiveness used for the constraints and the rest of the KB
are respectively “SROIQ and SRI” or “SROI and SROIQ”. In
the proposed approach, queries are used only for validating
constraints, not expressing them, but this is only a generalization
of the approach of [10] which does not change the associated

theoretical results. In [10], the used partial forms of the Unique
Name Assumption and Closed World Assumption are specified
in SPARQL via its operators EXISTS and NOT EXISTS plus the
use of relations of type owl:sameAs or owl:differentFrom. These
forms can similarly be expressed via the commands seen in
Section IV and the use of relations of type owl:sameAs or
owl:differentFrom in the constraints.

The proposed approach was validated experimentally by
testing the degree to which a few constraints – including all
those introduced in this article – were followed in i) the “family
relationship” focused sample ontology given by the OWL2
Primer W3C document [16] and ii) a few ontologies from the
Linked Data repository LOV. The validation came from finding
the right constraint violations and completeness degrees via the
proposed queries and, when necessary, KB pre-treatments.

Besides testing these constraints, queries and requests,
another goal of this validation phase was to represent ontology
design patterns or best practices (ODPs) as constraints. ODPs,
e.g. those recommended by the W3C [17] or those of the “ODP
catalog” [18], are i) informal descriptions about how certain
things should be represented, and/or ii) collections of types that
should be reused whenever possible, or iii) lexical or syntactic
rules to follow when importing or exporting formal or informal
knowledge. Descriptive or prescriptive constraints are ways to
represent “must be reused whenever possible” and hence ways
to formalize and implement ODPs related to the second point.
However, during the validation phase, no ODP satisfying the two
following criteria was found: i) the ODP could be implemented
via a constraint, and ii) the ODP was likely not to lead to a
completeness degree close to 0% for a randomly chosen
ontology. More generally, no widely followed ODP was found.

Querying a KB for detecting anti-patterns in it is analogous
to querying it for detecting violations of ODPs in it. However,
like the SPARQL based works of [19], many works on anti-
pattern detection use queries essentially as a way not to use an
expressive inference engine for detecting certain problems.
Instead, the proposed approach exploits inference engines. With
a sufficiently powerful KRL, any anti-pattern can be expressed
as a negative constraint in inconsistency-implying form.

The introduction of this article summarized the strong
distinction that exists between constraint-based completeness
and represented-world-based completeness, and hence the reason
why it would not be relevant to further compare the proposed
approach with those of tools such as SWIQA and Sieve.

Since the proposed approach is based on a particular use of
RDFS it should be compared to SHACL and SPIN.

 SHACL (SHApes Constraint Language) is a language
ontology (such as OWL2) proposed by the W3C to
enable the definition of constraints in RDF. SHACL
does not reuse OWL2 to define constraints: it introduces
new terms. It therefore does not support the reuse – for
checking constraints – of inference engines that take into
account the special meaning of OWL2 terms. Thus,
inference engines dedicated to SHACL have to be used
and a new KRL (SHACL) has to be learned. In addition,
SHACL does not distinguish between descriptive
constraints and prescriptive ones, and thus handles
prescriptive constraints only very partially. E.g.,
handling the condition and conclusion of a prescriptive
constraint generally require different entailment regimes

(as explained in Section II.B) but with SHACL, only one
regime can be specified for both the condition and
conclusion. Furthermore, neither LDScript-like extensions
nor SPARQL update requests can be used in SHACL.
Thus, pre-treatments of the KB – including the one
proposed in Section IV.B for prescriptive constraints –
have to be specified via a KRL other than SHACL.

 SPIN (SParql Inferencing Notation) is a W3C language
ontology that enables the storage of SPARQL queries in
RDF and, via special relations such as spin:rule and
spin:constraint, the (possibly recursive) calls of SPARQL
queries or Javascript functions for adding nodes or
values to the KB. Thus, SPIN enables procedural
attachments in a KB and thereby also supports the
extension of SPARQL. However, the use of SPIN
requires a SPIN aware engine. The approach proposed in
this article is KRL independent (hence not based on
procedural attachments). SPIN could be used for storing
the SPARQL commands proposed in Section IV and
Section V.A, thus not only procedurally defining the
types proposed for constraints but also providing a way
to trigger such commands automatically. SPIN can also
be used for checking constraints in other ways that are
less modular (i.e., not using content-independent queries)
or less logic-based (i.e., more procedural), hence in ways
that offer less possibilities for knowledge comparison,
translation, inferencing, reuse or exploitation. The
widespread use of such other ways may be a reason why
SHACL has been designed. This article provides a less
restricted alternative. The author also works on a
knowledge translation tool exploiting ontology based
specifications of conversions, including for constraints.

Some transformation languages or systems exploit KRs. Such
systems are presented in [20] and [21]. Although few of them
explicitly have a function that detects KR patterns without also
transforming the matched KRs (PatOMat [20] is an exception),
these languages or systems could easily be adapted to have such a
function and hence be used for handling prescriptive constraints.
However, all such systems appear to use rule-based languages
with more expressiveness than what relations-between-classes
based constraints allow. Typically, these languages allow the
direct and explicit use of variables for relating objects shared by
both the condition and conclusion of a rule. Indeed, using such
languages can simplify the writing of prescriptive constraints.
However, regarding what can be expressed and checked via
constraints, this article shows that i) much can be achieved
simply using relations-between-classes based constraints and
SPARQL1.1, and ii) the power of the proposed approach then
relies on the power of the inference engine used for object
matching, rather than on the used language.

Some transformation systems, like PatOMat [20], issue
SPARQL queries for detecting patterns, based on non-SPARQL
specifications for patterns and their transformations. Some
other transformation systems directly propose an extension of
SPARQL such as STTL [21] to write specifications for patterns
and their transformations. For instance, as shown in [22], STTL
can be combined with LDScript [11] to specify STTL queries
(compiled into SPARQL queries) for detecting patterns and then
transforming the results. However, [22] does not discuss the
exploitation of object matching capabilities of inference engines
and it does not distinguish between prescriptive constraints and
non-prescriptive ones. To sum up, the SPARQL commands

introduced in this article could also be reused in these
transformation systems, although in an adapted form.

VI. CONCLUSION

This goal of this article – supporting constraint checking via
few predefined content-independent queries, in a KRL
independent and tool independent way – is original, useful for
modularity as well as knowledge and tool reuse purposes, and
applicable to various research fields. E.g., this support can help
checking the following of ontology design patterns (ODPs), KB
design libraries (e.g., the KADS library) or top-level ontologies
(e.g., DOLCE) in order to validate the quality of a KB or, during
its design, help elicit knowledge from experts.

The sections II and III answer the first two research questions:
what kinds of constraints need to be considered for evaluating
constraint-based completeness, and how to represent constraints
in any KRL that has an expressiveness at least equal to RDF or
RDFS? Section II and III do so via complementary means.

 First, by defining the original notion of “prescriptive
constraint” for checking that some objects are explicitly
given instead of possibly inferred as in descriptive
constraints (the two constraint kinds thus form a partition).

 Second, by providing i) a general method to check
prescriptive constraints, ii) types for distinguishing
different kinds of constraints, and iii) three alternative
structures for representing them via class expressions.
The use of such expressions is both a way to permit the
reuse of most KRLs and a way to reuse inference
engines by exploiting calculated instanceOf relations

 Third, by showing that both descriptive constraints and
prescriptive constraints are i) necessary for evaluating
constraint-based completeness via content-independent
queries, and ii) in a sense, sufficient too for two reasons.
First, descriptive constraints and prescriptive constraints
form a (complete) partition. Second, more specialized
distinctions, if needed, can still be expressed by
specializing the given types and using further methods to
take into account these more specialized types.

Section IV answers the third research question: how to
implement the general approach with query languages such as
SPARQL or slight extensions of it? Section V.A shows how
some ODPs can be represented as descriptive constraints
exploitable by content-independent queries. Both sections
highlight the use of KB pre-treatments to counter-balance certain
lack of expressiveness of some languages, e.g. for implementing
inference bypassing methods or generating constraints.

Section V.B evaluates the proposed techniques and compares
the approach to other ones. A complement to this work will be to
i) represent ODPs in several research areas (knowledge sharing,
cooperation, security, etc.), using only relations between classes
whenever possible, ii) organize them by relations of
specialization or other kinds, and iii) test these ODPs via
LDScript or more expressive languages.

ACKNOWLEDGMENT

Many thanks to Dr Olivier Corby (member of the Wimmics
and SPARKS teams of, respectively, the INRIA and I3S CNRS
laboratories at the University Côte d'Azur, France) for his

questions and remarks on the approaches presented in this
article and his help during the implementation of these
approaches with SPARQL and LDScript via the Corese tool.

REFERENCES

[1] J. sowa, “conceptual graphs summary. conceptual structures: current
research and practice,” Ellis Horwood, pp. 3–51, 1992.

[2] A. Zaveri, A. A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S.
Auer, “Quality assessment for linked data: a survey,” Semantic Web, vol.
7(1), pp. 63–93, 2016.

[3] L. Galárraga, K. Hose, and S. Razniewski, “Enabling completeness-aware
querying in SPARQL,” WebDB 2017, pp. 19–22, USA, 2017.

[4] P. Martin, “Relations-between-classes based constraints and constraint-
based ontology-completeness,” Companion Web site for this article,
http://www.webkb.org/kb/it/o_knowledge/d_constraints.html, 2018.

[5] M. Genesereth, and R. Fikes , “Knowledge interchange format, version
3.0, reference manual,” Report Logic 92-1, Logic Group, Stanford Uni.
http://www.ksl.stanford.edu/pub/KSL_Reports/KSL-92-86.ps.gz, 1992.

[6] M. Chein, and M. Mugnier, “The BG family: facts, rules and
constraints,” Graph-based Knowledge Representation - Computational
Foundations of Conceptual Graphs. Chapter 11 (pp. 311–334), Springer-
Verlag London, 428p., 2008.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“EQL-lite: effective first-order query processing in description logics,”
IJCAI 2007, pp. 274–279, India.

[8] U. Assmann, and G. Wagner, “Ontologies, metamodels and model-
driven paradigm,” Ontologies for Software Engineering and Technology,
Springer-Verlag, Berlin, chapter 9, 2006.

[9] W3C Recommendation 2013, “SPARQL 1.1 entailment regimes,”
http://www.w3.org/TR/sparql11-entailment/

[10] J. Tao, E. Sirin, J. Bao, and D. McGuinness, “Integrity constraints in
OWL,” AAAI 2010, pp. 1443–1448, USA.

[11] O Corby, C. Faron-Zucker, and F. Gandon, “LDScript: a linked data
script language,” ISWC 2017, Austria.

[12] J. Baget, A. Gutierrez, M. Leclère, M. Mugnier, S. Rocher, and C.
Sipieter, “Datalog+, RuleML and OWL 2: formats and translations for
existential rules,” Challenge+DC@RuleML 2015, 9th International Web
Rule Symposium (RuleML), Germany.

[13] T. Berners-lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler,
“N3logic: a logical framework for the world wide web,” Journal Theory
and Practice of Logic Programming, vol. 8(3), pp. 249–269, Cambridge
University Press New York, USA, 2008.

[14] A. Rector, S. Brandt, N. Drummond, M. Horridge, C. Pulestin, and R.
Stevens, “Engineering use cases for modular development of ontologies
in OWL,” Applied Ontology, vol. 7(2), pp. 113–132, IOS Press, 2012.

[15] R. Swan, “Querying existential rule knowledge bases: decidability and
complexity,” PhD thesis (159p), University of Montpellier, 2016.

[16] W3C Recommendation 2012, “OWL 2 web ontology language primer
(second edition),” http://www.w3.org/TR/owl2-primer/

[17] W3C Recommendation 2006, “Semantic web best practices and
deployment working group,” https://www.w3.org/2001/sw/BestPractices/

[18] ODP 2018, “Ontology design patterns . org (ODP),”
http://ontologydesignpatterns.org/wiki/Main_Page

[19] C. Roussey, and A. Zamazal, “Antipattern detection: how to debug an
ontology without a reasoner,” WoDOOM 2013, International Workshop
on Debugging Ontologies and Ontology Mappings, pp. 45–56, France.

[20] O. Zamazal, and V. Svátek, “PatOMat – versatile framework for pattern-
based ontology transformation,” Computing and Informatics, vol. 34(2),
pp. 305–336, 2015.

[21] O. Corby, and C. Faron-Zucker, “STTL: a SPARQL-based
transformation language for RDF,” WEBIST 2015, 11th International
Conference on Web Information Systems and Technologies, Portugal.

[22] O. Corby, C. Faron-Zucker, and R. Gazzotti, “Validating ontologies
against OWL 2 profiles with the SPARQL template transformation
language,” RR 2016, 10th International Conference on Web Reasoning
and Rule Systems, LNCS, vol. 9898, pp. 39–45, Springer, UK.

