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2 Dipartimento di Informatica, Università di Verona, Italy

Abstract. Array access out of bounds is a typical programming er-
ror. From the ’70s, static analysis has been used to identify where such
errors actually occur at runtime, through abstract interpretation into
linear constraints. However, feasibility and scalability to modern object-
oriented code has not been established yet. This article builds on previ-
ous work on linear constraints and shows that the result does not scale,
when polyhedra implement the linear constraints, while the more ab-
stract zones scale to the analysis of medium-size applications. Moreover,
this article formalises the inclusion of symbolic expressions in the con-
straints and shows that this improves its precision. Expressions are auto-
matically selected on-demand. The resulting analysis applies to code with
dynamic memory allocation and arrays held in expressions. It is sound,
also in the presence of arbitrary side-effects. It is fully defined in the
abstract interpretation framework and does not use any code instrumen-
tation. Its proof of correctness, its implementation inside the commercial
Julia analyzer and experiments on third-party code complete the work.

1 Introduction

Arrays are extensively used in computer programs since they are a compact
and efficient way of storing and accessing vectors of values. Array elements are
indexed by their integer offset, which leads to a runtime error if the index is neg-
ative or beyond the end of the array. In C, this error is silent, with unpredictable
results. The Java runtime, instead, mitigates the problem since it immediately
recognizes the error and throws an exception. In both cases, a definite guarantee,
at compilation time, that array accesses will never go wrong, for all possible ex-
ecutions, is desirable and cannot be achieved with testing, that covers only some
execution paths. Since the values of array indices are not computable, compil-
ers cannot help, in general. However, static analyses that find such errors, and
report some false alarms, exist and are an invaluable support for programmers.

Abstract interpretation has been applied to array bounds inference, from its
early days [8, 5], by abstracting states into linear constraints on the possible
values of local variables, typically polyhedra [4, 3]. Such inferred constraints let
then one check if indices are inside their bounds. For instance, in the code:

1 public DiagonalMatrix inverse(double[] diagonal) {
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2 double[] newDiagonal = new double[diagonal.length]; // local var.

3 for (int i = 0; i < diagonal.length; i++)

4 newDiagonal[i] = 1 / diagonal[i]; ... }

the analysis in [8, 5], at line 4, infers 0 ď i ă diagonal “ newDiagonal ; i.e., index
i is non-negative and is smaller than the length of the array diagonal, which
is equal to that of newDiagonal. This is enough to prove that both accesses
newDiagonal[i] and diagonal[i] occur inside their bounds, always.

Programming languages have largely evolved since the ’70s and two problems
affect the application of this technique to modern software. First, code is very
large nowadays, also because object-oriented software uses large libraries that
must be included in the analysis. The actual scalability of the technique, hence,
remains unproved. Second, the limitation to constraints on local variables (such
as i, diagonal and newDiagonal above) is too strict. Current programming
languages allow arrays to be stored in expressions built from dynamically heap-
allocated object fields and other arrays, which are not local variables. For in-
stance, the previous example is actually a simplification of the following real code
from class util.linalg.DiagonalMatrix of a program called Abagail (Sec. 7):

1 private double[] diagonal; // object field, not local variable

2 public DiagonalMatrix inverse() {

3 double[] newDiagonal = new double[this.diagonal.length];

4 for (int i = 0; i < this.diagonal.length; i++)

5 newDiagonal[i] = 1 / this.diagonal[i]; ... }

The analysis in [8, 5] infers 0 ď i , 0 ď newDiagonal at line 5 above, since
this.diagonal is not a local variable and consequently cannot be used in
the constraint. The latter does not entail that the two array accesses are safe
now, resulting in two false alarms. Clearly, one should allow expressions such as
this.diagonal in the constraint and infer 0 ď i ă this.diagonal “ newDiagonal .
But this is challeging since there are (infinitely) many expressions (potentially
affecting scalability) and since expressions might change their value by side-effect
(potentially affecting soundness). In comparison, at a given program point, only
finitely many local variables are in scope, whose value can only be changed by
syntactically explicit assignment to the affected variable. Hence, this challenge
is both technical (the implementation must scale) and theoretical (the formal
proof of correctness must consider all possible side-effects).

One should not think that it is enough to include object fields in the con-
straints, to improve the expressivity of the analysis. Namely, fields are just exam-
ples of expressions. In real code, it is useful to consider also other expressions. For
instance, the following code, from class util.linalg.LowerTriangularMatrix
of Abagail, performs a typical nested loop over a bidimensional array:

1 UpperTriangularMatrix result = new UpperTriangularMatrix(...);

2 for (int i = 0; i < this.data.length; i++)

3 for (int j = 0; j < this.data[i].length; j++) {

4 // any extra code could occur here

5 result.set(j, i, this.data[i][j]); }
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To prove array accesses safe at line 5 above, one should infer that 0 ď i ă
this.data, 0 ď j ă this.dataris. The analysis in [8, 5] cannot do it, since it con-
siders local variables and abstracts away fields (this.data) and array elements
(this.data[i]). Moreover, safeness of these accesses can be jeopardised by ex-
tra code at line 4 modifying this.data or this.data[i]: side-effects can affect
soundness. That does not happen for arrays held in local variables, as in [8, 5].

For an example of approximation of even more complex expressions, consider
the anonymous inner class of java.net.sf.colossus.tools.ShowBuilderHex-
Map from program Colossus (Sec. 7). It iterates over a bidimensional array:

1 clearStartListAction = new AbstractAction(...) {

2 public void actionPerformed(ActionEvent e) {

3 for (int i = 0; i < h.length; i++)

4 for (int j = 0; j < h[i].length; j++)

5 if ((h[i][j] != null) && (h[i][j].isSelected())) {

6 h[i][j].unselect();

7 h[i][j].repaint(); }}};

Here, h is a field of the outer object i.e., in Java, shorthand for this.this$0.h
(a field of field this$0, the synthetic reference to the outer object); h[i] stands
for this.this$0.h[i] (an element of an array in a field of a field). In order to
prove the array accesses at lines 4, 5, 6 and 7 safe, the analyser should prove
that the constraint 0 ď i ă this.this$0 .h, 0 ď j ă this.this$0 .hris holds at those
lines. The analysis in [8, 5] cannot do it, since it abstracts away the expressions
this.this$0.h and this.this$0.h[i]. This results in false alarms. Note that,
to prove the access at line 7 safe, an analyser must prove that isSelected()

and unselect() do not affect h nor h[i]. That is, it must consider side-effects.
The contribution of this article is the extension of [8, 5] with specific program

expressions, in order to improve its precision. It starts from the formalisation
of [8, 5] for object-oriented languages with dynamic heap allocation, known as
path-length analysis [19]. It shows that its extension with expressions, using
zones [10] rather than polyhedra [4, 3], scales to real code and is more precise
than [8, 5]. This work is bundled with a formal proof of correctness inside the ab-
stract interpretation framework. This analysis, as that in [19], is interprocedural,
context and flow-sensitive and deals with arbitrary recursion.

This article is organised as follows. Sec. 2 reports related work. Sec. 3 and 4
recall semantics and path-length from [19] and extend it to arrays. Sec. 5 intro-
duces the approximation of expressions. Sec. 6 defines the new static analysis,
with side-effect information for being sound. Sec. 7 describes its implementation
inside the Julia analyser and experiments of analysis of open-source Java appli-
cations. The latter and the results of analysis can be found in [14]. Analyses can
be rerun online at https://portal.juliasoft.com (instructions in [14]).

2 Related Work and Other Static Analysers

Astrée [6] is a state of the art analyser that infers linear constraints. For scal-
ability, it uses octagons [12] rather than polyhedra [7]. It targets embedded C
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software, with clear limitations [6]: no dynamic memory allocation, no unbound
recursion, no conflicting side-effects and no use of libraries. Fields and arrays are
dealt under the assumption that there is no dynamic memory allocation, which
limits the analysis to embedded C software [11]. These assumptions simplify the
analysis since, in particular, no dynamic memory allocation means that there is
a finite number of fields or array elements, hence they can be statically grouped
and mapped into linear variables; and the absence of conflicting side-effects sim-
plifies the generation of the constraints between such variables. However, such
assumptions conflict with the reality of Java code. Even a minimal Java program
uses dynamic memory allocation and a very large portion of the standard Java
library, which is much more pervasive that the small standard C library: for
instance, a simple print statement reaches library code for formatting and local-
ization and the collection library contains hundreds of intensively used classes.
The recent 2018 competition on software verification showed that a few tools
can already perform bound verification for arrays in C, with good results3.

A type system has been recently defined for array bounds checking in Java [15].
It infers size constraints but uses code annotation. Thus, it is not fully automatic.

Facebook has built the buffer overflow analyser Inferbo4 on top of Infer5.
Inferbo uses symbolic intervals for approximating indices of arrays held in local
variables. We ran Inferbo on Java code but the results were non-understandable.
After personal communication with the Infer team, we have been confirmed that
Infer does work also on Java code, but Inferbo is currently limited to C only.

We also ran FindBugs6 at its maximal analysis effort. It spots only very
simple array access bounds violations. For instance it warns at the second state-
ment of int t[] = new int[5]; t[9] = 3. However, in the programs analysed
in Sec. 7, it does not issue any single warning about array bounds violations,
missing all the true alarms that our analysis finds.

Previous work [19] defined a path-length analysis for Java, by using linear
constraints over local variables only. It extends [8, 5] to deal with dynamically
heap-allocated data structures and arbitrary side-effects. It uses a bottom-up,
denotational fixpoint engine, with no limits on recursion. It was meant to support
a termination prover. This article leverages its implementation inside the Julia
analyser for Java bytecode [17], by adding constraints on expressions.

This work has been inspired by [1, 2], which, however, has the completely
different goal of termination analysis. It identifies fields that are locally constant
inside a loop and relevant for the analysis, by using heuristics, then performs
a polyvariant code instrumentation to translate such fields into ghost variables.
That analysis is limited to fields and there is no formalisation of path-length
with arrays. In this article, instead, path-length with arrays is formalised, ap-
plied to array bounds checking with an evaluation of its scalability. Our analysis

3 https://sv-comp.sosy-lab.org/2018/results/results-verified/META MemSafety.table.
See, in particular, the results for tools Map2Check, Symbiotic and Ultimate

4 https://research.fb.com/inferbo-infer-based-buffer-overrun-analyzer
5 http://fbinfer.com
6 http://findbugs.sourceforge.net
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identifies, on-demand, expressions that need explicit approximation and can be
much more complex than fields e.g., array elements of variables or fields, or fields
of array elements; moreover, it does not need any code instrumentation, since
expressions only exist in the abstract domain, where linear variables symboli-
cally stand for expressions. As a consequence, it has a formal correctness proof,
completely inside the abstract interpretation framework. As far as we can infer
from the papers, the analysis in [1, 2] has no formal correctness proof.

3 Concrete Domain

We extend [19] with arrays. Namely, an array arr of type t and length n P N is
a mapping from r0, . . . , n ´ 1s to values of type t; it has type arr .t and length
arr .length. A memory maps locations to reference values i.e., objects or arrays.
The set of locations is L, the set of arrays is A. A multidimensional array is just
an array of locations, bound to arrays, exactly as in Java. The set of classes of
our language is K and the set of types is T “ K Y tintu Y T r s. The domain
of a function f is dompfq, its codomain or range is rngpfq. By fpxq Ó we mean
that f is defined at x; by fpxq Ò, that it is undefined at x. The composition of
functions f and g is f ˝ g “ λx.gpfpxqq, undefined when fpxqÒ or gpfpxqqÒ.

A state is a triple xl || s ||µy that contains the values of the local variables l,
those of the operand stack elements s, and a memory µ. Local variables and
stack elements are bound to values compatible with their static type. Dangling
pointers are not allowed. The size of l is denoted as #l, that of s as #s. The
elements of l and s are indexed as lk and sk, where s0 is the base of the stack
and s#s´1 is its top. The set of all states is Σ, while Σi,j is the set of states
with exactly i local variables and j stack elements. The concrete domain is
x℘pΣq,Ďy i.e., the powerset of states ordered by set inclusion. Denotations are
the functional semantics of a single bytecode instruction or of a block of code.

Definition 1. A denotation is a partial function Σ Ñ Σ from a pre-state to a
post-state. The set of denotations is ∆, while ∆li,siÑlo,so , stands for Σli,si Ñ

Σlo,so . Each instruction ins, occurring at a program point p, has semantics insp P
∆li,siÑlo,so where li, si, lo, so are the number of local variables and stack elements
in scope at p and at the subsequent program point, respectively. Fig. 1 shows those
dealing with arrays and fields. Others can be found in [19].

Fig. 1 assumes runtime types correct. For instance, arrayloadp t finds on the
stack a value ` which is either null or a location bound to an array of type
t1 ď t. Such static constraints must hold in legal Java bytecode [9], hence are not
checked in Fig. 1. Others are dynamic and checked in Fig. 1: for instance, index
v must be inside the array bounds (0 ď v ă µp`q.length). Fig. 1 shows explicit
types for instructions, when relevant in this article, such as t in arrayloadp t.
They are implicit in real bytecode, for compactness, but can be statically in-
ferred [9]. Fig. 1 assumes that runtime violations of bytecode preconditions stop
the Java Virtual Machine, instead of throwing an exception. Exceptions can be
accomodated in this fragment (and are included in our implementation), at the
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storep k “ λxl || v :: s ||µy.xlrk ÞÑ vs || s ||µy

incp k c “ λxl || s ||µy.xlrk ÞÑ lk ` cs || s ||µy

newarrayp t n “ λxl || vn :: ¨ ¨ ¨ :: v1 :: s ||µy.xl || ` :: s ||µr` ÞÑ arr , . . .sy if 0ďv1, . . . , vn

where ` P L is fresh and arr is an n-dimensional array of type t

and lengths v1, . . . , vn, initialised to its default value,

with subarrays, if any, bound in the . . . part to fresh locations

arrayloadp t “ λxl || v :: ` :: s ||µy.xl ||µp`qpvq :: s ||µy if ` ­“null, 0ďvăµp`q.length

arraystorep t “ λxl || v1 :: v2 :: ` :: s ||µy.xl || s ||µr` ÞÑ µp`qrv2 ÞÑ v1ssy

if ` ­“ null and 0 ď v2 ă µp`q.length

arraylengthp t “ λxl || ` :: s ||µy.xl ||µp`q.length :: s ||µy if ` ­“ null

getfieldp f “ λxl || ` :: s ||µy.xl ||µp`qpfq :: s ||µy if ` ­“ null

putfieldp f “ λxl || v :: ` :: s ||µy.xl || s ||µr` ÞÑ µp`qrf ÞÑ vssy if ` ­“ null

pcallp κ.mqpδq “ see [19]

Fig. 1. The concrete semantics of a fragment of Java bytecode, with arrays and fields.
The semantics of an instruction is implicitly undefined if its preconditions do not hold.

price of extra complexity. This is explained and formalised in [13]. Instruction
newarray allocates an array of n dimensions and leaves its pointer ` on top of
the stack. When n ą 1, a multidimensional array is allocated. In that case, the
array at ` is the spine of the array, while its elements are arrays themselves,
held at futher newly allocated locations. Instructions arrayload, arraystore and
arraylength operate on the array µp`q, where ` is provided on the stack. The first
two check if the index is inside its bounds. getfield and putfield are similar, but
µp`q is an object. Objects are represented as functions from field names to field
values. call plugs the denotation δ of the callee(s) at the calling point.

4 Path-Length Abstraction with Arrays

Path-length [19] is a property of local and stack variables, namely, the length of
the maximal chain of pointers from the variable. It leads to an abstract interpre-
tation of Java bytecode, reported below, after extending path-length to arrays:
their path-length is their length. This is consistent with the fact that the length
of the arrays is relevant for checking array bounds and for proving the termi-
nation of loops over arrays. Hence the elements of an array are irrelevant w.r.t.
path-length and only the first dimension of a multidimensional array matters.

Definition 2. Let µ be a memory. For every j ě 0, let 1) lenj
pnull, µq “

0, 2) lenj
pi, µq “ i if i P N, 3) lenj

p`, µq “ µp`q.length if ` P dompµq and
µp`q P A, 4) len0

p`, µq “ 0 if ` P dompµq and µp`q R A, 5) lenj`1
p`, µq “

1 ` max
 

lenj
p`1, µq | `1 P rngpµp`qq X L

(

if ` P dompµq and µp`q R A, with the
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assumption that the maximum of an empty set is 0. The path-length of a value
v in µ is lenpv, µq “ limjÑ8 lenj

pv, µq.

In the last case of the definition of lenj , the intersection with L selects only
the non-primitive fields of object µp`q. If i P Z then lenpi, µq “ lenj

pi, µq “ i
for every j ě 0 and memory µ. Similarly, lenpnull, µq “ lenj

pnull, µq “ 0.
Moreover, if location ` is bound to a cyclical data-structure, then lenp`, µq “ 8.

A state can be mapped into a path-length assignment i.e., into a function
specifying the path-length of its variables. This comes in two versions: in the

pre-state version |len, the state is considered as the pre-state of a denotation. In

the post-state version xlen, it is considered as the post-state of a denotation.

Definition 3. Let xl || s ||µy P Σ#l,#s. Its pre-state path-length assignment is
|lenpxl || s ||µyq “ rqlk ÞÑ lenplk, µq | 0 ď k ă #ls Y rqsk ÞÑ lenpsk, µq | 0 ď k ă #ss.

Its post-state path-length assignment is xlenpxl || s ||µyq “ rplk ÞÑ lenplk, µq | 0 ď
k ă #ls Y rpsk ÞÑ lenpsk, µq | 0 ď k ă #ss.

Definition 4. Let li, si, lo, so P N. The path-length constraints PLli,siÑlo,so are

all finite sets of integer linear constraints over variables tqlk | 0 ď k ă liu Y tqs
k |

0 ď k ă siu Y tpl
k | 0 ď k ă lou Y tps

k | 0 ď k ă sou with the ď operator.

One can also use constraints such as x “ y, standing for both x ď y and y ď x.
A path-length assignment fixes the values of the variables. When those values

satisfy a path-length constraint, they are a model of the constraint.

Definition 5. Let pl P PLli,siÑlo,so and ρ be an assignment from a superset of
the variables of pl into Z Y t8u. Then ρ is a model of pl , written as ρ |ù pl,
when plρ holds i.e., when, by substituting, in pl , the variables with their values
provided in ρ, one gets a tautological set of ground constraints.

The concretisation of a path-length constraint is the set of denotations that
induce pre- and post-state assignments that form a model of the constraint.

Definition 6. Let pl P PLli,siÑlo,so . Its concretisation γpplq is
 

δ P ∆li,siÑlo,so |

for all σ P Σli,si such that δpσqÓ we have
`

|lenpσq Y xlenpδpσqq
˘

|ù pl
(

.

In [19] it is proved that γ is the concretisation map of an abstract interpre-
tation [5] and sound approximations are provided for some instructions such
as const, dup, new, load, store, add, getfield, putfield, ifeq and ifne, as well as
for sequential and disjunctive composition. For instance, there is an abstrac-
tion getfieldPL

p f , sound w.r.t. the concrete semantics of getfield f at p (Fig. 1).
They remain sound after introducing arrays to the language. Fig. 2 reports the
abstraction of array instructions. This defines a denotational fixpoint static anal-
ysis of Java bytecode, that approximates the path-length of local variables. We
cannot copy from [19] the complete definition of the abstract semantics. We only
observe that the analysis uses possible sharing [16] and reachability [13] analyses
for approximating the side-effects of field updates and method calls.

Proposition 1. The maps in Fig. 2 are sound w.r.t. those in Fig. 1. [\
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newarrayPL
p t n “ Idp#l,#s´ n` 1q Y tqs#s´1

ě 0, . . . , qs#s´n
ě 0u

arraylengthPL
p t “ Idp#l,#sq

arrayloadPL
p t “

#

Idp#l,#s´ 2q Y t0 ď qs#s´1
ă qs#s´2

u if t “ int

Idp#l,#s´ 2q Y t0 ď qs#s´1
ă qs#s´2, ps#s´2

ě 0u otherwise

arraystorePL
p t “ Idp#l,#s´ 3q Y t0 ď qs#s´2

ă qs#s´3
u

Fig. 2. Path-length abstraction of the bytecodes from Fig. 1 that deal with arrays.
#l,#s are the number of local variables and stack elements at program point p.
Idpx, yq “ tqli “ pli | 0 ď i ă xu Y tqsi “ psi | 0 ď i ă yu.

We do not copy the abstract method call from [19], since it is complex but
irrelevant here. Given the approximation pl of the body of a method m of class
κ, it is a constraint pcallPLp κ.mqpplq, sound w.r.t. call κ.m at program point p.
Method calls in object-oriented languages can have more dynamic target meth-
ods, hence pl is actually the disjunction of the analysis of all targets. A restricted
subset of targets can be inferred for extra precision [18].

Sequential composition of path-length constraints pl1 and pl2 matches the
post-states of pl1 with the pre-states of pl2, through temporary, overlined vari-
ables. Disjuctive composition is used to join more execution paths.

Definition 7. Let pl1 P PLli,siÑlt,st , pl2 P PLlt,stÑlo,so and T “ tl
0
, . . . , l

lt´1
,

s0, . . . , sst´1u. The sequential composition pl1;PL pl2 P PLli,siÑlo,so is the con-
straint DT ppl1rpv ÞÑ v | v P T s Y pl2rqv ÞÑ v | v P T sq. Let pl1, pl2 P PLli,siÑlo,so .
Their disjunctive composition pl1 Y

PL pl2 is the polyhedral hull of pl1 and pl2.

5 Path-Length with Expressions

Def. 4 defines path-length as a domain of numerical constraints over local or
stack elements, which are the only program expressions that one can use in the
constraints. That limitation can be overcome by adding variables that stand for
more complex expressions, that allow the selection of fields or array elements.

Definition 8. Given l ě 0, the set of expressions over l local variables is El “

tlk | 0 ď k ă lu Y te.f | e P El and f is a field nameu Y te1re2s | e1, e2 P Elu.
Given also s ě 0, the expressions or stack elements are ESl,s “ El Y ts

i | 0 ď
i ă su. When we want to fix a maximal depth k ą 0 for the expressions, we use
the set Ek

l “ te P El | e has depth at most ku.

Definition 9. Given σ “ xl || s ||µy P Σ#l,#s and e P ES#l,#s, the evaluation
rressσ of e in σ is defined as rrlkssσ “ lk and rrskssσ “ sk (lk and sk is an expression
on the left and the value of the kth local variable or stack element on the right);
moreover, rre.f ssσ “ µprressσqpfq if rressσ P L (undefined, otherwise); rre1re2sssσ “
µprre1ssσqprre2ssσq if rre1ssσ P L and rre2ssσ P Z (undefined, otherwise).
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Sec. 4 can now be generalised. Path-length assignments refer to all possible
expressions, not just to local variables and stack elements (compare with Def. 3).

Definition 10. Let σ “ xl || s ||µy P Σ#l,#s. Its pre-state path-length assign-

ment is |lenpσq “ rqe ÞÑ lenprressσ, µq | e P ES#l,#ss. Its post-state path-length

assignment is xlenpσq “ rpe ÞÑ lenprressσ, µq | e P ES#l,#ss.

Path-length can now express constraints over the value of expressions (compare
with Def. 4); such expressions are actually numerical variables of the constraints.

Definition 11. Let li, si, lo, so P N. The set PLli,siÑlo,so of the path-length
constraints contains all finite sets of integer linear constraints over the variables
tqe | e P ESli,siu Y tpe | e P ESlo,sou, using only the ď comparison operator.

Def. 5, 6 and 7 remain unchanged; the abstractions in Fig. 2 and from [19] work
over this generalised path-length domain, but do not exploit the possibility of
building constraints over expressions. Such expressions must be selected, since
El,s is infinite, in general. The analysis adds expressions on-demand, as soon as
the analysed code uses them. Namely, consider the abstractions of the instruc-
tions that operate on the heap. They are refined by introducing expressions, as
follows, by using definite aliasing, a minimum requirement for a realistic static
analyser: e1 „p e2 means that e1 and e2 are definitely alias at program point p.

Definition 12. Let k ą 0 be a maximal depth for the expressions considered
below. From now on, the approximations on PL of getfieldPL

p f and putfieldPL
p f

from [19] and arrayloadPL
p and arraystorePL

p from Fig. 2 will be taken as refined
by adding the following constraints:

to getfieldPL
p f :tps#s´1 “ |e.f “ xe.f | e.f P Ek

#l and e „p s
#s´1u

to putfieldPL
p f :

"

qs#s´1 “ xe.f

ˇ

ˇ

ˇ

ˇ

e.f P Ek
#l, f does not occur in e,

e „p s
#s´2 and f has type int or array

*

to arrayloadPL
p t :

"

ps#s´2 “ ­e1re2s “ {e1re2s

ˇ

ˇ

ˇ

ˇ

e1re2s P Ek
#l,

e1 „p s
#s´2 and e2 „p s

#s´1

*

to arraystorePL
p t :

"

qs#s´1 “ {e1re2s

ˇ

ˇ

ˇ

ˇ

e1re2s P Ek
#l, e1 „p s

#s´3, e2 „p s
#s´2,

e1, e2 do not contain array subexpressions

*

Def. 12 states that getfield f pushes on the stack the value of e.f , where e is a
definite alias of its receiver. Bytecode putfield f stores the top of the stack in
e.f , where e is, again, a definite alias of its receiver. Similarly for arrayload and
arraystore. Bytecodes putfield and arraystore avoid the introduction of expressions
whose value might be modified by their same execution.

Proposition 2. The maps in Def. 12 are sound w.r.t. those in Fig. 1. [\

Example 1. In the snippet of code from util.linarg.DiagonalMatrix at page 2,
the compiler translates the expression this.diagonal.length at line 4 into
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1 load 0 // load local variable this

2 getfield diagonal // load field diagonal of this

3 arraylength double // compute the length of this.diagonal

At the beginning #s “ 1, local 0 is this, local 1 is newDiagonal and local 2 is
i, hence the latter is a definite alias of stack element 0, going to be compared
against the value of this.diagonal.length. The next table reports the number
#s of stack elements (#l “ 3 always), definite aliasing just before the execution
of each instruction (self-aliasing is not reported) and its resulting abstraction:

instruction #s definite aliasing abstraction

load 0 1 tl2 „ s0u tql0 “ pl0 “ ps1,ql1 “ pl1,ql2 “ pl2, qs0 “ ps0u

getfield diagonal 2 tl2 „ s0, l0 „ s1u

#

ql0 “ pl0,ql1 “ pl1,ql2 “ pl2, qs0 “ ps0

ps1 “ ­l0.diagonal “ {l0.diagonal

+

ppl1q

arraylength double 2 tl2 „ s0u

"

ql0 “ pl0,ql1 “ pl1,ql2 “ pl2

qs0 “ ps0, qs1 “ ps1

*

ppl2q

The abstraction of getfield diagonal uses the definite aliasing information

l0 „ s1 to introduce the constraint ps1 “ ­l0.diagonal “ {l0.diagonal on expression
this.diagonal (Def. 12). The sequential composition of the three constraints

approximates the execution of the three bytecode instructions: ql0 “ pl0,ql1 “
pl1,ql2 “ pl2, qs0 “ ps0. Unfortunately, it loses information about this.diagonal.

The approximation in Ex. 1 is imprecise since pl1 (see Ex. 1) refers to {l0.diagonal ,
but pl2 does not refer to l0.diagonal at all: hence their sequential composition
does not propagate any constraint about it. To overcome this imprecision, one
can include frame constraints in the abstraction of each instruction ins, stating,
for each expression e whose value is not affected by ins, that its path-length does
not change: qe “ pe. But this is impractical since, in general, there are infinitely
many such expressions. Next section provides an alternative, finite solution.

6 Expressions and Side-Effects Information

Let us reconsider the sequential composition of pl1 and pl2 from Ex. 1. Since pl1
refers to the expression l0.diagonal , not mentioned in pl2, we could define pl 12 “

pl2 Y t
­l0.diagonal “ {l0.diagonalu and compute pl1;PL pl 12 instead of pl1;PL pl2.

The composition will then propagate the constraints on {l0.diagonal . This re-

definition of ;PL is appealing since it adds the frame condition ­l0.diagonal “
{l0.diagonal only for l0.diagonal i.e., for the expressions that are introduced on-

demand during the analysis. However, it is unsound when pl2 is the abstraction
of a piece of code that affects the value of l0.diagonal (for instance, it modifies

l0 or diagonal): the constraint ­l0.diagonal “ {l0.diagonal would not hold for all
its concretisations. This leads to the addition of side-effect information to PL.

Side-effects are modifications of leftvalues, that is, local variables, object
fields or array elements. A local variable is modified when its value changes. A
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field f is modified when at least an object in memory changes its value for f . An
array of type t is modified when at least an array of type t in memory changes.

Definition 13. Let δ P ∆li,siÑlo,so and σ “ xl || s ||µy P Σli,si . Then δ modifies
local k in σ iff 7 σ1 “ xl1 || s1 ||µ1y “ δpσqÓ and either l1k does not exist or lk ­“ l1k.
It modifies f in σ iff σ1 “ xl1 || s1 ||µ1y “ δpσqÓ and there exists ` P dompµq where
µp`q is an object having a field f and either µ1p`q Ò, or µ1p`q is not an object
having a field f , or µp`qpfq ­“ µ1p`qpfq. It modifies an array of type t in σ iff
σ1 “ xl1 || s1 ||µ1y “ δpσq Ó and there exists ` P dompµq where µp`q is an array
of type t and either µ1p`q Ò, or µ1p`q is not an array of type t, or µp`q.length ­“
µ1p`q.length, or µp`qpiq ­“ µ1p`qpiq for some index 0 ď i ă µp`q.length.

It is now possible to define a more concrete abstract domain than in Def. 11, by
adding information on local variables, fields and arrays that might be modified.

Definition 14. Let li, si, lo, so P N. The abstract domain PLSEli,siÑlo,so for
path-length and side-effects contains tuples xpl ||L ||F ||Ay where pl P PLli,siÑlo,so

(Def. 11), L is a set of local variables, F is a set of fields and A is a minimal
set of types i.e., for all t, t1 P A it is never the case that t ă t1.

A tuple xpl ||L ||F ||Ay represents denotations that are allowed to modify locals
in L, fields in F and arrays whose elements are compatible with some type in A:

Definition 15. Let xpl ||L ||F ||Ay P PLSEli,siÑlo,so . Its concretisation function
is γpxpl ||L ||F ||Ayq “ tδ P ∆li,siÑlo,so | 1q δ P γpplq [Def. 6], 2) if δ modifies
local k in σ then lk P L, 3) if δ modifies f in σ then f P F , 4) if δ modifies an
array of type t in σ then t ď t1 for some t1 P Au.

Proposition 3. PLSEli,siÑlo,so is a lattice and the map γ of Def. 15 is the
concretisation of a Galois connection from ∆li,siÑlo,so to PLSEli,siÑlo,so . [\

The abstract semantics uses now Fig. 2, [19] and Def. 12 and adds side-effects.
For method calls, callees in Java cannot modify the local variables of the caller.

Definition 16. The approximations insPLSE are defined as insPLSEp k “ xinsPLp ||

tlku ||∅ ||∅y if ins is store k or inc k c; putfieldPLSE
p f “ xputfieldPL

p f ||∅ ||tfu ||∅y;
arraystorePLSE

p t “ xarraystorePL
p t ||∅ ||∅ ||ttuy; pcallPLSEp κ.mqpxpl ||L ||F ||Ayq “

xpcallPLp κ.mqpplq ||∅ ||F ||Ay; insPLSEp “ xinsPLp ||∅ ||∅ ||∅y for all other ins.

Proposition 4. The maps in Def. 16 are sound w.r.t. those in Fig. 1. [\

Definition 17. Let a “ xpl ||L ||F ||Ay P PLSEli,siÑlo,so . Then e P Eli is af-
fected by a iff 1) e “ lk and lk P L, or 2) e “ e1.f and f P F or e1 is affected by
a, or 3) e “ e1re2s, the type of e1ď t PA or e1 or e2 is affected by a.

Abstract compositions over PLSE use side-effect information to build frame
conditions for expressions used in one argument and not affected by the other.

7 In Java bytecode, local variables are identified by number and their amount varies
across program points. Source code variable names are not part of the bytecode.
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Program Category LoC LoC w. Libs Watchpoints True Alarms

Snake&Ladder game 794 17818 15 1

MediaPlayer entertainment 2634 87368 28 2

EmergencySNRest web service 3663 42540 36 2

FarmTycoon game 4005 69659 1998 2

Abagail mach. learn. 12270 49243 2986 126

JCloisterZone game 19340 116858 590 49

JExcelAPI scientific 34712 67944 2031 162

Colossus game 77527 194994 1988 173

Fig. 3. The programs analyzed. LoC are the non-blank non-commented lines of source
code; LoC w. Libs includes the lines of the libraries reachable and analyzed; Watch-
points is the number of arrayload or arraystore, whose bounds must be checked; True
Alarms are index bound violations found by the analysis (i.e., actual bugs).

Definition 18. Let abstract elements a1 “ xpl1 ||L1 ||F1 ||A1y P PLSEli,siÑlt,st ,
a2 “ xpl2 ||L2 ||F2 ||A2y P PLSElt,stÑlo,so , U1 “ tqe “ pe | e P Eli is used in pl2
and not affected by a1u and U2 “ tqe “ pe | e P Elt is used in pl1 and not affected
by a2u. The sequential composition a1;PLSE a2 P PLSEli,siÑlo,so is xppl1YU1q;

PL

ppl2YU2q ||L1YL2 ||F1YF2 ||maximizepA1YA2qy, where maximizepAq “ tt P A |
 Dt1 P A such that t ă t1u. Let a1 “ xpl1 ||L1 ||F1 ||A1y, a2 “ xpl2 ||L2 ||F2 ||A2y

be in PLSEli,siÑlo,so and U1, U2 be as above. The disjunctive composition a1Y
PLSE

a2 is xppl1 Y U1q Y
PL ppl2 Y U2q ||L1 Y L2 ||F1 Y F2 ||maximizepA1 YA2qy.

Proposition 5. The compositions in Def. 18 are sound w.r.t. the corresponding
concrete compositions on denotations [19]. [\

Example 2. In Ex. 1, no instruction has side-effects, hence the last case of
Def. 16 applies. The abstraction of getfield diagonal is now a1 “ xpl1 ||∅ ||∅ ||∅y.
That of the subsequent arraylength double is now a2 “ xpl2 ||∅ ||∅ ||∅y (pl1 and
pl2 are given in Ex. 1). Expression l0.diagonal is used in pl1 and is not af-

fected by a2. Hence (Def. 18) U1 “ ∅, U2 “ t ­l0.diagonal “ {l0.diagonalu and

a1;PLSE a2 “ xpl1 ||∅ ||∅ ||∅y;PLSE xpl2Yt
­l0.diagonal “ {l0.diagonalu ||∅ ||∅ ||∅y “

tql0 “ pl0,ql1 “ pl1,ql2 “ pl2, qs0 “ ps0, ps1 “ ­l0.diagonal “ {l0.diagonalu. The result
refers to l0.diagonal now: the imprecision in Ex. 1 is overcome.

7 Experiments

Implementation. PLSE (Def. 14) needs to implement its elements xpl ||L ||F ||
Ay, its abstract operations (Def. 16) and a fixpoint engine for denotational,
bottom-up analysis. We have used the Julia analyser [17] and its fixpoint engine.
Elements of PLSE use bitsets for L, F and A, since they are compact and
with fast union (Def. 18). The pl component has been implemented twice: as
bounded differences of variable pairs, by using zones (Ch. 3 of [10]) and as a
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Program
Zones Only Zones + Poly Zones + Exps

Alarms Time Mem Alarms Time Mem Alarms Time Mem

Snake&Ladder 1 13 1.7 1 14 1.7 1 14 1.7

MediaPlayer 5 52 4.8 5 64 4.8 5 52 4.9

EmergencySNRest 2 26 3.0 2 30 3.0 2 26 3.1

FarmTycoon 17 51 4.3 17 54 4.7 9 53 4.4

Abagail 664 69 4.3 662 202 11.2 339 81 7.2

JCloisterZone 116 108 7.1 116 127 8.3 90 108 7.4

JExcelAPI 1061 95 4.8 1045 317 13.8 786 141 9.7

Colossus 597 312 9.7 out of memory 477 328 11.5

Fig. 4. Analysis results for the programs in Fig. 3. Zones Only uses zones only;
Zones+Poly zones and polyhedra; Zones+Exps zones with expressions (Sec. 5
and 6). Julia issues index bound Alarms, bounded by Watchpoints in Fig. 3. Time
is full analysis time, in seconds. Mem is the peak memory usage, in gigabytes.

hybrid implementation of zones and polyhedra, by using the Parma Polyhedra
Library [3] for polyhedra. We use zones rather than the potentially more precise
octagons, only for engineering reasons: zones are already available, tested and
optimised in Julia. They cannot accomodate constraints such as those for add or
sub, that refer to three variables (two operands and the result) and are dropped
with zones. This keeps the analysis sound but reduces its precision. In the hybrid
representation, instead, polyhedra represent them. A fixpoint is run for each
strongly-connected code component. Polyhedra and zones have infinite ascending
chains, hence widening [5, 3, 10] is used after 8 iterations. The cost of operations
on polyhedra and zones depends on their dimensions i.e., variables (locals, stack
elements and expressions, in pre-state (qv), post-state (pv) and overlined v, see
Def. 7). We have limited zones to 200 dimensions and polyhedra to 110; variables
beyond that limit are projected away. This does not mean that the analysed
programs have only up to 200 (or 110) variables: the limit applies at each given
program point, not to the program as a whole. Since there are infinitely many
expressions (Def. 12), we fixed a limit of 9. This does not mean that the analysis
of a program considers 9 expressions only: it applies to each given program
point. We fixed k “ 3 in Def. 12. When, nevertheless, abstraction (Def. 12)
or composition (Def. 18) generate more than 9 expressions, the implementation
prefers those from a2 in a1;PLSE a2 and drops those beyond the 9th.

Results. We used an Intel 8-core i7-6700HQ at 2.60 Ghz, OpenJDK Java
1.8.0 151 and 15 GB of RAM. Small to medium-size open-source third-party
programs have been analysed, up to 195000 lines of code, cloneable from [14].
Fig. 3 reports their size, characteristics and number of index bound violations
found by the analysis. The reachable libraries have been included and analysed,
together with the application code. This is needed for the approximation of
method calls to the library. However, warnings have been generated only on the
application code. Fig. 4 reports the results. Programs have been first analysed as
in [8, 5], with zones only (column Zones Only). Each alarm has been manually
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classified as true (i.e., an array index bug) or false. True alarms range from 1
to 173 per program. If classification was impossible, since we do not fully un-
derstand the logic of the code or its invariants, alarms have been conservatively
classified as false. Thus, column True Alarms in Fig. 3 is a lower bound on
actual bugs. Comparing Alarms of Zones Only with True Alarms shows
a major precision gap. To close it, we tried to exploit the extra precision of
polyhedra through the hybrid use of zones and polyhedra. Column Alarms of
Zones+Poly in Fig. 4 deceives our hopes: polyhedra hardly improve the pre-
cision, at the price of higher analysis time and memory footprint, up to an out
of memory. Instead, columns Zones+Exps show that the technique of Sec. 6,
with zones only, scales to all programs, with fewer alarms: precision benefits
more from expressions than from polyhedra and expressions are cheaper than
polyhedra w.r.t. memory usage. Fig. 4 reports full analysis times and peak mem-
ory usage during parsing of the code, construction of the control-flow graph and
of the strongly-connected components, heap, aliasing and path-length analysis.
The alarms are in [14], annotated as TA when they classify as true alarms. Note
that the analysis has false positives but no false negatives (true bugs that the
analysis does not find), since it is provably sound.
False Alarms that Disappear by Using Expressions. Zones Only issues
false alarms for all examples in Sec. 1. They disappear with Zones + Exps. In the
first example, the analyser uses a variable for the expression this.diagonal; in
the second, for this.data and this.data[i]; in the third, for this.this$0.h

and this.this$0.h[i]. Expressions are chosen automatically and on-demand.
True Alarms. In jxl.biff.BaseCompoundFile of JExcelAPI, Julia issues a
true alarm at line 3 below8, since the constructor is public and its argument d

is arbitrary, hence might have less than SIZE+1 elements9:

1 public PropertyStorage(byte[] d) {

2 this.data = d;

3 int s = IntegerHelper.getInt(this.data[SIZE], this.data[SIZE+1]); }

Julia issues a true alarm at line 4 of class domain.Farm of FarmTycoon, for
a public method whose argument options is hence arbitrary. Very likely, the
programmer should have written options[pos] here, instead of options[1]:

1 public static void objPrinter(String[] options) {

2 Storm[] objStorm = new Storm[options.length];

3 for (int pos = 0; pos < options.length; pos++)

4 objStorm[pos] = new Storm(Long.parseLong(options[1])); }

Julia issues a true alarm at line 2 of edu.cmu.sv.ws.ssnoc.common.logging.

Log in EmergencySNRest, since the stack trace might be shorter than 4 elements
(the documentation even allows getStackTrace() to be empty):

1 private static Logger getLogger() {

2 ... = Thread.currentThread().getStackTrace()[3].getClassName(); }

8 Line numbers, conveniently starting at 1, do not correspond to the actual line num-
bering of the examples, which are simplified and shortened w.r.t. their original code.

9 We assume that public entries can be called with any values, as also done in [15].
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Julia issues true alarms from line 5 of java.net.sf.colossus.webclient.Web-
ClientSocketThread in Colossus, where fromServer comes from a remote server
and might contain too few tokens: it should be sanitised first:

1 String fromServer = getLine();

2 String[] tokens = fromServer.split(sep, -1)

3 String command = tokens[0]; // ok: split() returns at least one token

4 if (command.equals(IWebClient.userInfo)) {

5 int loggedin = Integer.parseInt(tokens[1]);

6 int enrolled = Integer.parseInt(tokens[2]);

7 ... String text = tokens[6]; ... }

False Alarms: Limitations of the Analysis. In func.svm.SingleClass-

SequentialMinimalOptimization of Abagail, Julia issues false alarms at line 8:

1 public SingleClass...Optimization(DataSet examples, ..., double v) {

2 v = Math.min(v, 1); ...

3 this.a = new double[examples.size()];

4 this.vl = v * examples.size(); int ivl = (int) this.vl;

5 int[] indices = ABAGAILArrays.indices(examples.size());

6 ABAGAILArrays.permute(indices);

7 for (int i = 0; i < ivl; i++)

8 this.a[indices[i]] = 1 / vl; }

It is 0 ď i ă ivl “ tv ˚ examples.sizepqu ď examples.sizepq and ABAGAIL-

Arrays.indices(x) yields an array of size x. Thus indices[i] is safe. Also
this.a[indices[i]] is safe, since the elements of ABAGAILArrays.indices(x)
range from 0 to x (excluded) and permute() shuffles them. Such reasonings are
beyond the capabilities of our analysis.

Julia issues false alarms at lines 3 and 4 of net.sf.colossus.util.Static-
ResourceLoader in Colossus:

1 while (r > 0) {

2 byte[] temp = new byte[all.length + r];

3 for (int i = 0; i < all.length; i++) temp[i] = ...;

4 for (int i = 0; i < r; i++) temp[i + all.length] = ...; }

Here, Julia builds a constraint temp “ all ` r. Since r ą 0, then i in the first
loop is inside temp; since 0 ď i ă r, the same holds in the second loop. Zones
cannot express a constraint among three variables. Polyhedra can do it, but do
not scale to the analysis of Colossus (Fig. 4).

8 Conclusion

The extension of path-length to arrays (Sec. 4) scales to array index bounds
checking of real Java programs, but only with weaker abstractions than poly-
hedra, such as zones. Precision improves with explicit information about some
expressions (Sec. 5 and 6). Experiments (Sec. 7) are promising. The analysis has
limitations: it is unsound with unconstrained reflection or side-effects due to con-
current threads, as it is typical of the current state of the art of static analysers
for full Java; also remaining false alarms (Sec. 7) show space for improvement.
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The Astrée Analyzer. In European Symposium on Programming (ESOP), pages
21–30, 2005.

7. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why does
Astrée Scale up? Formal Methods in System Design, 35(3):229–264, 2009.

8. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In Principles of Programming Languages (POPL), pages
84–96, Tucson, Arizona, USA, January 1978.

9. T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The JavaTM Virtual Machine
Specification. Financial Times/Prentice Hall, 2013.
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