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It is important to prove that supposedly terminating proggamtually terminate, particularly if those programs
must be run on critical systems or downloaded into a client such as a mobile phone. Although termination
of computer programs is generally undecidable, it is possible and useful to prove termination of a large, non-
trivial subset of the terminating programs. In this paper we present our termination analyser for sequential Java
bytecode, based on a program property cgliath-length We describe the analyses which are needed before the
path-length can be computed, such as sharing, cyclicity and aliasing. Then we formally define the path-length
analysis and prove it correetr.t. a reference denotational semantics of the bytecode. We show that a constraint
logic programP¢,p can be built from the result of the path-length analysis of a Java bytecode prégeard

formally prove that if Pcy, p terminates then als® terminates. Hence a termination prover for constraint logic
programs can be applied to prove the terminatiolPofWe conclude with some discussion of the possibilities

and limitations of our approach. Ours is the first existing termination analyser for Java bytecode dealing with any
kind of data structures dynamically allocated on the heap and which does not require any help or annotation on
the part of the user.

Categories and Subject Descriptors: F.3 bdics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programd#echanical VerificationF.3.2 L ogics and M eanings of Programs]: Semantics of
Programming LanguagesBenotational Semantic®rogram Analysis

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, termination analysis, Java, Java bytecode

1. INTRODUCTION

It is well-known that a general procedure for determining which computer programs ter-
minate does not exist for Turing-complete programming languages [Turing 1936]. Nev-
ertheless, it is becoming ever more important to prove that programs terminate. This is
because software is used in critical systems where non-termination might lead to disaster.
Moreover, software is increasingly deployed in embedded tools such as mobile phones. If
a program downloaded into a mobile phone does not terminate, the phone might require
a tedious shutdown; worse, users might complain to the originator of the software or to
the phone company itself, which accounts for extra costs on their part, or might decide not
to download software anymore. The software industry is paying more and more attention
to software quality, and would like to issuecartificateattesting that quality. A proof of
termination about the programs in the software should definitely be part of the certificate.
Moreover, the compiler industry is interested in termination proofs. For instance, the latest
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versionof Sun’sJavacompilerrejectsnon-terminatinglassinitialisers; howeverthetest
for non-terminations so rudimentarythatvirtually all non-terminatingnitialisersescape
thattest. For thesereasonsterminationis consideredsa challengefor currentsoftware
verification[Leavenset al. 2007].

Programmersanoftenarguefor theterminationof theprogramsheywrite. Thismeans
thatterminationof computeprogramsanbeprovedby humansatleastfor alargeclassof
programsHowever,programmerareoftenvery erroneouslyonvincedf thetermination
of programswhich arelaterfoundto divergein somespecialor unexpected¢asesalmost
everyonehashadthe experienceof havingto stopa programwhich apparentlywas not
terminating. This meansthe humanproofsof terminationare error-proneand generally
unreliable. This problembecomesnoreacutefor modernprogrammindanguagessuch
astheobject-orienteanes especiallyif theyarelow-levellanguagesvith avery complex
semantics.

JavabytecodgLindholm andYellin 1999]is alow-level, object-orienteghrogramming
languageusuallyresultingfrom the compilationof a sourceJavaprogram.lt canbe seen
asa machine-independertt;pe-safe pbject-orientedimperativeassemblyanguage Al-
thoughit wasbornbothwith andfor Java,it is now alsousedasa compilationtargetfor
otherprogrammindanguagesThe Javabytecodeavailableonthe Internetor downloaded
into mobile phoness often providedasa setof Javabytecodeclassesvithout the corre-
spondingsourcecode. The sourcecodeis not madeavailablefor one or morereasons:
becaus®ef commerciakhoice to shortenthedownloadtime, or becaussourcecodedoes
not evenexist sincethe bytecodes the resultof softwaretransformation®r specialisa-
tions. Theaboveconsiderationgntailthatterminationproofsfor Javabytecodesoftware
havereal industrialinterest. Moreover,one can prove the terminationof a Javasource
programby provingtheterminationof the derivedJavabytecodegassuminghe compiler
to be correct),while the conversds false: manyJavabytecodeprogramsdo not directly
correspondo a Javaprogram.

Previousresearchhasdevelopediutomatiderminationanalyses.e., formaltechniques
for proving, automaticallythe terminationof large classef computemprograms:when
theseanalysegprovetermination,then the analysedorogramactually terminateswhile
the converseds generallyfalse. Althoughthereis a variety of proposedechniquesthe
underlyingcommonideais thatof findingsomewell-foundedneasuregalledin turnnorm,
rankingfunctionor levelmapping thatstrictly decreasealongloopsor in recursivecalls.

Most of the work on terminationanalysishasbeenappliedto term rewriting systems,
functionalandlogic programmindanguagesihosesemanticss typically simpleandwell
understoodProofsof terminatiorfor imperativeprogramghatusedynamicdatastructures
aremuchmorecomplexthanthecorrespondingroofsfor functionalor logical languages
whichdonothavedestructivaipdatesin orderto foreseghepossiblesffectsof destructive
updatesit is importantto computeinformationaboutthe shapeof the heapof the system
at run-time. Namely, sharingand cyclicity of datastructuresplay an importantrole in
imperativeprogramswhile theyareforbiddenor practicallyneverusedin functionaland
logical languages. Sincecyclicity canleadto non-terminationof someiterationsover
the datastructures,t mustbe takeninto accountfor a correctterminationanalysis. It
hasbeenprovedthat sharingaddsto the powerof LISP programssinceit allows oneto
write computationallcheapeglgorithmgqPippenged997].No similarresultis knownfor
cyclicity. Neverthelesghe extensivauseof sharingandcyclicity in currentJavaprograms
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entails that a realistic static analysis must take them into account.

Things become still more complex with object-oriented languages, where dynamic dis-
patch, inheritance, instance and class initialisations must be taken into account. Cyclicity
becomes omnipresent there; for instance, all exceptions are cyclical in Java. If we con-
sider the Java bytecode language, its low-level nature presents further challenges, such as
the unstructuredness of the code and the presence of an operand stack of variable height.
For instance, this requires the tracking of precise definite aliasing between local variables
and stack elements, which is not the case for high-level languages. Without such infor-
mation (or similar) abstract domains and static analyses which are sufficiently precise for
high-level languages might not be precise enough for a low-level language [Logozzo and
Fahndrich 2008].

It therefore follows that an automatic technique for proving the termination of Java byte-
code programs is a long way from being a simgktensiorof similar techniques already
existing for functional and logical languages. To the contrary, it requires a set of prelimi-
nary static analyses, such as sharing, cyclicity and aliasing analyses, and strict adherence
to all the details of the semantics of the language.

For this reason, we have recently defined an abstract analysis, patletength which
uses preliminary sharing, cyclicity and aliasing analyses to build an over-approximation
(hence, safe approximation) of the maximal length of a path of pointers that can be fol-
lowed from each program variable [Spoto et al. 2006]. This may be seen as an extension
to data structures of tHaear restraintsof [Cousot and Halbwachs 1978].

In this paper we make the following contributions:

(1) We define the@ath-lengthanalysis for sequential Java bytecode, dealing with any kind
of data structures, and prove that it is formally correct using the abstract interpretation
framework [Cousot and Cousot 1977];

(2) We define how a&CLP program is derived from the path-length analysis of a Java
bytecode program and prove that if the deri¢ddP program terminates then also the
original Java bytecode program terminates;

(3) We describe our implementation of a termination analysis for sequential Java byte-
code, based on path-length, inside tbeld analyser [Spoto 2008a], coupled with the
BINTERM termination prover. It is a fully automatic system able to scale up to pro-
grams of 1200 methods, including all the analyses necessary to build the path-length
constraints. This shows the potential of both.th and BNTERM.

In this paper we only consider a non-trivial subset of Java bytecode, so that for instance
point 2 above is limited to that subset. However, note that this is standard in the analy-
sis of Java bytecode, since the chosen bytecodes are representative of a large family of
bytecodes (namely, they include those manipulating the heap) and the missing bytecodes
perform tedious stack manipulations or deal with concurrency (that we do not handle). By
consideringall bytecodes, we would just make the paper clumsy.

We stress the fact that the implementation is npt@totypebut a robust and reliable
system, resulting from many years of programming work; it includes clasd, pointer,
initialisation, sharing, cyclicity, aliasing and path-length analyses, deals with all constructs
of Java bytecode, including thjer andret instructions, deals with exceptions, has been
tested on very large programs (up to 10000 methods) and extensively debugged; it is also
used by a big industrial company in the USA for information flow analysis of very large
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programs. To the best of our knowledge, it is the first fully automated implementation
of a termination analyser for full sequential Java bytecode, with no invention of ad-hoc
algorithms for dealing with specific complex programs; moreover, it is the first termination
analysis for imperative programs able to deal, automatically and with satisfying precision,
with any kind of data structures dynamically allocated in memory.

Two lines of works are strictly related to ours and deserve some discussion:

—In [Albert et al. 2007a; 2008] it has been shown how the results of the path-length
analysis can be used to translate the analysed imperative program into a constraint logic
program CLP) which can then be fed to a termination prover for logic programs. In
the same spirit, path-length has also been used in [Albert et al. 2007b] to infer upward
approximations of the computational cost of Java bytecode methods. They use it to
translate imperative programs into constraint logic programs over which cost analysis
is performed. Our translation in®BLP programs is not identical to that used in these
papers, but [Albert et al. 2007a; 2008] remain the closest to our work. Note, in par-
ticular, that [Albert et al. 2007a] has been published before the first submission of our
paper. We have received the benchmarks analysed in [Albert et al. 2007a; 2008] from
the authors of those papers; their analysis with our tool is shown in Figure 16.

—TheTERMINATOR systermCooket al. 2006b]provegerminationof C programsA cru-
cialinnovationw.r.t. terminationconsistsgn its useof transitioninvariantgPodelskiand
Rybalchenkad2004b],which are computedusingtechniquedor leastfixpoint calcula-
tion andabstractionTransitioninvariantsenablethe useof arankingfunctiongenerator
for simple-whileprogramswhich canbe implementedy constraintsolving [Podelski
andRybalchenk@004a].Terminationis provedover primitive types,without dynamic
datastructures.This is the main differencefrom our work, which is in principle able
to dealwith any datastructuredynamicallyallocatedin the heap. TERMINATOR uses
model-checkingo explorethe setof reachabletatef theprogram.Theuseof model-
checkingallows one to testalso concurrentprograms. The distinguishingfeatureof
TERMINATOR is its ability to improvetheanalysishy exploitingcounterexample®und
during the model-checkingCook et al. 2005]. This feature,which is missingin our
work, canleadto very preciseanalysessometimest the expenseof efficiency. TER-
MINATOR candealwith pointersin the sensethatit modelsdereferencing.However,
it doesnot dealwith iterationsoverdynamicdatastructuregpage425of [Cook et al.
20064a)). It hasbeensuccessfullyusedfor the verificationof operatingsystemsdrivers
of non-trivial size[Cook et al. 2006a]. The weakmodellingof the heapin TERMINA-
TOR hasbeenovercomen [Berdineet al. 2006],whereterminationof C programswith
lists is provedby usingthe shapeanalysisin [Distefanoet al. 2006], which is based
on separatiorlogic [Reynolds2000;IshtiagandO’Hearn2001]. Their work hassome
similarities with ours sincethey build a linear constraintfrom the programby using
the shapeanalysisto gatherinformationaboutthe size of the lists. However,they do
not supportfunctions,asthe underlyingshapeanalysis;they claim thattheir work can
be appliedto many datastructuresput they only considerlinked lists; the derivation
of linear constraintfrom the shapeanalysisis not provedcorrect. Note thatthey are
basedon a separatiodogic for lists only andthatalsoa moreadvancedersionof that
logic [Berdineet al. 2007a]still considerdlavoursof lists only, aswell asthe inter-
procedurakhapeanalysisin [Gotsmanet al. 2006]. Their work hasbeengeneralised

in [Berdineet al. 2007b], so that terminationwith lists is an instanceof a generic
frame-
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work which proves well-founded variance of some variables at specific program point.
The generalisation does not affect the results about the data structures which can be mod-
elled in the heap during the shape analysis. Compared to our work, we remark that we
consider every kind of data structure in the heap. Although it is true that more advanced
shape analyses can determine the shape of any data structure in memory, not just lists,
there is no mention, in the works above, of the translation of the results of such shape
analyses into numerical constraints that can later be used to prove the termination of the
program. Thatis, those papers miss a formal definition of how the linear constraints are
built when a destructive update modifies some data structure, not just lisisugeéd

in our Definition 37), as well as a formal definition of how the linear constraints are built
for method calls that might modify data structures in the heap ¢sea.d in our Def-

inition 44). Moreover, we provide formal proofs of the correctness of the construction
of those numerical constraints, while this is not the case in the papers above. This is far
from being a detail. As the reader can check, those two definitions are the most complex
in this paper and their correctness proof requires careful and non-trivial arguments. For
a pratical comparison with our tool, we have analysed three of the programs in [Cook
et al. 2006a]. Namely, prograhuner i cal 1 in Figure 16 is the program in Figure 3

of [Cook et al. 2006a], programuner i cal 2 is the program in Figure 11 of [Cook

et al. 2006a] and prograhuner i cal 3 is the diverging program in Figure 7 of [Cook

et al. 2006a]. The same paper contains a utility function of a Windows device driver
(Figure 1 of [Cook et al. 2006a]) and analyses a set of Windows device drivers (in its
Figure 12); we cannot analyse such drivers because there is no way of writing Windows
device drivers in Java. The same paper analyses the Ackermann function (also analysed
in our Figure 16) coupled with a program that uses pointers to integers, which do not
exist in Java (Figure 4 of [Cook et al. 2006a]). The benchmarks analysed in [Berdine
et al. 2006] are all loops of Windows device drivers which, again, we cannot analyse.
The simple iteration over a list in Figure 5 of [Berdine et al. 2006] is included in the
analysis olLi st in our Figure 16.

The rest of this paper is organised as follows. Section 2 gives an overview of our analyser
through its application to some programs, hence showing how it deals correctly with some
of the subtlest aspects of the semantics of the language. Section 3 defines the syntax of a
small but non-trivial subset of the Java bytecode that we use in our definitions and proofs.
Section 4 describes all the preliminary analyses that we perform before the path-length
analysis. Section 5 defines an operational and an equivalent denotational semantics of
our subset of the Java bytecode. Section 6 defines the path-length analysis and proves it
correctw.r.t. the denotational semantics of Section 5. Section 7 defines the translation from
Java bytecode int€LP over path-length and proves that, if t8&P program terminates,
then also the original Java bytecode terminates. Section 8 reports some experiments with
our analysis. Section 9 discusses related works. Section 10 discusses limitations, future
directions of research and then concludes. Most of the proofs are available in an electronic
appendix.

2. EXAMPLES OF OUR TERMINATION ANALYSIS

This section presents examples of termination analysis with our tool. All examples can be
tested on-line through a web interface [Spoto et al. 2008]. The input of the analysis is a
Java bytecode prograi, its output is an enumeration of its methods, divided into those
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public class Sharing { public voi d expand(Shari ng)
0: aload_O
private Sharing next; 1: astore_2
2: aload_2
publ i ¢ Sharing(Sharing next) { 3: ifnull 31
thi s. next = next; 6: aload_1
} 7: new Sharing
10: dup
public voi d expand(Sharing other) { 11: aconst_nul
Sharing cursor = this; 12: invokespeci a
while (cursor !'= null) { Shari ng. <i ni t >( Sharing):void
ot her. next = new Sharing(null); 15: putfield next
ot her = other. next; 18: aload_1
cursor = cursor.next; 19: getfield next
} 22: astore_1
} 23: aload_2
} 24: getfield next
27: astore_2
28: goto 2

31: return

Fig. 1. An example where sharing is needed to model the effects of a destructive update.

whose calls inP definitely terminate; those whose calls fhmight diverge because of a
loop inside their code (methods thatroducenon-termination); and those whose calls in

P might diverge but only because they call one of the previous diverging methods (methods
thatinherit non-termination).

Let us start from an example which shows the problems induced by the destructive
updates. The program on the left of Figure 1 implements a simple linked list with an
expand method that scans the list corresponding totthes object and expands the first
node of the parametet her by as many nodes as the length of the list. Figure 1 shows,
on the right, the Java bytecode of ttepand method, where local variables 0, 1 and 2
stand, respectively, fdrhi s, ot her andcur sor. Thewhi | e loop has been compiled
into a nonaull check forcur sor (lines 2 and 3), which directs to the end of the loop, and
into agot o (line 28) which iterates the loop. This Java bytecode (contained ol &ss
file) is what we really analyse but we report the source Java code for the convenience of
the reader, since it is easier to understand. In the rest of this section, we will only report
source code. It must be clear, however, that our analysis does not use the source code at
all.

Assume thaexpand is called as follows:

public static void main(String[] args) {
Sharing shl = new Shari ng(new Shari ng(new Sharing(null)));
Sharing sh2 = new Sharing(new Sharing(null));
shl. expand(sh2);

}
The above call texpand terminates. This is becausél is finite, so that the iteration

inside thewhi | e loop of expand must eventually reach its end. Our analyser correctly
spots this behaviouk{ ni t > is the name of a constructor in Java bytecode):

All calls to these nethods term nate:
public static Sharing.min(java.lang.String[]):void
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publ i ¢ Shari ng. expand(Sharing): void
publ i ¢ Shari ng. <i nit>(Sharing)

Let us now modify therai n method a bit:

public static void main(String[] args) {
Sharing shl = new Shari ng(new Shari ng(new Sharing(null)));
shl. expand(shl. next);

}

The listsh1 is still finite, but we get a different answer this time:

Al calls to these nethods termn nate:
publ i ¢ Shari ng. <i ni t>(Shari ng)

Sone calls to these nethods might not term nate:
public static Sharing.min(java.lang.String[]):void [inherits]
publ i ¢ Shari ng. expand( Sharing): voi d [i ntroduces]

This means thatuliA identifies a possible divergence for the callsetopand, which
induces divergence also fami n, which callsexpand. The result is perfectly correct:
while expand expands the lissh1. next , it also expands the ligh1 initially bound
to cur sor, so that the loop does not terminate. This is made possible by the destructive
update at line 15 of the bytecode in Figure 1: the f i el d next bytecode adds new
nodes after the first two nodes®iil, unlinking everything which was previously there.

The behaviour above is not featured by logic programs, where data structures are not
mutable so that the path-length constraints of the data structure bound to a variable cannot
be updated. For instance, the logical unification of

Shl = sharing(sharing(sharing(Sh2)))

constrains the length &h1 to be3 plus the length oSh2 and this constraintannot be
changed anymoredata structures are only created in pure logic or functional languages,
never destroyed. In imperative programs, instead, the binding

shl = new Shari ng(new Sharing(new Sharing(sh2)))

constrains the length afhl to be 3 plus the length o6h2, but this constraint can be
updated at any time, as soon as you upg@dté or shl. next orshl. next. next or
shl. next. next. next i.e. as soon as you update something that sharesshith In
theexpand method in Figure 1, the ligh1 (i.e, t hi s) gets expanded whenewarher
shares some data structure wathl, as in the last example afai n. This justifies the fact
that we need a preliminaigharing analysigSecci and Spoto 2005] in order to perform a
precise termination analysis of Java bytecode programs.

Let us show now how cyclicity of data structures can affect the termination of Java
bytecode methods. Consider the followimgi n method:

public static void main(String[] args) {
Sharing shl = new Shari ng(new Shari ng(new Sharing(null)));
Sharing sh2 = new Sharing(new Sharing(null));
shl. next. next. next = shi;
shl. expand(sh2);
}

The analyser cannot prove the terminatioapand:
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public class List {
private Object head;
private List tail;

public List(Object head, List tail) {
this. head = head;
this.tail = tail;

}
private void iter() {
if (tail '=null) tail.iter();
}
private List append(List other) {
if (tail == null) return new List(head, ot her);
el se return new List(head,tail.append(other));
}
private List reverseAcc(List acc) {
if (tail == null) return new List(head, acc);
el se return tail.reverseAcc(new Li st (head, acc));

}

private List reverse() {
if (tail == null) return this;
el se return tail.reverse().append(new Li st (head, null));

}

private List alternate(List other) {
if (other == null) return this;
el se return new List(head,other.alternate(tail));

}

public static void main(String[] args) {
List I'1 = new List(new Object(),new List(new Object(),null));
List 12 = new List(new Object(), new List(new Object(),null));
I1.alternate(l2);
2. tail.tail =12;
| 1. append(| 2);
I1l.iter();
| 1. reverseAcc(nul l);
I 1.reverse();

Fig. 2. Alinked list ofCbj ect s with a set of recursive methods that work over it.

All calls to these nethods termn nate:
publ i ¢ Shari ng. <i nit>(Shari ng)

Sone calls to these nethods might not term nate:
public static Sharing.min(java.lang.String[]):void [inherits]
publ i ¢ Shari ng. expand( Shari ng): voi d [i ntroduces]

Thisis correctsincethestatemenshl. next . next . next = shl makesshl acycli-
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public class Exc {
private int f;

public static void main(String[] args) {
Exc exc = new Exc();

int i =0;
while (i < 20) {
try {
if (i >10) exc.f =5;
i += 2;

}
catch (Nul | Poi nterException e) {}

}
}
}

Fig. 3. An example of termination in the presence of exceptions.

cal list. Therefeore, thehi | e loop insideexpand does not terminate. This justifies why
we need a preliminargyclicity analysigRossignoli and Spoto 2006] as an ingredient of
our termination analysis of Java programs.

One might be tempted to postulate that the analysed programs do not use cyclical data
structures. This hypothesis is sensible for functional or logical programming languages,
where cyclicity is forbidden by the so-called occur-check of pattern-matching and unifi-
cation, or it is allowed but typically never used by the programmers. This hypothesis is
instead non-sense for imperative programs, where cyclicity is extensively used: graphs
are often used in imperative programs and graphs are typically cyclical; all exceptions are
cyclical in Java, because of tharuse field which points to the exception itself; data
structures used by compilers are typically cyclical. Our experiments with cyclicity analy-
sis suggest that, on the average, around one third of the data structures created by a Java
bytecode program are cyclical.

It must be clear, however, that taking cyclicity into account does not mean that, as soon
as a method works over cyclical data structures, its termination cannot be proved. Consider
for instance the class in Figure 2, which implements a linked lisbajfect s and a set
of recursive methods over such a list. Our analyser finds ouathealls inside this class
terminate. Nevertheless, cyclicity is created by the statem2ntail .tail =12
insidenai n andl 2 is subsequently passed as an argumemrippend. However, the
calll 1. append(! 2) is not affected by the cyclicity of its2 argument but only by the
cyclicity of its implicit | 1 argument. Since 1 is notcyclical, termination is proved.

The latter example shows that our analysis works correctly also in the presence of recur-
sion, as well as for methods, suchedg er nat e, whose termination depends on alternate
progression along their arguments.

Let us show some examples now where a termination analysis must take into account
the complex semantics of Java bytecode. The class in Figure 3rteisramethod which
contains a loop over an integer variableThis loop terminates since the statemient=
2 inside its body increases which is bound from above 0. Our analyser proves the
termination ofrmai n but only if we perform a preliminaryull pointer analysiof the
code. This is because, without such analysis, it is impossible to know Exlce f =
5 assignment will raise &lul | Poi nt er Except i on or not. If the exception is raised,
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public class Init {
public void m() {
new A();
}

public void n() {
Af = 13;
}
}

Fig. 4. An example dealing with instance and class initialisation.

the catcher would catch it and reenter the loop without executing the statement 2.
Hence the program would diverge. This example shows that our analyser deals faithfully
with the semantics of this exception.

Figure 4 shows a very simple clakgi t . ClassA is not shown yet on purpose. Many
programmers would conclude that both methodsdn terminate, regardless of the way
you call them. We can havasdiA prove this by running our termination analysidibrary
mode which means that the public methods of some class(es) are analysed, without making
any hypothesis on their calling context. For instance, the analyser does not assume any
order about which ofnandn is called before the other; it does not assume that any class
has been already instantiated before caltimay n, unless fol ni t itself and some system
classes. The results of this analysis might look surprisited ( ni t > is the name of a
class initialiser in Java bytecode):

Al calls to these nethods terni nate:
public Init.<init>()

Sone calls to these nmethods might not terninate:

public Init.m):void [inherits]
public Init.n():void [inherits]
public A <init>() [i ntroduces]
package static A <clinit>():void [i ntroduces]

Only the (implicit) constructor of ni t is found to terminate. Methodsandn inherit
non-termination because they call some other method that may not terminate. This is
correct, since clasais defined as follows:

public class A {
public static int f;

public A() {
while (true) {}
}
static {
int a=0;
while (a == 0) {}
}

}
Theinstancanitialiser of A divergesandit is (implicitly) calledby methodm Theclass
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initialiser of A diverges also, and it is (implicitly) called by both methodsndn. We
recall that the static initialiser of clagsis called, in Java bytecode, ontle first time
that a class is instantiated, or one of its static fields is read or written, or one of its static
methods is called.
Assume now that we have the followimgai n method inside classni t , which fixes
the calling contexts of methodsandn:

public static void main(String[] args) {

new lnit().m);

new Init().n();

}

Reverting to a traditional analysis fromai n instead of the library modeudiA yields
the following result:

Al calls to these nethods terni nate:
public Init.<init>()
public Init.n():void

Sone calls to these nethods might not term nate:

public Init.m):void [inherits]
public static Init.min(java.lang.String[]):void [inherits]
public A <init>() [i ntroduces]
package static A <clinit>():void [introduces]

but only if a preliminaryclass initialisation analysiss performed. This analysis finds

out that, inside method, classA has been already initialised by thew A() statement

inside methodn so that no call to the static initialiser &fhappens inside and that the
method terminates. It is true, however, that that method is never reached since thencall to
diverges. This example shows that the subtle aspects of the semantics of instance and class
initialisation of Java are faithfully respected by our analysis.

We conclude with an example that shows that our analyser deals correctly with the dy-
namic dispatch mechanism of object-oriented languages and with non-linear data struc-
tures. Figure 5 shows a program dealing with a binary tree, implemented as a sequence
of Nodes of several kindsl nt er nal nodes have two successor nodes, whilé and
Di v nodes have no successor. Note that this data structure is not a list nor a one selec-
tor data structure. Thieei ght method is expected to yield the height of the tree but it
diverges forDi v nodes since it calls itself recursively indefinitely. Correctly, our anal-
yser concludes thatll calls inside this program terminate. This is because, although a
Di v object is created by the first statemenn®fi n, that object does not flow inte, so
that the calin. hei ght (), and those recursively activated by the redefinition of method
hei ght insidel nt er nal , never lead to the redefinition bki ght insideDi v. Hence
the program terminates.

If we modify the second statementwéi n intoNode n = new Di v(), we getthe
following (correct) result:

Al calls to these nethods terni nate:
public Div.<init>()
public Internal.<init>(Node, Node)
publ i c Node. <i nit>()
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public class Virtual {
public static void main(String[] args) {
Node d = new Div();
Node n = new Nil ();
int | = Integer.parselnt(args[0]);
while (I-- >0) n = new Internal (n,n);
System out. println(n.height());
}
}

public abstract class Node {
public abstract int height();

}

public class Internal extends Node {
private Node next1;
private Node next2;
public Internal (Node nextl, Node next2) {
this.nextl = next1;
this. next2 next 2;

}

public int height() {
return 1 + Math. max(next 1. hei ght(), next2.height());

}
}

public class Nil extends Node {
public int height() {
return O;

}
}

public class Div extends Node {
public int height() {
/1 this goes into an infinite recursive |oop
return height();
}
}

Fig. 5. An example dealing with the dynamic dispatch mechanism over non-linear data structures.

Sone calls to these nmethods might not termninate:
public Internal.height():int [inherits]
public Div.height():int [i ntroduces]
public static Virtual.min(java.lang.String[]):void [inherits]

Thistime, theredefinitionof hei ght insideDi v is reachedy thecomputatiorandit in-
troduceglivergenceAs aconsequencelsotheredefinitionof hei ght insidel nt er nal
inheritsdivergencewhile theredefinitionof hei ght insideNi | is nevercalled.
Theresultsaboveare possiblebecauseluLiA determinegreciselythe setof methods
thatmightbecalledatrun-timeby eachcallto avirtual method suchasn. hei ght () (the
setof its possibledynamictargety. This informationis computedhrougha preliminary
classanalysis[PalsbergandSchwartzbacli991;SpotoandJenser?003].
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3. OUR SIMPLIFIED JAVA BYTECODE

In this section we introduce a simplification of the Java bytecode, that we will consider in
our examples and proofs.

In the following, a total functiory is denoted by— and a partial function by-. The
domainand codomainof a functionf are dom(f) andrng(f), respectively. We denote
by [v1 — t1,...,v, — t,] the functionf wheredom(f) = {v1,...,v,} andf(v;) = t;
fori = 1,...,n. Itsupdateis f{wy — di,...,w, — d], where the domain may be
enlarged (it is never reduced).

The Java Virtual Machine runs a Java bytecode program by keeping an activation stack
of states Each state is created by a method call and survives until the end of the call.

DEFINITION 1. The set ofvaluesis Z U L U {null}, whereL is the set ofmemory
locations A stateof the Java Virtual Machine is a tripl€ | s | ) wherel is an array of
values, calledocal variablesand numbered frori upwards,s is a stack of values, called
operand stackin the following, juststack, which grows leftwards, and is a memory
or heap which mapdocationsinto objects An object is a function that maps its fields
(identifiers) into values and that embeds a classiage say that itbelongs taclassk or
is an instance oflassk or has class:.. We require that there are no dangling pointersi.e.,
INL C dom(u), sNL C dom(p) andrng(u(€)) NL C dom(u) for everyl € dom(p).
We writel* for the value of thé:th local variable; we writes* for the value of théith stack
element ¥ is the base of the stack! is the element above and so on); we writg) for
the value of the fielgh of an objecb. The set of all classes is denotedKy The set of all
states is denoted by. When we want to fix the exact numbgér € N of local variables
and#s € N of stack elements allowed in a state, we wktg; »,. O

We will often write the stack in the form :: y :: z :: s, meaning that: is the topmost
value on the stacky is the underlying element andthe element still below its is the
remaining portion of the stack and might be empty. The empty stack is weittes well

as an empty array of local variables. Wheis empty, we often omititand write :: y :: z
instead ofr :: y :: 2 :: . Note that stacks are recursive data structures built from the empty
stacke by pushing elements on top. Hence we should writey :: z :: s :: ¢ instead of
x:y oz s. We use the second notation for simplicity.

ExAMPLE 2. Consider a memory = [¢{; — 01, {2 — 02, {3 — o3] whereo; = [f —
03], 00 = [f — 1] andos = [g — null, h — 3]. Then a state is

o= ([5,0a] | 2 :: l5| 1),

shown in Figure 6. Local variable 0 holds integer 5; local variable 1 hdlgland is hence
bound to the objeat,. The topmost element of the stack also héldand is hence bound
to the objecto,; the underlying element, which is the base of the stack, hldmd is
hence bound to the objeat. We haver € 3, 5 sinces has2 local variables an® stack
elements. O

ExamMPLE 3. We have
o = ([l1,02,04] | L3 :: Lo |[l1 — 01, s — 02,03 > 03,04 — 04,5 — 05]) € X3

whereo; = [next — /4], 02 = [next — null], o3 = [next > {5], 04 = [next — null]
andos = [next — null]. This state is shown in Figure 7]
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N
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h|3
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local variables stack elements

Fig. 6. The state of the Java Virtual Machine considered imipta 2.

N \
next / next | null next next | null next | null
fo. |roaf | o3} | o 05
/ € 4 \ 4, / / £ €s
11T A T~

local variables stack elements

Fig. 7. Thestateof the JavaVirtual Machineconsideredn Example3.

In Definition 1 we haveassumedfor simplicity, thatvaluescanonly beintegers)oca-
tionsor null. TheJavaVirtual Machinedealswith otherprimitive types,aswell aswith
arrays. This simplificationis usefulfor our presentationbut our analyserconsidersall
primitive typesandarrays.

DEFINITION 4. Thesetof typesof our simplifiedJavaVirtual Machineis T = K U
{int,void}. Thevoid typecanonly be usedas the return type of methods.A method

signatureis denotedby x.m(t1,...,%,) : t standingfor a methodnamedm, definedin
classk, expectingp explicit parametersof type, respectivelyt,, ..., ¢, andreturninga
valueof typet, or returningnovaluewhent = void. O

We recallthat,in object-orientedanguages, a method x.m(t. . . , t,) : t has also an
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implicit parameter of type calledt hi s inside the code of the method. Hence the actual
number of parameters js+ 1.

We do not distinguish between methods and constructors. A constructor is just a method
namedki ni t > and returningroid. Moreover, there are no static methods in our simpli-
fied Java bytecode, although the extension of our definitions to deal with static methods is
not difficult and our implementation considers them.

In order to keep the notation reasonably low, we do not formalise the notion of class and
the fact that an object of classhas exactly the fields required ly we do not formalise
the subclass relation, nor the lookup procedure for a method from a class. We will talk
about thetype of a fieldmeaning the static type required by the class that defines the field,
as well as about thiype of a local variableor stack elementmeaning the static type for
that local variable or stack element, as computed by the type inference algorithm described
in [Lindholm and Yellin 1999]; but will give no formal definition of them.

Java bytecode instructions work over states, by affecting their operand stack, local vari-
ables or memory. There are more tH&0 Java bytecode instructions [Lindholm and Yellin
1999]. However, many of them are similar and only differ in the type of their operands.
Others are not relevant in this paper, such as those that perform tedious but useful stack
manipulations. Hence we concentrate here on a very restricted sefrustructions only,
which exemplify the operations that the Java Virtual Machine performs: stack manipula-
tion, arithmetics, interaction between the stack and the local variables set, object creation
and access and method call. Our implementation considers of course the whole set of Java
bytecode instructions.

DEFINITION 5. The set of instructions of our simplified Java bytecode is the following
(a formalisation of their semantics will be given in Section 5):

const ¢. Pushes on top of the stack the constanthich can be an integer arull;

dup. Pushes on top of the stack its topmost element, which hence gets duplicated;

new k. Pushes on top of the stack a reference to a new object of glgd®hich is
properly initialised);

load i. Pushes on top of the stack the value of local variable

store i. Pops the topmost value from the stack and writes it into local varigble

add. Pops the topmost two values from the stack and pushes their sum instead;

getfield f. Pops the topmost valueof the stack, which must be a reference to an object
oornull, and pushes at its plac€ f). If £ isnull, the computation stops;

putfield f. Pops the topmost two valuegthe top) and (underv) from the stack. The
value/ must be a reference to an objecdr null. Valuew is stored intoo(f). If £isnull,
the computation stops;

ifeq of type t. Pops the topmost element of the stack and checks if fvidient is int)
or null (whent € K). If this is not the case, the computation stops;

ifne of type t. Pops the topmost element of the stack and checks if fvidient is int)
or null (whent € K). If this is the case, the computation stops;

call kr.m(te, ..., tp) i t,... kn.m(ty,. .., tp) : t. POps the topmogt + 1 values (the
actual parameteysig, a1, ..., a, from the stack. Value, is calledreceiverof the call
and must be a reference to an objeair null. In the latter case, the computation stops.
Otherwise, a lookup procedure is started from the clae$o upwards along the superclass
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chain, looking for a method calledh, expectingy formal parametersf typety, ..., t,,
respectively, and returning a valtief typet. It is guaranteed that such a method is found
in a class belonging to the s¢k;, ..., x,}. That method is run from a state having an
empty stack and a set of local variables boundgpa, ..., a,. O

The above description of bytecode instructions deserveg smmments. First of all,
we silently assume that the instructions are used correctly, that is, that they are applied to
states where they can work. For instance dilyginstruction requires at least an element on
the operand stack, or otherwise there is nothing to duplicategetfield f andputfield f
instructions need a reference to an objeot null, but not an integer; they require that
actually contains a field naméd putfield requires that that field has a static type consistent
with the value that it is going to write inside. We assume that all these constraints are
true, as well as all othestructural constraintenumerated in [Lindholm and Yellin 1999].
Among those constraints, a very important one is that, however you reach a Java bytecode
instruction in a program, the number and types of the stack elements and the number
and types of the local variables are the same. These constraints are checked by the Java
bytecode verifier of the Java Virtual Machine. Java bytecode that does not pass those
checks is rejected and cannot be run.

Theifeq andifne instructions stop the computation when the condition they embed is
false. This corresponds to the fact that we are going to use those instructifilteraat
the beginning of the two branches of a conditional. Only one branch will actually continue
the execution.

In thecall instruction, the setq.m(t1,...,t,) : t,..., &kp.m(t1,...,t,) : t IS an over-
approximation of the set of itdynamic targetsthat is, of those methods that might be
called at run-time, depending on the run-time class of the receiver. This overapproxima-
tion is always computable by looking at the class hierarchy [Dean et al. 1995]. A better one
is provided byrapid type analysigBacon and Sweeney 1996]. A still better approximation
is provided by other examples dfass analysissuch as that in [Palsberg and Schwartzbach
1991]. The latter, formalised in [Spoto and Jensen 2003] as an abstract interpretation of
the set of states, is the one used by our implementation.

Method return is implicit in our language, as we will see soon.

Our 11 Java bytecode instructions can be used to write Java bytecode programs. In
order to reason about the control flow in the code, we assumdlahabde, as the one
in Figure 1, is given a structure in terms of blocks of code linked by arrows expressing
how the flow of control passes from one to another. These might be for instanicadice
blocksof [Aho et al. 1986], but we also require thatall instruction can only occur at the
beginning of a block. For instance, Figure 8 shows the blocks derived from the code of the
methodexpand in Figure 1. The numbers on the right of each instruction are the number
of local variables and stack elements at the beginning of the instruction. Note that at the
beginning of the methods the local variables hold the parameters of the method.

The construction of the blocks can be done also in the presence of complex control
flows as those arising from switches, exceptions and subroutines (the inf@gmandret
instructions of the Java bytecode), although we do not show it here.

From now on, alava bytecode programill be a graph of blocks, such as that in Fig-

IDifferently from Java thereturntype of the methodis usedin thelookup procedureof the JavabytecodeLind-
holmandYellin 1999].
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load O 2,0
store2 2,1
load 2 3,0

o

ifeq of type Sharing 3,1

ifne of type Sharing 3,1

load 1 3,0
new Sharing 3,1
dup 3,2
const null 3,3

\

call Sharing.<init>(Sharing):void 3,4
putfield next 3,2
load 1 3,0
getfield next 3,1
store 1 3,1
load 2 3,0
getfield next 3,1
store 2 3,1

Fig. 8. Our simplified Java bytecode for the metteodpand in Figure 1. On the right of each instruction we
report the number of local variables and stack elements at that program point, just before executing the instruction.

ure 8; inside each block there is one or more instructions amongltdescribed before.

This graph typically contains many disjoint subgraphs, each corresponding to a different
method or constructor. The ends of a method or constructor, where the control flow returns
to the caller, are the end of every block with no successor, such as the leftmost one in
Figure 8. For simplicity, we assume that the stack there contains exactly as many elements
as are needed to hold the return value (normalgtement, but elements in the case of
methods returningoid, such as all the constructors).

DEFINITION 6. We write a block containingy bytecode instructions and having
immediate successor blocks . . ., b,,,, withm > 0 andw > 0, as

insy b insy
1

ins2 | — b orjustas | ins2 whenm = 0.

ins,, ins,,

A Java bytecode programis a graph of such blocks.OI

In the following, P will always stand for the program under analysis.
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4. PRELIMINARY ANALYSES

Before defining theath-lengthanalysis in Section 6, we introduce here sqraiminary
analyses which we assume already performed when the path-length analysis is applied.
This is because the path-length analysis uses the information computed by such prelim-
inary analyses and would be extremely imprecise without it: no termination proof could
realistically be obtained.

As we mentioned in Section 1, the proofs of termination for imperative programs need
information about the possible sharing of data structures between program variables, as
well as about the possible cyclicity of the data structures bound to the variables. As a
consequence, the first two preliminary analyses gressible pair-sharin@nalysis (Sub-
section 4.1) and possible cyclicityanalysis (Subsection 4.2). We also use a further analy-
sis, which is a definitaliasinganalysis (Subsection 4.3). The latter is needed due to way
that Java bytecode works, by copying values between local variables and stack elements.
Namely, a lot of aliasing is present between the local variables and the stack elements (due
to the instructionsad andstore) as well as between the stack elements (due to the instruc-
tion dup). Knowledge about such aliasing is important for the precision of the path-length
analysis.

Other preliminary static analyses can contribute to the precision of a subsequent path-
length analysis (and hence of termination analysis) although they are not so essential as
pair-sharing, cyclicity and aliasing. Those analyses are discussed in Subsection 4.4.

4.1 Possible Pair-Sharing

In Section 2 we have seena calil. expand(sh2) thatterminates wheshl andsh2
are bound to disjoint data structures, but does not terminate eh2n== sh1l. next.
We have said that the different behaviour is a consequence of the diffiangbetween
shl andsh2 in the two situations. Namely, two variablsbkareif they both reach a
common location, possibly transitively [Secci and Spoto 2005].

The precision of our pair-sharing analysis can be improved if it is computed together
with possible updater, equivalently, definitgurity or constancyinformation [Salcianu
and Rinard 2005; Genaim and Spoto 2008], with a reduced product operation [Cousot and
Cousot 1979]. Update means that for each method we know which parameters might be
affected by the call, in the sense that some object reachable from those parameters might
be modified during the call. Note that this property is much stronger thacdhst
annotation of C++, which is a simple syntactical constraint that does not prevent from
modifying the objects reachable froncanst parameter. The reduced product of pair-
sharing (as in [Secci and Spoto 2005]) with update is what we have implemented inside our
analyser, by using the abstract domain in [Genaim and Spoto 2008]. The update component
improves the precision of pair-sharing and cyclicity (Subsection 4.2). Assume for instance
that the following method

void foo(Ca, Ch) {
a = b;
}

is calledasf oo( x, y) andthatatthe calling placevariablesx andy do not sharewith
eachother. Since,at the endof methodf 0o, variablesa andb share,our pair-sharing
analysisconcludesconservativelythat variablesx andy are madeto shareby the call,
whichis not the case.The updatecomponenpreventshis, sinceit knowsthatno object
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load O {
store 2 {(s0,I0)}

load2  {(I10,12)}

/

ifeq of type Sharing  {(10,12),(s0,10),(s0,12)}

ifne of type Sharing  {(10,12),(s0,10),(s0,I2)
load 1 {(10,12)}
new Sharing {(10,12),(s0,11)}
dup {(10,12),(s0,11)}
const null {(10,12),(s0,I1),(s1,s2)}

\

call Sharing.<init>(Sharing):void  {(10,12),(s0,I1),(s1,s2)}
putfield next {(10,12),(s0,I11)}
load 1 {(10,12)}
getfield next {(10,12),(s0,11)}
store 1 {(10,12),(s0,11)}
load 2 {(10,12)}
getfield next {(10,12),(s0,10),(s0,12)}
store 2 {(10,12),(s0,10),(s0,12)}

Fig. 9. A pair-sharing analysis of the methedpand in Figure 8.

reachable frona or b at the moment of the call is modified during the executioh @b.
Hence, variables andy cannot be made to share by the call. The example also works
for cyclicity: assume thay is cyclical whilex is not cyclical. The cyclicity analysis
in [Rossignoli and Spoto 2006] concludes tiaahnd hence are cyclical after the call
foo(x, y), which is not the case fax. The update component knows that no object
reachable fronx is modified during the call and hengecannot become cyclical. The
update component improves the precision of path-length also, as we show in Section 6.
As we said above, our pair-sharing analysis is completely context-sensitive, which means
that the analysis of a method is a function from the input context for the method to the re-
sulting sharing information at its internal and final program points. In this sense, it is a
denotational static analysis. The advantage of being context-sensitive is that the approx-
imation of the result of a method can be different for every input context for the call.
Consider for instance the method

public Sharing nm(Sharing x) {
return x;
}

If one callst hi s. m( x) in a program point (&ontex} wheret hi s andx share, then its
result andt hi s share after the call, while they do not share if one calls it in a program
point wheret hi s andx do not share. A context-sensitive analysis supports this kind
of reasoning since the approximation of a method is functiokah@tationg). A non-
context-sensitive analysis, instead, provides an approximation for the output of the method
which is consistent witlall possible calls to the method. In the previous example, a non-
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context-sensitivanalysisassumeshatt hi s andx shareafterthe call, with no regardto
theinput context. All our preliminaryanalysesandthe path-lengthanalysisthat we will
definein Section6 arecontext-sensitiveincetheyarebasedn denotationasemanticso
thatthey denotemethodswith relational functionalapproximations.

The implementationof a context-sensitivanalysisdependson the specificanalysis.
In general,one distinguishesetweenpropertiesof the input and propertiesof the out-
put of a denotation,suchas pairs sharingin the input and pairs sharingin the output.
Thenonebuilds constraintdbetweernthoseproperties.Theseconstraintsare oftenlogical
implicationsimplementedas binary decisiondiagramgBryant 1986], asit is explained
in [Rossignoliand Spoto2006; Spoto2008b]. This is the caseof our pair-sharinganal-
ysis also. In othercasesthey are numericalconstraints.For instance,n Section6, the
approximatiorof a methodis a polyhedronoverinput (¢) andoutput(?) variableshence
expressing relationbetweerthe input andthe outputcontextof a method(in generalof
apieceof code).

In orderto showour pair-sharinganalysison a concreteexamplewe fix a specificinput
contextandshowtheresultingapproximationsNamely, Figure9 showsthe resultof our
pair-sharinganalysisappliedto themethodexpand in Figure8, underthe hypothesighat
the methodis calledin a contextwhereits parameterslo not sharewith eachother. For
instancewe canassumehatit is calledasshl. expand(sh2) whereshl andsh2 do
not share. On the right of eachinstructionwe reportthe setof pairsof variableswhich
might shareaccordingto the analysisjust beforethe instructionis executed We referto
theith local variableas! i andto theith stackelementfrom the baseassi . Figure9
hasbeenobtainedby first computingthe denotatiorfor methodexpand andthenfixing
the input contextof the denotationto computethe resultingabstractinformation at the
outputof the method.Informationaboutinternalprogrampoints(thosethatarenot atthe
endof a method)hasbeenrecoveredhroughmagic-set§Payetand Spoto2007]. Since
this is a possiblepair-sharinganalysis,correctnesss to be understoodn the sensethat
if two variablesv; andwvy actuallyshareat run-timein a given programpoint, thenthe
(unorderedpair (v, v2) belonggo theapproximatioratthatprogrampoint. Theconverse
doesnot necessarilyhold. For simplicity, we do not reportinformationaboutreflexive
sharing,thatis, pairs (v, v), sinceall variablesof referencetype sharewith themselves
whentheyarenotnull. We do notreporttheupdatecomponenteither.

In manycasessharingis actuallyaliasing,butthisis not alwaysthe case:for instance,
beforethefirst getfield next instruction thesharinginformationcomputedy theanalysis
is {(10,12), (s0,11)}: thetop of the stacksO shareswith | 1. After readingthe
next field of sO, theapproximatiordoesnotchangepecause¢hevalueof thefield next
of s0O is conservativelyassumedo sharewith | 1. Thiswould notbethecasefor aliasing.

4.2 Possible Cyclicity

In Section2 we havesaidthatit is important,for terminationanalysisto spotthosevari-
ablesthat might be boundto cyclical datastructuressinceiterationsover suchstructures
might diverge. Namely,a cyclical variableis onethatreaches loop of locations. With-
outcyclicity information,theonly possibleconservativdypothesiss thatall variablesare
cyclical,sothatoftenno proof of terminationcanbe built.
Somealiasingandshapeanalysesareableto providecyclicity information. However,
alsoin this case,it is possibleto definea more abstractdomain,which is just madeof
setsof variableswhich might be boundto cyclical datastructures.This abstractdomain,
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load 0 {11}
store 2 {11}

load 2 {11}

o

ifeq of type Sharing {1

ifne of type Sharing  {I1}

load 1 {11}
new Sharing {s0,11}
dup {s0,11}
const null {s0,I11}

\

call Sharing.<init>(Sharing):void {s0,I1
putfield next {s0,I1}
load 1 {11}
getfield next {s0,I11}
store 1 {s0,11}
load 2 {11}
getfield next {11}
store 2 {11}

Fig. 10. A cyclicity analysis of the methask pand in Figure 8.

defined and proved correct in [Rossignoli and Spoto 2006], can be implemented through
Boolean formulas in a completely context and flow sensitive way, and is extremely fast in
practice. It requires a preliminary sharing analysis to achieve a good level of precision. It
exploits purity information, when available, to improve its precision further.

Let us fix again a specific calling context for methedpand in Figure 1. Namely, let
us assume that that method is callecsad. expand( sh2) with sh1l andsh2 which
do not share and are not cyclical. Our cyclicity analysis builds the empty approximation at
every program point insidexpand, meaning that no local variable and no stack element
can be bound to a cyclical data structure inside that method.

Let us fix another calling context faxpand. Namely, let us assume that it is called
asshl. expand(sh2) with shl andsh2 which do not share and withh2 bound to
a possibly cyclical data structure (but rethl). The result of the analysis is shown in
Figure 10, where on the right of every instruction we have written the set of variables
which might be bound to cyclical data structures, according to the analysis. Since this
is apossible cyclicityanalysis, correctness means that if a variable is actually bound to a
cyclical data structure at a given program point at run-time, then that variable belongs to
the approximation computed by the analysis at that program point. The converse is not true
in general.

Figure 10 shows that local variable 1, which ho&d® in our example, is everywhere
potentially bound to a cyclical data structure. Wheloal 1 instruction pushes its value
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load 0 {}
store 2 {(s0,l0)}

load 2 {}

v

ifne of type Sharing  {(s0,12)
load 1 {
ifeq of type Sharing  {(s0,12) new Sharing {(s0,11)}
dup {(s0,11)}
const null {(s0,11),(s1,s2)

\

call Sharing.<init>(Sharing):void {(s0,I1),(s1,s2)
putfield next {(s0,I1)}
load 1 {
getfield next {(s0,11)}
store 1 {(s0,11)}
load 2 {
getfield next {(s0,12)}
store 2 {

Fig. 11. A definitealiasinganalysisof the methodexpand in Figure8.

on the stack,alsothetop of the stack,whichis s0O there,becomegpotentiallyboundto a
cyclical datastructure.Thisis trueuntil thatelements poppedrom the stack.

4.3 Definite Aliasing

Two variablesarealiaseswhentheyareboundto thesamevalue.If thisvalueis alocation,
thenthey must be boundto the samedatastructure(and hencethey share);if it is an
integer,thenthis integermust be the same. In both casesmany propertiesof the two
variablesare the same,as for instancetheir path-lengthof Section6. Hencewe want
to track definitealiasing of variablessincetheir path-lengthmustbe the sameand this
informationimprovesthe path-lengthanalysis. It is importantto remarkthat we need
definitealiasing, introducedby Javabytecodessuchasload, store anddup, ratherthan
possiblealiasing

We havedevelopedverysimpledomainfor definitealiasing.lt tracksthesetof pairsof
variablesvhicharedefinitelyaliases.Theload, store anddup bytecodeintroducealiasing
into the set. Whena variableis modified,the pairswhereit occursareremovedrom the
set.Also this analysidgs completelycontextandflow sensitive.

Figurellshowsthealiasinginformationcomputedor theexpand methodn Figure8
for a calling contextsuchasshl. expand(sh2) whereshl andsh2 arenot aliases.
Ontheright of eachinstructionwe reportthe setof pairsof variableswhich aredefinitely
aliases,accordingto the analysis. Reflexivealiasingis not reportedsincea variableis
alwaysanaliasof itself. Thisis adefinitealiasinganalysis.Hencecorrectnessneanghat
if two variablesarereportedo bealiasesn theapproximatiorcomputedyy theanalysisat
agivenprogrampoint, thenthosetwo variablesareactually,alwaysaliasesatthatprogram
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point at run-time. The converse is not true in general.

You can see that the analysis finds out that, whendtheinstruction is executed, the
base of the stacksO, is definitely an alias of 1. After the dup, also the two topmost
elements on the stack are definitely aliases, so that the( pdir s2) is present in the
approximation of the subsequeminst null instruction.

If two variables are definitely aliases in a program point, then they are also possibly
sharing there. This is why the sets in Figure 11 are always included in the corresponding
sets in Figure 9.

4.4 Other Preliminary Analyses

In Section 2, we have seen that some analyses can improve the precision of a subsequent
path-length analysis (and then of a termination analysis based on path-length) if they are
able to cut away spurious execution paths from the control-flow of the program. We have
seen examples relatedrtall pointer analysis (Figure 33/ass initialisatioranalysis (Fig-
ure 4) ancclassanalysis (Figure 5).

Our JLIA analyser is able to perform all such analyses. &h&l pointer analysis
uses an abstract domain implemented through Boolean functions [Spoto 2008b]. It is a
rather traditional analysis that we implement in a completely flow and control sensitive
way. It is true thabhull pointer information is subsumed by the path-length information
that we describe in Section 6: a variable containsl if and only if its path-length is 0.
Nevertheless, our preliminary, very cheaf 1 pointer analysis simplifies the code which
is then used for the path-length analysis. Hence it is useful for the efficiency of the overall
termination analysis. Moreover, it determines the mani fields more precisely than our
path-length analysis and hence it is also useful for precision. Class initialisation analysis
uses a set of classes which are considered as already initialised. This set can be differentin
different program points since, again, we implement the analysis in a completely flow and
control sensitive way. Class analysis is a traditional analysis for object-oriented programs,
that we implement in the style of [Palsberg and Schwartzbach 1991], by using a flow
sensitive abstract interpretation [Spoto and Jensen 2003].

5. SEMANTICS OF THE JAVA BYTECODE

In this section we define an operational and an equivalent denotational semantics for the
Java bytecode. This means that we first define, formally, how each dflaostructions
modifies the state of the Java Virtual Machine. Then we lift this definition to blocks of
instructions. Anoperationalsemantics is closer to the implementation of an interpreter
of the language and it is usually better understoodieAotationakemantics is important

for our purposes since we will use it later to defineeltional abstract domain that we

will call path-length(Section 6). For this reason we present both semantics, which are,
however, equivalent, as proved in [Payet and Spoto 2007].

We definestate transformerwvith the A-notation § = A\o.¢”’ is a state transformer such
thatd(c) = o' for everyo. In the following Definition 7 we often require a specific
structure foro; it is understood that whem has no such structure, théfv) is undefined.
Definition 7 defines the semantics of the bytecode instructions differentdstm

DEFINITION 7. Each instructionins different fromcall, occurring at a program point
g, is associated with itsemanticsins, : X, ;, — X, s, at g, wherel;, s;, l,, s, are the
number of local variables and stack elements definedaatd at the subsequent program
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point(s), respectively (this information is statically known [Lindholm and Yellin 1999], see
for instance Figure 8). We assume that, (o) is undefined on every where the pairs
of variables which are not computed @by our possible pair-sharing analysis share; or
where the variables which are not computedydty our possible cyclicity analysis are
cyclical; or where the pairs of variables computedqgaby our definite aliasing analysis
are not aliases. Otherwiseéns,, is defined as follows.
consty ¢ = AU s | p)-{1] e s p)
dup, = X1 | top == s| p).(l | top :: top == s| )
newg k= MU s | p).(L] £ 5] p[l — o])
where/ is a fresh location
ando is an object of class whose fields hold or null
loady i = M| s| ). (|1 = s | )
storeq i = X || top == s | w).(l[i — top] | s | )
addg = MUz =y = sz +y) = s|w

gefied, f = \0105 s ). {<z |a(O)(f) =5 ]p) € null

undefined otherwise
L s|ull— wl)f —v if £ # null
putfield, f = Ml|v € s|p). {irl'dellﬁn[ed 2 b otherwise

() s|u)y if top=0o0rtop =null

] t t= M| top :: .
ifeq of type, (Ltop =z s] ) {undeﬁned otherwise

(s py if top # 0andtop # null

: ¢ t = Xl top :: .
ifne of ype, (U] top = s p) {undeﬁned otherwise.

O

The fact that thesetransformersare undefinedwhenthe input statedoesnot satisfy the
definiteinformationcomputedby our staticanalysess notrestrictive,sinceaninstruction
at programpointg mustreceiveaninput statewherethatinformationis true. Forinstance,
theinputstatefor thedup instructionin Figure8 mustreceiveaninput statewherel® does
notsharewith {! (Figure9), wherel® is non-cyclical(Figure10) andwheres® andi! are
aliaseqFigurell).

Notethatthestore ¢ operationmightwrite into alocal variablewhich wasnot yet used
beforethesamenstruction.In suchacasethenumberof localvariablesusedin the output
of theinstructionis largerthanthe numberof local variablesusedin its input.

ExAMPLE 8. Letq betheprogrampointwheretheinstructiondup of Figure 8 occurs.
Thereare 3 local variablesand 2 stackelementshere.Hence

dup, = MO8 2] st s ) (19,8, 1) | st st i s¥ ) € B30 — N3

Notethat, becauseof the alias informationin Figure 11, we require that the baseof the
stackis analiasoflocal variable1. Moreove, ;» mustbesuchthatthepairsof variablesnot
in {(1°,1%), (s°,11)} (Figure 9) do not shareandthe variablesnotin {s°, 1} (Figure 10)
arenotcyclical.
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ExAMPLE 9. Consider the state

g = <[£1,€2,£4] " ég 2l " [51 — 01,(2 = 02,63 = 03,54 — 04,55 = 05]> S 2372

m

of Example 3. Assume that= 3 ands; = 2 and that the pair-sharing, cyclicity and
aliasing analyses give empty definite information at some program pegiatsl . We
have

(dup,)(o) = ([l1, L2, la] | €3 2 €3 2 o | ) € X33
(loadg 1)(0) = ([€1, L2, La] | L2 = €3 Lo | 1) € B3 3
(storeq 2)(0) = ([l1, 02, €3] [ L2 | 1) € X312
(getfield, next)(a) = ([l1, L2, La] | €5 :: L2 | 1) € E32
((getfield,, next); (putfield, next))(o) = (pulfield, next)((getfield, next)(o))
=

[61, L2, L] | e | 1) € B30

wherey' = [¢1 — 01,02 — 04,03 +— 03,04 — 04,05 — 05] and oy, = oz[next — (5] =
[next — ¢5]. O

5.1 Operational Semantics

The state transformers of Definition 7 define the operational semantics of each single byte-
code different fromcall. The semantics of the latter is more difficult to define, since it
performs many operations:

(1) creation of a new state for the callee with no local variables and containing only the
stack elements of the caller used to hold the actual arguments of the call;

(2) lookup of the dynamic target method on the basis of the run-time class of the receiver;

(3) parameter passing, that is, copying the actual arguments from the stack elements to
the local variables of the callee;

(4) execution of the dynamic target method and return.

We model (1), (2) and (3) as state transformers, and (4) as the creation of a new configura-
tion for the callee and, finally, the rehabilitation of the configuration of the caller. Figure 12
shows how each of these operations affects the stack and the local variables.

The first operation is formalised as the following state transformer.

DEFINITION 10. Letq be a program point where a call to a methedn(t1, ... ,t,) : t
occurs. Let, ands, be the number of local variables and stack elemenis @spectively.
We define

args € Xi,s, = 20,p+1

q,k.m(t1,...,tp):t
as

TGS g s (troty) = Miap - ags|pyle]ap:---ap|p).
O

The second operation is formalised aflter state transformer that checks, for each
possible dynamic target methad.m(t1,...,t,) : ¢, with 1 < ¢ < n, if it is actually
selected at run-time. We assume that the stack holds only the actual arguments and that the
local variables of the callee are not yet initialised.
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é p=— T = %
= = K
12} o VA D_ B L @ e2e
execution
args —» select —» makescope—  of —»  return
8 the callee
8
8 ¥
> o
= - - - VA -°
Fig. 12. The execution of a call to a method.
DEFINITION 11. Letk.m(ti,...,t,) : t be a method. We define
SEZGCtn.m(th...,tp):t P A p1—0,p+1
as
o if £ £ null and the lookup procedure
of a methodn(ty,...,t,) : t
from the class ofi(¢)
Melap - a0 ). L o
selects its implementation in class
o
undefined otherwise.
O

The third operation is formalised by a state transformer ¢baies the stack elements
into the corresponding local variables and clears the stack.

DEFINITION 12. Letk.m(t1,...,t,) : t be a method. We define
makescopen.m(tl,...,tp):t P A0 p1-p+1,0
as
Melap - arzao | p)([i = ai [0 <i<plle] ).
(|

Definition 12 formalises the fact that thith local variable of the callee is a copy of the
elementy — i positions down the top of the stack of the caller.
We define now the activation stack which tracks the sequence of calls to methods.

DEFINITION 13. A configurationis a pair (b| o) of a blockd of the program and a
stateo. It represents the fact that the Java Virtual Machine is going to exdcutstates.
Anactivation stacks a stacke; :: ¢o :: - - - it ¢, Of configurations, where; is the topmost,
currentor activeconfiguration. O

We can define now theperational semanticef a Java bytecode program.
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DEFINITION 14. The (small step) operational semantics of a Java bytecode program
P is a relationa’ =p o” providing the immediate successor activation statkof an
activation stack:'. It is defined by the rules:

ins is not acall
. 1)
(] =) S o) ia= (fet] =) ||m5 7)) a
b, is the block where method; = x;.m(t1,...,t,) : ¢ Starts
o={l|ap:---:ap:s|p), thecall occurs atprogram poing
o’ = makescope,, (selectmT(argsq e (0))) @
b
([ | = o) a = e ] = 2 sl )

l . b l/ !/ / . b l/ e ! . (3)

(O3 1TesTm) = OIUTs Ta)) =a= (0@ s =8 [w) = a

1<1<m

(4)

<|:|:; ||U>:a:><bi||a>::a

We define’ %A p o’ as nota’ =p a”. We also define>} as the reflexive and transitive
closure of=p. 0O

Rule (1) executes an instructiams, different fromcall, by using its semanticg:s. The

Java Virtual Machine moves then forward to run the rest of the instructions. Rule (2) calls
a method. It chooses one of the possible callees, looks for the blockwhere the latter
starts and builds its initial stat€/, by usingargs, select andmakescope. It creates a new
current configuration containirig,, ando’. It removes the actual arguments from the old
current configuration and the call from the instructions still to be executed at return time.
Note that the choice of the possible callee is only apparently non-deterministic, since only
one callee will be selected by thelect function. For all the othersy’ does not exist
(select is a partial function). Control returns to the caller by rule (3), which rehabilitates
the configuration of the caller but forces the memory to be that at the end of the execution
of the callee. The return value of the callee is pushed on the stack of the caller. Rule (4)
applies when all instructions inside a block have been executed; it runs one of its immediate
successors, if any. This rule is normally deterministic, since if a block of the Java bytecode
has two or more immediate successors then they start with mutually exclusive conditional
instructions and only one thread of control is actually followed.

5.2 Denotational Semantics

In denotational semantics, a state transformer takes traditionally the naseaattion
Denotations can bsequentiallicomposed, hence modelling the sequential execution of
more instructions.

DEFINITION 15. A denotation is a partial functiol — X from aninput state to
an outputor final state. The set of denotations is denoteddy When we want to fix
the number of local variables and stack elements in the input and output states, we write
Ay, si—1,.5,, Standing fory;, ;. — ¥, .. Letdq, d2 € A. Their sequential composition
iS 01; 02 = Ao.02(01 (o)), which is undefined wheh (o) is undefined or wheby, (41 (o))
is undefined. O
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Since denotations are state transformers, Definition 7 gives the denotation of all byte-
codes different fromeall. The denotational semantics of the latter is modelled, in a denota-
tional fashion, by assuming that we already know the functional behaviour of the selected
dynamic target. As specified by the official documentation [Lindholm and Yellin 1999],
it must be the case that at the beginning of the callee the operand stack is empty and the
p + 1 lowest local variables hold the actual arguments of the call. At its end, the operand
stack holds only the return value of the callee, if any, for the simplifying hypothesis of
Section 3. Hence it has heighg = 1 if a return value exists angl, = 0 if the callee re-
turnsvoid. New local variables might exist at the end of the execution of the callee, used
inside its code. Hence at the end we h&ve p + 1 local variables. Note that the initial
local variables, used to store the actual parameters, might have been modified during the
execution of the callee. The execution of the callee is hence a denatatidxy 11—, s,
wheres, € {0,1} depending on the return type of the callee &nd: p + 1 (Figure 12).

We canplug this ¢ into each calling point to the callee. It is enough to observe that the
local variables of the caller do not change during the call. Its stack must have the form

ap :: --- i ag :: swherea, :: -+ g are the actual arguments of the call anare the
x > 0 underlymg stack elements, if any. The stack elementsdio not change during
the call. Thea, :: --- :: ag actual arguments get popped off the stack and replaced with

the return value of the callee, if any. The final memory is that reached at the end of the
execution of the callee. These considerations lextiendthe denotation of a callee into
that of a call to that callee.

DEFINITION 16. Letk.m(t1,...,t,) : t be a method and, = 0 if ¢t = void, s, =1
otherwise. Lei, > p + 1. Letq be a program point where a call to.m(t1,...,t,) : ¢
occurs. Letl,, s, be the number of local variables and stack elements used waith

¢ =P+ 1+ (atleast thep + 1 actual arguments of the call must be on the stack when
we call a method). We define

extendm.m(tl,...,tp):t : AO,p+1~>lo,sO = Alq,sqﬁlq@#*so

such as, letting((c [ ap 2 --- a1 ao [ ) = (| v | 1), extendy ... 1,)(6) iS

(Nv:s|p) i dom(p) S dom(u');
everyl € dom(u)
which is not reachable
fromay :: -+t ag ag
is such thap(¢) = /' (£);
Mlap - ar:ags|w). and if thekth formal
argument is not modified
byr.m(ti,....tp) : t
thenay = (I')"

undefined otherwise.
Here,v standdfor thereturn valueof the callee,if any,or otherwisev = . O

Notethatextend playsthesamerole hereasargs andtherulefor returningfrom amethod,
usedin the operationakemantics.
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In Definition 16 we require that, which must be thought of as the current interpretation
of k.m(t1,...,tp) : t, does not erase locationdom(u) C dom(p'). This constraint
would be too strong in the presence of garbage collection (which we do not model in our
formalisation). In that case, that constraint should be refined by saying that reachable lo-
cations cannot be erased By We also require that does not modify the objects which
are not reachable from the actual parameters of the call. Moreover, iththiermal pa-
rameter is not modified by methodm(t1,...,t,) : t, then its value is not affected by
0. Note that the latter is a syntactical property: we just look fetaae & instruction in
the body ofx.m(t1,...,t,) : t. If no such instruction is found, then we assert that the
kth argument is not modified. All these hypotheses are sensible for our language. Making
extend . m(t,,....t,):t(0) undefined when they do not hold is a reasonable definition. These
constraints are needed in order to prove the correctness of the albsteact operation of
Section 6.

An interpretationprovides a set of denotations for each bléalf the program. Those
denotations represent the possible runs of the program from the beginhingtilfthe end
of the method wheré occur (that is, until a block with no successorSetscan express
non-deterministic behaviours, which is not the case in our concrete semantics, but is useful
in view of the definition of the abstract semantics in Section 6. By using sets, our concrete
semantics is already @llecting semanticBCousot and Cousot 1977]. The operatigns
andextend over denotations are consequently extended to sets of denotations.

DEFINITION 17. Aninterpretation. for a program P is a mapping fromP’s blocks
into p(A). More precisely, ifb is a block such that at its beginning there dréocal
variables ands stack elements anigis part of the body of a methadm/(¢1,...,t,) : ¢,
then«(b) C A; 5.1, s, Wherel, > [ (new local variables might be declared in the body of
the method)s, = 0 if ¢ = void ands, = 1 otherwise. The set of all interpretations is
writtenT and is ordered by pointwise set-inclusiori.]

ExAMPLE 18. The interpretation of the topmost block in Figure 8 must be a subset of
Az 03,1 Since, at the end of methakpand, there are three local variables and one
stack element only. For the same reason, the interpretation of the block containing the
load 2 instruction, in the same figure, must be a subset9f_.5 ;. O

Given an interpretationproviding an approximation of the functional behaviour of the
blocks of P, we can define an improved interpretation denoteffby

DEFINITION 19. Let. € I. We define thdenotations in of an instructiorins which is
notcall as

[ins], = {ins}

whereins is defined in Definition 7. Fotall, letm; = k;.m(t1,...,t,) 1 tforl <i <mn.
We define
[call my,...,m,], = U extend,,, ({select, }; {makescope,,, }; t(bm,))
1<i<n

whereb,,, is the block where method, starts. The functioff_], is extended to blocks as

insy 1 [ i s [insw ], if m =0
[[ A b:” _ {[[msl]] [insw] m

b linsi].; -« 5 [insw].; (e(b1) U+ Ue(by,)) ifm > 0.
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O

Note that the semantics oéll is computed as the extension of the sequential composition

of denotations that select each given possible run-time target method, then pass the param-
eters and finally run the target method (Figure 12). Only one of those compositions will
be defined, that leading to the target method that is selected at run-time. Note also that the
semantics of a block takes all its follower$,, .. ., b,, into account, so that it represents

all runs of the method wheteoccurs fromp itself until its end.

The blocks of P are in general interdependent, because of loops and recursion, and
a denotational semantics must be built through a fixpoint computation. Given an empty
approximation. € I of the denotational semantics, one improves it ififg(:) € I and
iterates the application &fp until a fixpointi.e., a7 such thatT»(z) = 7. That fixpoint
will be the denotational semantics 8%, since it corresponds to the minimal solution of
the set of equations expressedhyy. Our analyser actually performs smaller fixpoints on
each strongly-connected component of blocks rather than a huge fixpoint over all blocks.
This is important for efficiency reasons but irrelevant here for our theoretical results.

DEFINITION 20. Thetransformefl's : I — I for P is defined as
Tp(u)(b) = [b].
for every. € I and blockb of P. O

ProPoOsITION 21. Tp is additive, that isTp(Ujcst;) = UjesTp(i5), SO its least
fixpoint exists and is equal td;>(7}, whereT(b) = & for every blockb of P and
T = Tp(T}) for everyi > 0 [Tarski 1955]. O

DEFINITION 22. ThedenotationasemanticsDp of P is the leastfixpointof T, as
computedn Proposition21. [

Our denotationakemanticgs definedover the concretedomaingp(A), usesthe deno-
tationsof Definitions 7, 11 and 12 which are singletonsetsin p(A). It alsousesthe
operators;, U and extend over p(A) of Definitions 15 and 16 (U is just setunion). In
orderto defineanabstractdenotationakemanticswe haveto provideanabstractiomain,
abstractdomainelementscorrectly approximatingthe singletonsetsof denotationsand
abstractoperatorscorrectw.r.t. the concreteones. In the next sectionwe will apply this
techniqueo thedefinitionof anabstracdomainfor path-lengthof datastructures.

As we saidat the beginningof this section,our operationahnddenotationasemantics
areprovablyequivalentasstatedby thefollowing result.

THEOREM 23. Letb a blockof a program P and o, aninitial statefor 6. Thefunc-
tional behaviourof b, as modelledby the operationalsemanticof Subsectiors.1, coin-
cideswith its denotationakemantic®f Subsectior.2:

{Uout | <b " Uin> :>} <b/ " Uout> 7£>P} = {5(0'7,77,) | 0 € [[b]]DP, 5(0'm) is deﬁned}.
([l

5.3 Dealing with Exceptions

We describeherehow we dealwith exceptionsn our semanticaframework.

Figurel3showshetransformatiornto basicblocksof themethodrai n of theprogram
in Figure 3. There are instructiotisathave not been considered in our simplificatafn
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new Exc

dup

call Exc.<init>():void

!

store 1
const 0
store 2

catch
throw

load 2
const 20

|

if_cmplt
if_cmpge load 2

const 10

if_cmpgt
load 1
const 5
putfield f

T\

catch increment 2 by 2

if_cmple

top_is_not_instance_of java.lang.NullPointerExceptipn | top_is_instance_of java.lang.NullPointerExceptio|
throw store 3

Fig. 13. Our simplified Java bytecode for the metined n in Figure 3.

the Java bytecode. The conditiondlempXX are similar to theifeq andifne instructions
but they work on the topmodtvo values on the stack. The instructieatch is more
interesting. It is put after each instruction that might throw an exception. The idea is that
it catchessuch exceptions. Hence it represents the entry point to the exception handlers of
the method. The instructiamrow throws back an exception to the caller of the method.

In order to formalise the semantics aftch andthrow, we start by expanding the se-
mantics of the other instructions. The state is split inteoamal state and aexceptional
state. For instance, the semantics ofdbg instruction (Definition 7) becomes

dup, = M(l [ top = s | 1), 0¢).((I | top :: top = s | ), undefined)

which means thadup does not use the state resulting from an exception that is thrown
before it and does not throw any exception (the output exceptional statedigined).
Instructions that can throw an exception are modelled as in the following example

() () (f) == s | p), undefined)  if £ # null

getfieldy f = AL s ), 0c). {(undeﬁned, (T ¢ | pl¢ — npe])) otherwise
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wheref’ is a fresh location andpe is aNul | Poi nt er Except i on object. This means
that the input exceptional state is not used but there might be an output exceptional state,
when the object whose field is read is actualbil. In the latter case, the exceptional
state has a stack of one element only, which is a pointer to the exception object; the output
normal state is undefined.

On the same line, we can define the semantics offth®v instruction:

(undefined, (L | €] 1)) if £ # null

throwg = AL | £ 2 s| ), oc). {(undeﬁned, A1 all v mpe]))

where?’ is a fresh location andpe is aNul | Poi nt er Except i on object. This means
that the input exceptional state is not used and that this instruction always throws an ex-
ception, so that there is no output normal state. The output exceptional state is built
from the original input normal state, by throwing away all stack elements but the top-
most, which must be a pointer to an exception object. If that pointer is actually, a
Nul | Poi nt er Except i on is thrown instead.

The catch instruction catches an exceptierwhich has been thrown just before that
instruction. This is modelled by using the input exceptional state tcefiffdhis is the only
instruction which uses the input exceptional state and discards the input normal state:

catchg = X0n, 0¢).(0c, undefined).

Since some instructions might throw more than one type of exception (for instatise,
might throw all exceptions thrown by the method that they call), we need to select the right
exception handler on the basis of the run-time type of the exception. This is done through
top_is_instance_of andtop_is_not_instance_of instructions. They check the class tag of the
exception object on top of the stack:

(€] p), undefined) —if u(l)is ar

top-is-instance-of g & = A{({L | €] ), 7¢)- {(undeﬁned undefined) —otherwise

With theuseof split statesandof theinstructionscatch, throw, top_is_instance_of and
top_is_not_instance_of, onecandefinethe operationahnddenotationakemanticof Java
bytecodeexactlyaswe alreadydid in this section.No otherchangds required.It is only
for simplicity that,in thenextsectionswe do notconsiderexceptionsn theformalisation.

We concludethis sectionby observingthat if null pointeranalysisis appliedto the
methodin Figure 3 thenthe lowesttwo blocksrootedat catch andthe block containing
catch areremovedsincethe putfield is foundto neverthrow any exception.Without this
analysis thereis insteadan (apparentjnfinite loop passingthroughthe lower catch in-
structionandterminationis not proved.

6. PATH-LENGTH ANALYSIS

In this sectionwe definean abstractionof the denotationsof Section5. Namely, their
variablesv areabstractednto anintegerpath-length if v is boundto alocationthenthe
path-lengttof v is the maximallengthof achainof locationsthatonecanfollow from v; if
v is boundto anintegeri, thenthepath-lengtrof v is i itself?. Sincetheexactdetermination
of the possiblepath-lengthof a variableat eachgiven programpoint is undecidablewe

2In ourimplementatiorwe alsoconsidevariablesboundto arrays.Their path-lengthis the lengthof the array.
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must content ourselves with an approximation of the possible range for the path-lengths.
This leads to the use of numerical constraints which are closed polyhedra [Cousot and
Halbwachs 1978].

The above definition of path-length is formalised below. We first define an auxiliary
function len’ which follows the chains of locations up fosteps of dereference. This
function is then used in the definition of the path-length functien

DEFINITION 24. Lety be a memory (Definition 1). Let
len? (null, p) = 0
len? (i,p) =i ifi€Z
len® (6, ) =0 if £ € dom(p)
len? ™ (¢, 1) = 1 + max {len’ (¢, 1) | € € rng(u(€)) L} if £ € dom(p)
for everyj > 0. We assume that the maximum of an empty s&t Thepath-length of a

valuev in yis len(v, ) = lim len? (v, p). O
J—00

In the last case of the definition @n’, the intersection witH. is needed in order to
consider only the values of the fields of the obje¢t) which are locationg’. The fields
of type integer of the objects are not used in the definition of the path-length.

Note that ifi € Z thenlen(i, ) = len’ (i, 1) = 4 for everyj > 0 and memory.

Similarly, len(null, u) = len’ (null, u) = 0 for every memoryu. Moreover, if¢ is a
location bound inu to a cyclical data-structure, théem (¢, 1) = co.

ExAMPLE 25. Consider the memory
p=[l1 /> 01,02 /> 02,3 > 03,y > 04, l5 > 03]

whereo; = [next — {4], 02 = [next +— null], o3 = [next — /5], o4 = [next —
null] andos = [next — null] (Example 3). We havien ({1, ) = 2, len(o, u) = 1,
len(ls, ) =2 andlen(ly, ) =1. O

We can now map a state intgath-length assignmerthat is, a function specifying the
path-length of its variables. This comes in two versions: ininipet versionlen, the state
is considered as the input state of a denotation. Irothput versionlen, it is considered
as the output state of a denotation. We recall tha the value of thé:th local variable in
[ ands” is the value of thé:th stack element from the baseofDefinition 1).

DEFINITION 26. Let(l|s| u) € 4 45. Itsinput path-length assignmeist

len((L]'s | ) = [I* = len(t*, 1) | 0 < k < #) U [5* 1 len(s*, 1) | 0 < k < #s]
and, similarly, itsoutput path-length assignmeat

len((L]s] 1)) = [I* = len(t*, 1) | 0 < k < #] U [8F > len(s*, 1) | 0 < k < #s] .

O

ExAMPLE 27. Consider the state

o= ([l1,l2,04] | l3 :: lo | [€1 = 01,02 — 02,3 — 03,L4 > 04,05 — 05])

“w
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of Example 3. By using the results of Example 25 we conclude that

10— len(ly, p), 1" — len(ly, ), 12 — len(ly, 1)

len(o) = sl len(l3, ), 8% — len(lq, 1)
=°—2'—1,%-1,5—235 —1].
Similarly, we have
len(o) = [I°— 2,1' — 1,12~ 1,8 — 2,58° — 1].
O
ExamMPLE 28. Consider the state of Example 3 and the state

dupq(a) = ([l1, 02, 4] | l5 :: £ :: Lo | [l1 — 01,02 > 09,03 — 03,4 > 04, L5 — 05])

i
of Example 9. By Example 25 we have

len(dup, (o)) = I+ 2,0 = 1,1> = 1,8 2,5 — 2,5 1].
O

DEFINITION 29. Letl;, s;, 1o, So € N. The sefPLy, 4, ., s, Of thepath-length polyhe-
dracontains all finite sets of integer linear constraints over the varia§lés| 0 < k <
LYU{s" |0<k<s}U{*|0<k<I,}U{8 |0<k<s,}, using only the<
comparison operator. (]

Although only< is allowed in a path-length constraint, we will also write constraints such
asx = y, standing for botlr < y andy < z.

ExAMPLE 30. The following polyhedron belongsBi; 5,3 3:

P=001=072=0235 =35 =3
pl=4q 3 =010°>0,'>0,12>0,5>0,5" >0
st =42

O

A path-length assignment fixes the values of the variableseWihose values satisfy a
path-length constraint, we say that they ara@delof that constraint.

DEFINITION 31. Letpl € PL;, 5,1, s, andp be an assignment from a superset of the
variables ofpl into Z U {oo}. We say thap is amodelof pl and we writep = pl when
plp is true, that is, by substituting, ip/, the variables with their values provided pywe
get a tautological set of ground constraintd.]

ExAMPLE 32. Consider the path-length constraipt of Example 30 and the state
of Example 3. By Examples 27 and 28 we have that

02 1—1,2—1,3+—23—1

p=len(o) Ulen(dup, (o)) =1 jo o 1 21 82 98l s 2800 1

is such that
2=2,1=1,1=1,1=1,2=2
plp=<1=1,2>0,1>0,1>0,1>0,2>0
2=2
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Hencep is a model opl. O

We can now define theoncretisationof a path-length constraint. It is the set of de-
notations that induce input and output assignments that, together, form a model of the
constraint.

DEFINITION 33. Letpl € PL;, 5,1, 5, Its concretisatioris

'7(171) = {5 € Alhsi_)lovso

forall o € ¥, 5, such thaty(o) is defined
we have(len( ) U len(8 )) E pl

O

ExAMPLE 34. Consider the path-length constraipt of Example 30. In Example 32
we have seen that the stateof Example 3 is such thdien (o) U lén(dupq(o—))) E pl,
wheredup,, is the denotation of theup instruction in Figure 8, given in Example 8. How-
ever, this is true foreveryinput states such thatdup, (o) is defined. This is because
every suchr has the form([1°, s°,1%] | s' :: s°| u) and satisfies the static information of
Figures 9, 10 and 11. Hence

p = len(o) U lén(dupq( )
=len (([I°,s°, 1] s" =: s | u)) U len (([1°, 8%, 2] | 8" w8t s | )
19 len(1% p), I* — len(s%, p), 1% — len( )
s»—>len( ),0»—>le( W)
19— len(lo ), ll — len(s° ),12 — len(12 )
32 len(st, u), 8t '—>len(s 1), 80— len(sY, )

It follows that

len(19, 1) = len(I°, ), len(s°, ) = len(s°, )

Iy — len(1%, 1) = len(I?, p), len(s°, p) = len(s°, ), len(sl w) = len(st, u)
pp= len(s°, p) = len(s°, p), len(1°, i) > 0, len(s®, ) >0

len(1%, ) > 0,len(s®, ) > 0, len(st, ) > 0, len(s ,u) = len(s!, p)

which is true since variablel, s°, 12 ands' do not have integer type at the beginning of
the execution of theéup instruction in Figure 8 and hence their path-length is non-negative
(Definition 24). In conclusion, we have

dup, € v(pl) .
[l

We want to order our path-length constraints on the basisedf toncretisationpl; <
ply if and only if v(pl;) C ~(ply). This results in a poset of polyhedra. Theperation
over sets of constraints is the union of the constraiatsthe intersection of the polyhedra
that they represent, and theoperation is th@olyhedral hull[Stoer and Witzgall 1970] of
the polyhedra that they represémet, the smallest closed polyhedron which includes both.

In the following, we identify in the same equivalence class all elements having the same
concretisation. For instancér < y + 1} and{z + 2 < y + 3} are the same abstract
elementsince({z <y +1}) =~v{z+2 <y +3}).
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DerINITION 35. Thepath-length polyhedr®L;, 5,—.;, s, are ordered aspl;, < pi,
if and only if y(pl;) C ~(pl,). They form aposeti.e., < is reflexive, transitive and
antisymmetric. Their elements silently stand for their equivalence class. Their top element
is the tautological constraintrue (which stands for an empty set of linear constraints).
Their least elementis the constrafatse (which stands for a constraint such as< 0). O

By the theory of abstract interpretation, we get a corredrabsdenotational semantics
DY for path-length as soon as we substitute the concrete denotations of Definition 7 with
elements oL which include them in their concretisation. Moreover, we must provide the
abstract counterparts oveL of the operations U andextend overp(A).

We first define a constraint stating that no local variable and no stack element is modified,
that if two variables are definitely aliases, then they must have the same path-length and
that all variables of reference (non-integer) type have non-negative path-length.

DEFINITION 36. Let L, S C N and ¢ be a program point where there afg local
variables ands, stack elements. We define

Unchangedy (L, S) = {I' = 1" | i € L}
u{s'=3s1]iecS}
i .| 0<14,j<sqands’isan alias ofs’ atq
Uss =3s . - .. .
according to our definite aliasing analysi
U {sl =

0<i<s, 0<j<l,ands’isan alias ofi’ atq }
o{ir=p

according to our definite aliasing analysis
U{s" >0]0<i< s,ands’ does not have integer type @t

<

J

o~

0 <14,j <l,andl’is an alias ofl’ atq
according to our definite aliasing analysi

U{l*>0]0 <1< 1, andl’ does not have integer type @} .

Letl,s € N. ThenUnchanged (1, s) = Unchanged ,({0,...,1—=1},{0,...,s—1}). O

Let us define the abstract counterparts ofihwedenotations now.

DEFINITION 37. Let #l, #s be the numberof local variablesand stackelementsat
a programpoint ¢. The abstract counterparts of the denotations of Definifiane the
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following:
constfl‘ . { Unchanged ,(#1,#s) U {c = §%#*} ?f cel
Unchanged ,(#1, #s) U {0 = 575} if ¢ = null
dupIg]L Unchanged ,(#1, #s) U {37571 = g#s)
newgﬂ‘ x = Unchanged ,(#1, #s) U {1 = g7}
loadlgﬂ‘ i = Unchanged ,(#1, #s) U {I* = %5}
storefﬂ“ i = Unchanged ({0, ..., #l — 1} \ i,{0,..., #s — 2}) U {s#s—1 =}
addflL = Unchanged ,(#1, #s — 2) U {a#s=2 4 gts—l — s#s=2)
Unchanged ,(#1, #s — 1)
if f has integer type
Unchanged , (#1, #s — 1) U {571 > g7 1}
if f does not have integer type asti*~! might be cyclical at;
Unchanged ,(#1,#s — 1) U {§#°71 > 1+ §#571}
if f does not have integer type asdd*~! cannot be cyclical ay

getfield,” f =

Unchanged ,(#1, #s — 2)
if f has integer type

Unchanged (L, S)

putfield,” f = if s#5—2 might share withs#<—! at¢

Unchanged (L, S) U{li + §#5~1 > {1 |0 < i < #,i ¢ L}
U{ 4+ 871 >5 |0<i<#s—2,i¢gS}
otherwise

whereL are the indexes of the local variables which cannot share with
s7#5=2 atq and S the indexes: of the stack elements, with< = < #s — 2,
which cannot share witk”*~2 at g

. PL , sHs—1 _
ifeq of type,” t = Unchanged ,(#1,#s — 1) U {57571 = 0}

Unchanged ,(#1,#s — 1) U{§#71 > 1} if t # int

ifne of typemL t= i
1 Unchanged ,(#1, #s — 1) otherwise.

O

The abstract operations use thachanged constraint for the part of the state which
they do not modify. The part which is modified is modelled explicitly. For instance, the
const™™ constraint says that the new top of the staék has path-lengtie whenc is an
integer value and whenc isnull. Thedup®™ constraint copies the path-length of the old
top of the stack#*~! into the path-length of the new top of the stadk’.

The definition OfgetﬁelquPH‘ states that if we read the field of an object then we get a
value whose path-length is no larger than the path-leggth® of the object. Moreover,
if the object cannot be cyclical, the path-length of its field is strictly smaller sdn’.
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For the definition oﬁmtﬁeldEL, remember tha¢#*—2 holds the object whose fielflis
going to be modified, and that**—! holds the value which is going to be written insifle
(Definition 7). Definition 37 states that jf has integer type then no path-length changes.
Otherwise, the local variablek and stack elementS which do not share at with the
object whose field is modified.€., with s#$~2), and that still exist in the output of the
instruction, do not change their path-length. The other variables are affectedguytfié
instruction. Namely, if theputfield might build a cycle, that is, if the variable”s—2
holding the object might share with the variabt& —! holding the value which is going to
be written inside the fielg of the object, then the path-length of the variables ndt and
not in S is not approximated (it might become infinite). Otherwise it can only grow by the
path-length of the valug#*—! which is stored inside the field.

EXAMPLE 38. Consider thedup instruction in Figure 8. We know that and s° are
aliases at the program pointwhere the instruction occurs (Figure 11). Henaiza'zzpf;’IL is
the constraintp! of Example 30. O

ExAMPLE 39. Letg be now the program point at the beginning of the code in Figure 8.
Consider thdoad 0 instruction atq. There are 2 local variables at (the parameters of
the method), both of non-integer type, and no stack elements. No variables are aliases at
(Figure 11). Hence

loadlgﬂ‘ 0 = Unchanged ,(2,0) U {I°=35%
=P —P 050 0y (P = )
={0=0°1"=011">0,">0,1" =3

O

EXAMPLE 40. Letr be the program point at the beginning of thiere 2 instruction
in the topmost block in Figure 8. There are 2 local variables gthe parameters of the
method), both of non-integer type, and 1 stack element, of non-integer type. Vagables
and!° are aliases at- (Figure 11). Hence

store?™ 2 = Unchanged, ({0,1}, @) U {3° = I*}
= {0 =00 =15 =11>0,1' > 0,58 > 0} U{s" = I*}
={°=0°"="5=0[10>01">03>0,3=10}.

O

EXAMPLE 41. Letr bethe programpoint at the beginningof the first getfield next
instructionin thelowestblockin Figure 8. Assumeéhat the argumentof the methodmight
be a cyclical list. Thereare 3 local variablesat r, all of non-integertype,and 1 stack
elementpf non-integettype. Thatstackelementightbecyclicalif theinputargumentbf
themethodmightbe cyclical (Figure 10). Variabless® and!! are aliasesat r (Figure 11).
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Hence
getfield™™ next = Unchanged, ({0,1,2}, @) U {3° > §°}

— ZO:ZOvil :i15Z2:Z27 U{§0 > §0}
T 0=040>0,01>0,12>0,5>0 =

O o1 _jtj2_j2
_{50_i1,i020,i1zo,on,éozo,stéO} '
O

ExXAMPLE 42. Letr be the program point at the beginning of thetfield next instruc-
tion in the lowest block in Figure 8. Assume that the argument of the method might be a
cyclical list. There are 3 local variables &t all of non-integer type, and 2 stack elements,
of non-integer type. Variabled andi® are aliases at (Figure 11). Only variables® and
' and variabled® and{! might share at- (Figure 9). Hence we are in the third case for
putfield.” in Definition 37. We havé = {1°,1?} and S = @. Hence

putfield®™ next = Unchanged, (L, S) U {I* + 5' > I'}

jo—joj2_j2 o )

— V’ -~ 7V - bs >
{gozzl,zozo,zl20,1220,5020}U{l +8 =2
0= =

a { 0 =10°>0,0">0,2>0,5>0,I' + 35 > } '
The intuition of this result is that localé and 2 do not change their path-length, since
they are not affected by the modification of the field. Lad@hat is,ot her in Figure 1),

instead, might increase its path-length by as much as the path-length of the value which is
written inside the fielshext . O

We also provide correct approximations for the denotati@esidor a method call.

DEFINITION 43. Letk.m(t1,...,t,) : t be a method. We define
argsfh.m(tl ..... ty) = {5sq_(p+l)+i =510<i<p+1}

PL
selectmn(t1 vvvvv t)):t

makescope[g‘m(tl7“_,tp):t ={5=01|0<i<p+1}.

Unchanged(0,p + 1)

O

We define now the abstract counterparts of the operatorsand extend over sets of
denotations. Fof, we sequentially compose two path-length constraints by matching the
output variables of the first with the input variables of the second. This is accomplished
by renaming such variables into new overlined varialileg/hich are then projected away
with the 3, operation. The/*™ operation is just the polyhedral hull operation. Eotend,
recall that we assume already performed many preliminary static analyses (Section 4).
Namely, we assume that at the program point wherglanstruction occurs we know:

(1) which stack elements or local variables of the caller might share;
(2) which stack elements or local variables of the caller must be aliases of each other;
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(3) which formal parameters of the callee might be updated during the execution of the
callee (that is, some reachable object might change its fields);

(4) which formal parameters of the callee might be modified during the execution of the
callee. This is just a syntactical property: paraméter modified if astore k instruc-
tion occurs inside the code of the callee.

DEFINITION 44. Letpl, € PL;, 5,1, s, andpl, € PL;, 5, s,. Let us also define
T = {ZO, . ,th_l,EO, ..., 571 We definenl; ;- pl, € PLy, 4,1, ., @S

ply P ply = 37 (ply[6 =T | TET)Uply[o— T | TET)) .
Letpl,, ply € PLy, s,—1,,5,- We define
pl, UL pl, = polyhedral hull ofpl, andpl,, .

Let k.m(ty,...,t,) : t be a method and, = 0 if ¢ = void, s, = 1 otherwise. Let

lo > p+ 1. Letg be a program point where a call to.m(t1,...,t,) : t occurs. Lety, s,

be the number of local variables and stack elements usedwith s, = p + 1 + « (at

least thep + 1 actual arguments of the call must be on the stack when you call a method).
The actual parameters of the call @tare held ins*™* with 0 < k£ < p 4+ 1. We define

PL .
emtendﬁ.m(thm,tp);t : PLop+1—10,5, — PLiy sq—1g,2+50

as

extendilvl‘m(tl ,,,,, tp):t(pl):

_3 pllo— o |TeT|[E%— 87 |0 <k <p+1][8° — 57
- T UUS U MSAU ULU MLA

where

r={"..0""

US = {5" = §"| 0 <i < x ands’ cannot share with any possibly updated paramgter

N 10<i<z, 0<k<p+1,
MSA =<1 = §"| s'is adefinite alias of théth parameter
and the latter is not modified inside the callge
UL ={l' =1 | 0 < i < I, andl’ cannot share with any possibly updated parampter

L |o<i<i  0<k<pt1,
MLA = {1 =1'|1"is adefinite alias of théth parameter
and the latter is not modified inside the callde

O
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EXAMPLE 45. Consider the constraints of Examples 39 and 40. We have
(loadg]L 0);7E (storef 2)
(=0 =10 >0, > 0,00 = 3°)
FLO =0 M =14 50=1°1°>0,5 >0,5° =%}
=701 =1"0°>0,1'>0,0° =5
=07 =15 =7,1>03 >0, =2

(P =D =0 > 0,0 > 0,00 = 2} .

= 3{70 I 50}

O

The exztend™ operation is rather complex. Do not consider 64 and M LA sets for
the moment. Then the definition says that if we know the path-length behayiofithe
called method(s), we just haveltfi the input stack elements pf by « positions, since the
callee starts withp + 1 stack elements which are copies of the higlpestl stack elements
of the caller. The latter, however, hasmore underlying elements (Definition 16). The
same must be performed for the only output stack element which might be used by the
callee to yield its return value. The output local variables are renamed into new overlined
variables inT" which are finally removed b¥. This definition would be already correct,
but extremely imprecise. In fact, it does not say anything about the effect of the call on the
set of variabley” = {I" | 0 < i < [,} U {s" | 0 < i < z} which contains all the local
variables of the caller and the lower stack elements of the caller, those which are not
used to hold the + 1 parameters. This is the purpose of #i& and US sets, respectively.
They say that the path-length of anye Y is not modified by the call, but only if cannot
share with any of the parameters of the call which might be updated during the execution
of the callee. This is correct since in such a case the callee has no way of modifying the
objects reachable fromand hence the path-length@tannot be affected by the call.

The definition in [Spoto et al. 2006] stopped here and actually did not even use the
update information, so that it only required non-sharing in the definition of the&etnd
UL. Hence it was less precise. We improve it here further by using the sets of constraints
MSA and MLA. They consider the case when some Y is well sharing with theth
actual parameter, but is actually an alias of it. Furthermore, that parameter must not be
modified inside the callee. In such a case, it is enough to look at the final path-length of
that parameter, held it¥ inside the callee, to determine the final path-length.of

Note that since integer variables cannot share, the path-length of any of integer
type is not affected by aall instruction (it will always be included in th&S or UL sets).

We can now state theorrectnessesults for our path-length analysis. Namely, we prove
that the path-length constraints computed by our analysis include their concrete counter-
parts in their concretisation. We start with the instructions.

PROPOSITION 46. Letinstructionins, different fromcall, occur at program poing. We
have
insg € v(inslgﬂ‘) .
O

Then we consider the auxiliary path-length constraints fethrad call.
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PROPOSITION 47. Letk.m(ty,...,tp,) : t be a method. We have

PL
TGS ¢ k.m(ty,...tp)t € ’Y(argsq,n.m(tl ..... tp):t)

PL
select o m(ty,....t,):t € 7(select,€.m(t1,...7,51)):,5)

Makescope . i, ....t,):t € 'y(makescopeg“m(tl ..... tp):t) -
O
Hence we consider the operators over the path-length cartstra

PROPOSITION 48. In the conditions of Definition 44, we have
Y(ply); v (ply) S y(ply;™ ply)
1(ply) Uy (ply) C y(ply U ply)
extendy m(ty .1, (V(p1)) S y(extend (1)) -
([l
We now lift to our path-length polyhedra the notion of interation of Definition 17.

DEFINITION 49. A path-length interpretationfor P is a map fromP’s blocks into
PL. More precisely, ifb is a block such that at its beginning there dréocal variables
and s stack elements anblis part of the body of a method.m(t:,...,t,) : t, then
u(b) € PL; s, s, Wherel, > [ (new local variables might be declared in the body of
the method)s, = 0 if ¢ = void ands, = 1 otherwise. The set of all path-length
interpretations is writted”™ and is ordered by the pointwise extensior<of O

Hence we lift the definition of denotation of an instructiorbbwck (Definition 19).

DEFINITION 50. Let: € I". We define theath-length denotations inof an instruc-
tion ins which is notcall as

[ins]* = ins™ .

For call, letm; = k;.m(t1,...,tp) : tfor 1 <i < n. We define
PL
[call my, ..., m,]P" = U1<i<n extend% (select% PL makescopeprll“i PL L(bmi))

whereb,,,, is the block where method; starts. The functiofi_]" is extended to blocks as

|:|: insy b1 :|:|P]L . {Hinsl]]?L;IF’]L AN ;IP]L [[insw]]ILPL ifm=0

= .
[insy JF%sFE oo P finsy JP%5 (u(by) UPE - - UFE o(by,)) i m> 0.

ins,, b
)

O

We can finally define gath-lengthdenotational semantics. A technical difficulty is that
we cannot define it as the least fixpoint df & operator, since that fixpoint does not exist

in general (the union of an infinite set of polyhedra might not be a polyhedron). Hence
we content ourselves with a post-fixpoint of that operatoyan interpretatiom such that
TH(7) < 7. A postfixpoint can be computed in a finite number of iterations through
a wideningoperatorover polyhedra,which forcesthe analysisto converge[Cousotand
Halbwachsl978]. We actuallyusethemoreprecisewideningoperatodefinedn [Bagnara

et al. 2005].



A Termination Analyser for Java Bytecode Based on Path-Length . 43

DEFINITION 51. Thetransforme5t : I'L — TFL for P is defined as
TE (1)(b) = [b],*

for every. € T'* and blockb of P. We define @ost-fixpointDZ- of TE, computable in

a finite number of iterations, by using the widening operator defined in [Bagnara et al.
2005]. Note that this widening operator keeps the polyhedra closed. Hence we can define
thepath-length semantiasf P asDY-. O

THEOREM 52. The path-length semantics is correct w.r.t. the concrete denotational
semantics of Section 5 i.e.,

Dp S ’}/(DIIP;L) .
([l

In this section, for simplicity, we have not considered exices. If exceptions are taken
into account, as modelled in Subsection 5.3, then the path-length polyhedra are split into
pairs of two polyhedra: the first polyhedron relates the output normal state to the input nor-
mal state. The second polyhedron relates the output exceptional state to the input normal
state. Our implementation uses this technique to deal with programs with exceptions.

We have seen that the path-length might be infinite (Definition 24) andkthatllowed
in the models of a polyhedron (Definition 31). Nevertheless, the polyhedra build for each
bytecode do not mentioso explicitly (Definitions 37 and 43) and the operators on such
polyhedra (Definition 44) are standard and easily implementable, for instance, in terms of
the operators available in the Parma Polyhedra Library [Bagnara et al. 2008]. Hence that
library or a similar one can safely be used to implement the path-length analysis.

7. COMPILATION INTO CONSTRAINT LOGIC PROGRAMS

In this section we prove that the result of a path-length analysis can be used to translate a
Java bytecode program into a constraint logic program [Jaffar and Maher 1994] over path-
length polyhedra@LP(PPL)), whose termination entails the termination of the original Java
bytecode program. Itis importantto remark that we assume a specialised sema@ties of
computations here, where variables are always bound to integer values [Spoto et al. 2008].
This means that we do not allofree variables in a call to a predicate. This is consistent
with the fact that we model the path-length of the variables in a state, which assigns an
integer value to all the variables in the state. For instance, iCLHPL) program:

p(E): - {§ = 0},b(7).
b(z):-{z =9 +1,9 = 0},b(9).

we assume that a call to predicatéeads to a call to predicabewith a given, non-negative
argumentj. That is, a specific value fay is chosen, provided that it is non-negative, and
the computation continues with. This entails that any call tp terminates, while this
is not the case with the traditional semanticsGafP, which allows partially constrained
variables [Jaffar and Maher 1994].

From now on, we assume that the blocks of code have been decorated with a unique
name, as in Figure 14. In that figure, we also report the names of some program points,
that we will use in the examples below.
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bl | load_qO
store_r 2

b2 | load 2

Aﬂe of type Sharing

- - load 1
ifeq of type Sharing new Sharing

dup
const null

\

b5 | call_s Sharing.<init>(Sharing):voi¢
putfield_t next
load_u 1
getfield next
store 1
load 2
getfield next
store_z 2

b

w

Fig. 14. The program in Figure 8, where each block is deconaittda uniqgue name.

DEFINITION 53. Let P be a Java bytecode program. The CPRJ program P¢pp
derived fromP is built as follows. For each block

insy b
b insa = oL

L b
ins,, m

in P, letc = [ins1]pu;"" - -+ ¥ [insw ] ps. . We generate the CLP clauses
P P

b(vdrs): - ¢,bi(vdrs).

(%)

b(vars): - ¢, by, (vdrs).

wherevdrs are the input local variables and stack elements at the beginning of block
andwvadrs are the output local variables and stack elements at the end of blfinksome

fixed order). Moreover, ifhs; = cally ma, ..., my, Wherem; = k;.m(t1,...,tp) : t, then
we also add a clause
b(vars): - (argsf&ni L selectﬁk PL makescopeiﬂ‘i) s b, (le, ce, ip). (6)

for eachl < i < n, whereb,,, is theblockwheremethodn; begins. O

The clauseg5) mimic the executionof block b, followed by the executionof oneof its
followers. Therelationbetweertheinputstateof b andthatof its followersis approximated
by thepath-lengttconstraint: of thecodeinsideblock b. Hencethoseclausesaythatthe
executionof b from aninput states leadsto the executionof b4, . .., b, from a states’
wherethevariablesn o (seemasinputvariableslandthosein ¢’ (seemasoutputvariables)
satisfyc. Notethatno clauseis generatedn (5) for thoseblockswith no followers, since
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they cannot be part of a loop, so that they are not relevant for our termination analysis. If
the first instructiorins; of block b is acall instruction (remember that we assume ttult
instructions can only occur at the beginning of a block), the clauses (5) asstongpiete
execution of that call, that is, they express a computation in which control has come back
to the callee. This would not be enough to prove our correctness result (Theorem 56). This
is because non-termination very often occurs as a consequence of an infinite recursion, so
that we must also consider the case whenladoes not complete its execution. To that
purpose, we introduce the clauses (6). They mimic, explicitly, the execution of the callee.
Namely, they single out from the stack the actual arguments of theaeah™{) then they
check which dynamic target is selectedi¢ct™) then they move the actual arguments
from the stack to the lowest local variablesdkescope”™) and they finally run the callee
from blockb,,,. The latter starts its execution in a state where the stack is empty and the
p + 1 lowest local variables hold the actual arguments of the call.

Our translation intdCLP(PL) is similar in spirit to that in [Albert et al. 2007a; 2008].
In both cases, €LP program is constructed from the structure of the code, seen as a graph
of blocks of code. The main difference is that they use the clauses (5), but they do not use
the clauses (6). This second kind of clauses is meaningful for termination analysis, but not
for cost analysis.

EXAMPLE 54. Only one clause is generated for the bldxk in Figure 14, whose in-
structions occur at program points that we calandr, respectively:

b1(1° ) : - ([[loadq O]]I%EL;M [store, 2]]%1{;}) b2( 10,1112 .
which by Example 45 is:
b1(°, ") :- {I°=1°0" =1",I°>0,0" >0,0°=1%},b2(I° 1'%
[l

ExAMPLE 55. Consider blockb5 in Figure 14. At its beginning there are 3 local
variables and 4 stack elements (Figure 8). We build two clauses for it. The first belongs to
the set(5):

bs( 1,02, 5% 5, 82 5% : - ([[calls Sharing.(init)(Sharing): void]]ﬂ;éﬂjppL;IP]L
[putfield, next] s ;™ [load,, 1[5z ™ - -
- ;PL [store, 2]][%%), b2(1°,11,1?).
The second is built sindg5 starts with acall instruction (with only one possible dynamic
target). Itis
bs(°, 1,12, 50, 5% 52, 8% - (argsmL FL

s,Sharing. (init)(Sharing):void

PL
init)(Sharing):void’

PL
selectSharing.<
PL
ma‘kescopeSharing. (init)(Sharing) :void) ’
70 71
bSharing.(init) (Sharing):void(l )1 )

O

Figure 15 shows th€LP(PL) program generated from the blocks of metteocpand
in Figure 14. Since that method calls the constructor of ciiiss i ng, the last clause in
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b1(° %) :- {I°=1°1* =i*I°>0,0* >0,0° =i%},b2(1°0*,0?.
b2(I0, 0", [2): - {2 =P2,=R1"=0",°=1°,3°>0,I" >0,5° >0},b3(1°,1",i?,35%.
b2(I0,0",[2): - {2 =P2,=R1"=01",°=1°,3>0,I" >0,5° >0},ba(i?,i',i?3%.

ba(i°, 0,25 : -

b5(i°, 0", 02,50, 5,52, 8% -
b5( 507[17[27507 51752753) L {52 = [0753 = il}?bSharing.(init)(Sharing):void( [07[1) .

Fig. 15. TheCLP(PL) program generated from the Java bytecode metwgdand in Figure 14. Block
bsharing. (init) (Sharing):void IS the first block of the code of the constructor of cl&bsr i ng.

Figure 15 links the code faxpand with that for the constructor (not shown in the figure).
It is interesting to observe that the last but one clause contains the conBtraint > /2
i.e., block b5 strictly decreases the path-length of local variable 2 (variablesor in
Figure 1). Together with the fact that that variable has reference type and hence has non-
negative path-length, this is the key for a proof of termination for the mett@aénd.

We can now state the correctness of our translation. Note that we assume thatithe
predicates are called with concrete integer values for the variables, according to our spe-
cialised semantics.

THEOREM 56. Let P be a Java bytecode program aid block of P. If the query
b(vars) has only terminating computations P, p, for any fixed integer values fawurs,
then all executions of a Java Virtual Machine started at blotkrminate. O

PROOF We prove this result by contradiction. That is, we prove that if there is an exe-
cution of the Java Virtual Machine from bloékhat diverges, according to the operational
semantics of Subsection 5.1, then the qugiyrs) has a divergent computation Py, p
for some fixed integer values fonrs.

Let hence

insy insy insg_1 ins
01 — 09 — o+ 5 g — - @)

be an infinite operational execution of the Java Virtual Machine from bipstarting at a
states;. The states in the sequence are those that are, at each step, on top of the activation
stack of the Java Virtual Machine. Instructidrs;, is the instruction which makes the

state on top of the activation stack evolve fremto o,1. Note that in general we have
[insk]pp (oK) # ors1 Since, wherins;, is the last instruction of a method, stateoy 1

is derived fromz},, which was on top of the activation stack at the moment of the last call

to m, by replacing the actual parameters with the return value (Definition 14). That call
was executed by sonwall mg, .. ., m, instruction in the program, witlm = m; for some

0 <1 < n. Insuch a case, we can identify a portion of (7):

args,, select,, makescope,,, insg,
on =" Ohg1 — Oh42  — Ohggecccce Ok — Okt1 (8)

whereoy, is the top of the activationstackat the momentof the last activationof m and
ins; terminateghat activation. By the equivalenceof our denotationaland operational
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semantics (Theorem 23), we know that
Opt+1 = extend,, ({select,, }; {makescope,,}; Dp(bm)) (on)
and, since our language is deterministic, we have
Okt1 = U extend,, ({selecty, }; {makescope,,, }; Dp(bm,)) (on)
1<i<n

thatis[call my,--- ,my]p,(0n) = ox4+1. Hence we can systematically rewrite each such
subsequence in (7) into a subsequence

call my,--- ,mg,
—

Ok+1 -
Let
ins/ ins’ insj,_ 4 ins,
oy = oh = = gy = (9

be the resulting, still infinite sequence. We now have

linsi]or (0k) = 0% i1 (10)

for everyk > 0. This sequence can still contain instructiamgs,,,, but they must cor-
respond to activations of method that do not reach completion in (9). Sincecall
instruction can only occur at the beginning of some bladgke sequence (9) must have as
a prefix:

. . insy
; insy 7 insy,

—oy = ohy-rol, = ol -, whereb=| in2 | ;

ins,,

args,,; , selecty,, /makescopemi

—oroy —‘'agy — 'of — o}, whereb =| @llmi.mn | andl < i < n.

After that prefix, we will see another prefix. In the first case the new prefix will correspond
to a blockd’ among the successors &if in the second case, it will correspond to the
beginningp,,,, of methodm,;. By Definition 53, in the first cas€¢,p contains the clause

b(vars): - ([[insl]]ll;ﬂ?};m R [[insw]]ﬂgjl)}) b (vrs).
and in the second case it contains the clause
b(vdrs): - ([[a"gsmi]]%ﬂg’g;m [[Se|ectmi]]IF{)H%»DL;P]L [[makescopemi]]%ﬂf;}) b, (10, 1P).

If we continue unwinding the infinite sequence (9), we hence find an infinite sequence of
clauses ofPqp:

by (varsy): - ([[ins'l]]%ﬂg};m oo L [[insiul]]%ﬂg) ,ba(vdrsa).

ba(varss): - ([[insivl+1]]%H%;PL P [[insfm]]ﬂ;é%) ,bs(vdrss).

by (vars): - ([[insivtfﬁl]]ﬂ;ﬂ};a;m SR [[insiut]]“{;%) bt (varsis).
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whereb(vars) = by(varsy). This is not enough to conclude th&:.» has a diver-
gent computation from the quetyvars), since aCLP computation stops when its con-
straint store is unsatisfiable. Since the unification of@h® atomb; (vdrs;) with the atom
bs(vdrs;) corresponds to thé™ operation (renaming of the variables into new overlined
variables and existential quantification), then we still have to prove that, for évery,

the constraint store

JJPL L. PL

csy = [ins) PL PL_ _ .PLp: JPL, PL... PL [[insﬁm]]m

DELY TS [[inséujbf;}v i [insy, 4 DEL TS DEL
is satisfiable. By the correctness of our path-length analysis (Theorem 52) and by Proposi-
tions 46, 47 and 48, we conclude that

linsi1pps--- s [insy, Jop; - s linsy,  1lpp; - 5 lins,, o, € y(ese)  (11)

and by Equation (10) we conclude that

([[inSE]]Dp;m slinsy, Ipps -+ s [insy,  1lppes - ;[[inSth]]Dp) (01) = Oy 41 -

By (11) and Definition 33 this entails that

(lén(oi) U leAn(oq’UtH)) E csy

i.e., cs; hasamodelandis hencesatisfiable.Note thata modelprovidesconcretenteger
valuesto eachinputvariableandthe existentialoperatousedby ;" requiresheexistence
of concretentegervaluesfor the variablesat eachpredicatecall. Hencewe havefounda

divergentcomputatioraccordingo our specialisedemantics. [

Let by be the initial block of our JavabytecodeprogramP. Oncethe CLP(PL)
programPcgy,p is built from P, we canusea terminationprover for (constraint)logic

programgo provethe terminationof Popp from by, (vars), andhence(Theorem56)
thatof P from by .

We usethe BINTERM terminationprover. Comparedo traditionallogic programming
terminationprovers BINTERM dealswith integervaluedvariablesnsteadof non-negative
integervaluedvariablesandtakesadvantagef the specialisetperationakemanticof
CLP(PL). The prover,seeAlgorithm 1 at page50, relieson the two staticanalysistech-
niguessummarisedelow.

Thefirst onecombinesclosurecomputatiorwith local rankingfunctions,asin [Codish
and Taboch1999; Dershowitzet al. 2001;Lee et al. 2001; Codishet al. 2005; Avery
2006]. We usetwo abstractiomains:convexpolyhedraandmonotonicityconstraint§Brod-
sky andSagiv1989]augmentedvith bounds.For eachdomain,the binary unfoldingsof
theabstractiorof Por,p arecomputed.Thenfor eachbinaryrecursiverule in the unfold-
ings,wetry to detectalocal affinerankingfunction.

The secondtechniqueis a specialisationof thatin [Mesnardand Serebrenik2008].
Thecall graphof P¢rp is decomposedhto its maximalstrongly connecteccomponents
(SC®). For eachpredicatein eachintra-componenta global parametricaffine ranking
functionis definedso thatit takesnon-negativevaluesand decreasesf a fixed amount
from the headof eachclauseto its body. Thenthe existenceof suchan affine ranking
functionis decidedby linear programming. The last part of Algorithm 1, from line 10,
couldincludethesearchor moresophisticatedankingfunctionsasproposedor instance
in [Cousot2005].
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We have actually used an improvement of the first technique, which gives better results
in some cases. The idea is that, whenever predicatea binary recursive rule of the
form b(vars): - ¢, b(vdrs') is called, some invariant might hold for the variables s, as
a consequence of the execution of the predicates of the program which have been called
beforeb. This invariant can be useful to prove the terminatiord.ofor this reason, we
compute acall contexts analysiinspired by [Gabbrielli and Giacobazzi 1994; Codish
and Taboch 1999] for the predicates in the binary unfolding of the program and use the
resulting invariants to improve the quality of the termination proof for the recursive rules.
As an example, consider the followir@L P (PL) program, already unfolded in its binary
form:

entry:- {g>0},p(9)
p(#):- {Z=9+1,9>0},p().
p(z):- {& < -1,9=2},p®).

The entry point of the program is predicaat ry. Predicatep does not terminate in
general, because of its second clause. However, any run from pregiitaty terminates,
sincep(z) is invoked with a call context > 0 which disables its second clause. Situations
like this are found, for instance, Bubbl eSort andDoubl e in Figure 16. As another
example, the first test of IRTERM (lines 1-2 of Algorithm 1) proves the termination of
the program:

entry : - {true},di v2(z).
div2(z):- {f=2x2,2 > 1},di v2(2).
while the second test of IRTERM (lines 5-7) fails, also by using call contexts. On the
other hand, the presence of that second test is crucial for proving the termination of a
predicate with two arguments, decreasmgt. a lexicographical ordering:
entry:- {true},| ex(i1,Z2).

| eX(fl‘l,fZ'g) - {,@1 >0,292>0,20>0,77 > 1 +$E'1},| ex(:ﬁl,:ﬁg).

| eX(fl,fCQ) L- {JA?l > O,SEQ > O,.fl = j?l,j?Q > 1+JA?2},| eX(il,.’ig).
Finally, the following example:

entry : - {true},gcd(&y, z2).
ng(fl,,fg) .- {i‘l >1,202>1,20 =21,22 = fg},ngZ(i'l,i'g).
ngZ(fl,,fg) L= {i‘l >do+ 1,21 =1 — do,T9 = i‘g},ng(i'l,i'g).
ngZ(fl,j?Q) L= {.fg > I+ 1,@1 = j?l,.fg = T9 — jl},ng(il,ig).

is proved terminating thanks to the last test ok BERM (line 10) and with the help of the
call contextiy; > 1, &2 > 1 which holds for any internal call tgcd2 (i1, &2).

8. EXPERIMENTS

In this section we describe our implementation of the termination analyser for full Java
bytecode and report some experimental results.

The analyser [Spoto et al. 2008] is the combination of thed generic static analyser
for Java bytecode [Spoto 2008a], written in Java, with the¢TB=RM termination prover for
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Algorithm 1 BINTERM: a termination test

Require: aprogramPgrp

Ensure: if BINTERM returnstruethen we have a termination proof
1: Pf — the binary unfoldings oP¢y,p w.r.t. the polyhedral domain
2: if for each recursive rule d?;* there is an affine ranking functidhen
3. return true

4: else

5. P, «— the abstraction oP¢;p W.r.t. the bounded monotonicity domain
6: Py « the binary unfoldings of»

7. if for each recursive rule a?; there is an affine ranking functidghen

8: return true

9: €se
10: if for eachSCCof P¢yp, for each predicate in this component, there is an affine

ranking functiorthen

11: return true
12: else
13: return unknown
14: end if
15:  endif
16: end if

constraint logic programs over numerical constraints,temitn Prolog. We now describe
the different phases of the analysis, in their order of application.

(1) The user specifies thecl ass file containing therai n() method of the application
under analysis. Alternatively, ilibrary mode the user specifies the set .ofl ass
files whose public methods must be analysed. In both casesy &lso analyses all

reachable methods, which typically requires to load other classes than those specified

by the user. This phase is implemented througlapplication extractioralgorithm
based on [Palsberg and Schwartzbach 1991]. It is an instaratassfanalysignd is

hence used also to compute the set of possible run-time targets for each method call

(Section 3). The cl ass files are parsed using thecBL library for bytecode ma-
nipulation fitt p: //j akart a. apache. or g/ bcel ). Most native methods are
replaced with handwritten code which simulates their behavior;

(2) Number and types of local variables and stack elements at each program point are

computed through the Kindall algorithm [Lindholm and Yellin 1999];
(3) Aliasing, pair-sharing and cyclicity analyses are computed using the corresponding

abstract domains implemented insideLA. Our pair-sharing analysis is described

in [Secci and Spoto 2005] and is computed in reduced product with purity information

(asin [Genaim and Spoto 2008]); our cyclicity analysis is described in [Rossignoli and

Spoto 2006]. All these analyses are computed using abstract versions of the denota-
tional semantics of Section 5. These denotational analyses are focused at internal pro-

gram points usingnagic-set§Payet and Spoto 2007]. Pair-sharing and cyclicity ab-

stract domain elements are implemented through binary decision diagrams, using the

BuDDy library (htt p: // sour cef or ge. net/ proj ect s/ buddy). Thenull
pointer [Spoto 2008b] and class initialisation analyses are also performed since they
might be useful for the precision of the subsequent path-length analysis (Section 2);
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[ program [ M| B PR PA|PL ] proof [ TE]LP [N ] S]
Nest ed 4 | 724 ]| 158 ] 55 | 60 | 179 4 JinjJ1]o
Nureri cal 1 5 | 635 || 144 | 65 | 90 | 445 5 Jmm[1]o0
Nureri cal 3 5 | 852 || 154 | 61 | 83 | 212 4 JowL]o]o
Factori al 5 | 741 || 159 | 49 | 43 | 101 5 J1m[1]o0
Acker mann 5 | 765 || 144 | 57 | 78 | 222 5 J1m[1]o0
Diff 5 | 805 || 165 | 71 | 57712118 5 [ 11 [ 1 |1
Bubbl eSor t 5 | 804 || 153 | 70 | 172 | 660 5 |11
Doubl e 5 | 749 || 147 | 53 | 49 | 218 5 Jmm[1]o0
Nureri cal 2 6 | 675 || 170 | 64 | 185 | 140 6 |1m|1]o0
Exc 6 | 762 || 150 | 75 | 108 | 132 6 |1m|1]o0
Fact Sum 6 | 773 || 151 | 46 | 70 | 116 6 |22 210
Hanoi 7 | 874 || 168 | 88 | 318 | 216 5 Jmm[1]o0
Shari ng 7 | 855 || 161 | 112 | 169 | 115 7 o1
BTree 7 | 845 || 162 | 85 | 150 | 135 7 2211
Fact Sunii st 8 | 844 || 164 | 78 | 84 | 156 8 |21 1
Init 10 | 811 || 150 | 68 | 34 | 109 8 |o2]o0]o0
Bi narySearchTree | 10 | 921 173 | 120 | 158 137 10 /717 | 0 | 1
Vi rtual 11| 908 || 174 | 107 | 202 | 108 12211
ListInt 11| 981 || 189 | 178 | 359 | 292 11 [ 55 ] 0|5
Li st 11 | 1044 || 188 | 256 | 462 | 213 11 [ 55 ] 0|5

Fig. 16. The termination analyses of some programs. Times andliseconds.M is the number of methods of

the program;B is the number of its bytecode$’R is the time for the preprocessing of the prografy is the

time for the preliminary analyseg?L is the time for the path-length analysis;oof is the time to find a proof

with BINTERM; TE is the number of methods whose termination is proves;is the number of loops whose
termination is proved}V is the number of loops whose termination is proved by using numerical argunsents;

is the number of loops whose termination is proved by using arguments related to dynamic data-structures in
memory.

(4) Path-length analysis is computed with our domain described in Section 6. Abstract
domain elements are closed polyhedra and have been implemented through the PPL
(Parma Polyhedra Library) [Bagnara et al. 2008]. When the complexity of the op-
erations over the polyhedra explodes (for instance because of a high number of local
variables) a worst-case assumption is made, that is, the path-length of the highest vari-
ables is not approximated;

(5) A constraint logic program is generated from the Java bytecode program, by using the
result of our path-length analysis (Section 7), and is then sourced toItHEERM
termination prover for constraint logic programs. The latter looks for appropriate ter-
mination proofs (Section 7). The results of the analysis are finally provided to the
user.

Our experiments have been performed on a Linux machine based on a 64 bits dual
core AMD Opteron processor 280 running at 2.4Ghz, with 2 gigabytes of RAM and 1
megabyte of cache, by using Sun Java Development Kit version 1.5 and SICStus Prolog
version 3.12.8.

Figure 16 reports the results of the termination analysis of some small programs, which
are distributed together withulia. The source code of these programs is available, but we
have not used it for the analysis, which is performed over the compiled bytecode. Programs
Factorial ,Di ff, Bubbl eSort, Fact Sum Hanoi , BTr ee, Fact Sunli st and
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Bi nar ySear chTr ee aretakenfrom [Albert et al. 2007a;2008],while Nuneri cal 1,
Nuner i cal 2 andNurrer i cal 3 aretakenfrom[Cooket al. 2006aJandcontainnumer-
ical loopsonly (thatin Nuner i cal 3 canactuallydiverge).The othershavebeenchosen
in orderto testthepracticabilityof theanalysissincetheirterminationdepend®n cycles,
nestedcycles, iterationsover one or multiple datastructuresexceptions. The standard
Javaclassesrenotincludedin theanalysiswhich meanghatthe callsto thelibrariesare
assumedo terminate For eachprogramwe reportthe numberof methodsthe numberof
bytecodesthetime spentfor preprocessinfphaseg1) and(2) above);the time spentfor
the preliminaryanalysegphase(3)); the time spentfor path-lengthanalysis(phase(4));
the time spentwhile looking for a terminationproof throughBINTERM (phaseg(5)). All
timesarein milliseconds.Figurel6 reportshow manymethodshavebeenprovedto termi-
nate. In all theseprogramsa proof of terminationis foundfor everyterminatingmethod,
sothattheanalysisis actuallyoptimal. For | ni t , thereare2 methodsvhosetermination
could not be proved,sincethey actually diverge. They arethe constructorandthe static
initialiser of the classA shownin Section2. Figure16 thenreportshow manyloopsare
provedto terminate.By loop we meana strongly-connectedomponenbf blocksof code
containinga cycle. Hencenestedlavaloopsresultin oneloop only. Similarly, mutually
recursivemethodsform oneloop only. Figure 16 reportsalsothe numberof suchloops
whoseterminationhasbeenprovedby usingnumericalargumentsindthe numberof loops
whoseterminationhasbeenprovedby reasoningverdynamicdatastructuresin thefirst
casetherankingfunctionfor theloop usesvariablesof the programwhosetypeisi nt ; in
thesecondcasejt usesvariablesof referenceype. Sincerankingfunctionsin generaluse
morethanonevariable,it is possiblefor aloop to be provedby usingbothnumericaland
structuralarguments.

Figure 17 reportsthe resultsof the terminationanalysisof largerprograms.We have
chosersuchprogramsso thatthey do not usenative methodsof the standardlavalibrary
beyondthosethatwe havealreadyspecified norreflection,nor multithreadingthesdimi-
tationsarediscussedh Sectionl0). Thisfigureshowsthatouranalysisscalego programs
of up to 1000methodsgcomputingnon-trivial calculations.Ray Tr acer is aray-tracing
programinvolving complexfloating-pointcalculations.The sourcecodeof this program
is not availableto us. NQueens is a solverof the n-queengroblem,basedon a library
for binary decisiondiagrams. This library is includedin the analysis.Ki t t en is a di-
dacticcompilerfor a simpleimperativeobject-orientedanguageusedby the first author
for his classeslt useshighly cyclical dynamicdatastructuressuchasabstractrees(with
sharingsubtreespndgraphsof basicblocks. In all theseexamplesthe standardlavali-
brarieshavebeenincludedin the analysis. The numberof methodswhoseterminationis
notproveddoesnotincludethemethodghatarenotprovedto terminateonly becaus¢hey
call anothemmethodwhoseterminationis not proved. Thatis, we only countthe methods
thatintroducepossiblenon-terminatioraccordingo ouranalyser.

Figure 18 showsthe methodscalled by RayTr acer and whoseterminationis not
provedby our analyser. We haveinvestigatedvhy our analyserfails to provetheir ter-
mination. MethodAbst ract St ri ngBui | der. stringSi zeOf' I nt (i nt) iterates
overthe elementf anarraystoredin afield of an object. However,insteadof loading
thatarrayonthestackonceandthenusingthatreferencaluringtheiteration,it reloadshe
arrayateveryiteration.As aconsequenceuranalysedoesnotunderstandhatthelength
of the array doesnot changeacrossterationsandthat the numberof iterationsis conse-
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[progam | M | B [ PR] PA | PL | proof | TE| LP [NJ]S]
RayTr acer 243 | 13680 || 1191 | 7209 | 17678 | 13309 232 8overl9 | 5 4
NQueens 480 | 33533 || 1464 | 9232 | 42191 | 54910 || 412 | 33over80| 33 [ 14
Kitten 1201 | 66941 || 2664 | 34856 | 88909 | 105365 | 1168 | 44 over 98| 38 | 15

Fig. 17. The termination analyses of some larger programmediare in millisecondsM is the number of
methods of the progran3 is the number of its bytecode®R is the time for the preprocessing of the program;

PA is the time for the preliminary analysef£,L is the time for the path-length analysigioof is the time to

find a proof with BNTERM; TE is the number of methods whose termination is prove#;is the number of

loops whose termination is provedy is the number of loops whose termination is proved by using numerical
arguments;S is the number of loops whose termination is proved by using arguments related to dynamic data-
structures in memory.

int AbstractStringBuilder.stringSizeO Int(int)

Abstract StringBuil der Abstract StringBuil der.append(int)

Abstract StringBuil der AbstractStringBuil der.append(String)

bool ean Cl ass. desiredAsserti onStatus()

String(char[],int,int)

void String.getChars(int,int,char[],int)

StringBuffer StringBuffer.append(String)

StringBuilder StringBuil der.append(String)

String StringBuilder.toString()

RayTr aci ngEngi ne. cl osest I ntersection(Ray, Surface[]):Intersection
RayTr aci ngEngi ne. render (Surface[], Camera, Light[],int,int,...):RG[][]

Fig. 18. The methods called 8ay Tr acer and whose termination is not proved by our analyser

guently bound from above. Meth@d ass. desi r edAsserti onSt at us() contains
the following instructions:

43. astore_3

44: al oad_2

45: nonitorexit

46: aload_3

47: at hrow

Exception tabl e:

from to target type
18 42 43 any
43 46 43 any

Our analyser thinks that theoni t or exi t instruction at line 45 might throw an excep-

tion which leads back to line 43, hence entering an infinite loop. We do not know if this can
ever be the case. The proofis not easy simzei t or exi t can throw an exception when

it is invoked onnull (but this is already excluded by onnl1 pointer analysis here) but

also when the rules for correct bracketing withni t or ent er are not satisfied [Lind-

holm and Yellin 1999]. Our analyser does not include at the moment any analysis for this
correct bracketing. Such a recursive exception handler looks, however, very strange to us
and might actually be a bug in the standard Java libraries. The methods in Figure 18 deal-
ing with strings and related classes are not proved to terminate since they might throw a
Stri ngl ndexQut OfF BoundsExcept i on, whose constructor calls back the methods
for creating and appending strings. Such call-backs might throw again an exception and
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sooninfinitely often. We supposéahat suchbehaviourcannothappenn practice,but our

analysefails to proveit. Methodcl osest | nt er sect i on terminatedecaus®f some
geometricakeasoningaboutraysof light, aswe havecheckedby decompilingthe byte-

code.Ouranalysehasno hopeof provingthis. Methodr ender containsalargenumber
of localvariables.Thecomplexityof ouranalysisexplodesothataworst-cas@assumption
is madefor themethod whoseterminationis not proved.

Ouranalyseffails to provetheterminationof somemethodof the standardlavalibrary
alsofor the othertwo testprograms. Furthermorejt alsofails to provethe termination
of somemethodsof the application.For NQueens, the methodswvhich arenot provedto
terminatearemainly thoseof thelibrary for binarydecisiondiagramghatperformbitwise
operationssincebinarydecisiondiagramsareefficiently representethroughbitmaps.To
provetheir termination,oneneedsa precisemodelof suchbitwise operationswhich our
analysecurrentlylacks(aswell asotheranalysersseethe sameimitation for Terminator
in [Cooket al.2006a]).FortheKi t t en compiler,ouranalysefails to provethatmethods
dealingwith the graphof basicblocks of codeactually terminate. This is a limitation
of our analysis:thosemethodsterminatesincea block is nevervisited twice but this is
not capturedby our analysis(Section10). Other methodsare not provedto terminate
becaus®f someimprecisionin the non-cyclicityanalysis:the analysefails to provethat
the hierarchyof classedn the compiledprogramis non-cyclical. Non-cyclicity of this
hierarchyis guaranteetyy the semanticalnalysisphaseof the compiler,but our analyser
is notcleverenoughto understandhis.

9. RELATED WORK

Thereis ahugeliteratureon terminationanalysisof computeprogramsandon theformal
specificatiorof thesemanticaindof theanalysisof Javaor Javabytecode Herewe provide
atersesurveyof themostrelevantpapersn thoseareas.

TerminationAnalysisfor Logic and FunctionalLanguages.Automaticterminationof
logical ruleswasstudiedin [Ullman andGelder1988]. [Plimer1990]describesan early
attemptto automateerminationproofsfor Prolog. The first resultsin this streamof re-
searcharesummarisedh [De SchreyeandDecortel994]. Terminationof alogic program
hasalsobeenprovedthroughthebinary unfoldingsof the program a setof binaryclauses
whoseterminationcan be more easily assesseflCodish and Taboch1999]. Techniques
existthatinfer classe®f inputargumentgor which terminationis guaranteedatherthan
just proving terminationfor a classof inputs[Mesnard1996; Genaimand Codish2005;
Mesnardand Bagnara2005]. In [Manolios and Vroon 2006b], static analysisandtheo-
remprovingareusedto approximaten afinite way all the concretecallsamongfunctions
in a purefunctionalprogram. The resultof this approximationis a setof calling context
graphs Usingthesegraphsterminationis provedby argumentselying on somedecreas-
ing measure®n the function parameters.This techniqueis improvedin [Manolios and
Vroon 2006a]by issuingqueriesto a theoremprover. If the latter cansolvethe queries
in a fixed amountof time, the precisionof the analysisis improved. The useof theorem
provingalsoallows oneto getcounterexampleswhenthe analysisfails to provetermina-
tion. Morerecentlywith theaim of improvingtheefficiencyof theanalysisterminationof
termrewrite systemshasbeenencodednto a Booleanformulawhich is satisfiablef and
only if thereexistsa lexicographigathorderor a multisetpathorder[Codish2007]. The
experimentarevery promising.APROVE [Giesl et al. 2006]is oneof themostadvanced
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system for automated termination proofs of term rewrite systems, which can also analyse
Prolog and Haskell programs [Schneider-Kamp et al. 2006]. Other tools, specialised for
logic programs, areT| by F. Mesnard, KSTA-LA-VISTA by A. Serebrenik and D. De
Schreye, PLYTOOL by M. T. Nguyen and D. De Schreye, TALP by E. Ohlebusch, C.
Claves and C. Marché,ERMILOG by N. Lindenstrauss, Y. Sagiv, A. Serebrenik and T.
Reichert, ERMINWEB by M. Codish, C. Taboch, V. Lagoon and S. Genaim.

Termination Analysis for Imperative Program8utomatic termination analysis of im-
perative programs goes back to Floyd’s seminal work [Floyd 1967]. After many years of
research, it is mature enough now to apply to Java bytecode [Albert et al. 2007a; 2008]
and large system code written in the C language, as HRMVINATOR system shows [Cook
et al. 2006b] (see the detailed discussion in Section 1). Termination of the imperative
reversal algorithm of some special kind of cyclic lists, calfEhhandldlists, is proved
in [Loginov et al. 2006]. A panhandle list is a cyclical list whose starting node is not
part of the cycle. This is normally considered a complex problem of termination analy-
sis and our analysis does not prove its termination. It must be noted that termination has
been proved in [Loginov et al. 2006] through very specific reasonings about the kind of
data structure at hand (addition of ad-hinstrumentation relations while we aim at a
generic and automatic termination analysis. In [Bouajjani et al. 2006] counters are used
to reason about the size of every region between two sharing points in one selector linked
data structures, that is, again, linked lists. Counter automata are used as abstract models
of the programs. This technique is used to prove termination of two sorting algorithms.
The use of counters might be similar to our use of path-lengths, but their counters measure
the distance between two sharing points in a list, while the path-length is the length of the
maximal chain of pointers for any possible kind of data structure. The limits of their work
is that only linked lists are considered. Moreover, function calls are not supported. The
problem with function calls is that one needs information about sharinganty [Sal-
cianu and Rinard 2005; Genaim and Spoto 2008] of their arguments in order to model the
effects of the calls on the heap [Chang and Leino 2005]. In Definition 44 we use such infor-
mation to approximate method calls. In [Brotherston et al. 2008], termination is proved by
looking for cyclicity in the Hoare-like proof tree of the program, constructed by suitable
execution rules over separation logic [Reynolds 2000; Ishtiag and O’Hearn 2001]. The
only considered data structures are lists. Function calls are not considered. By a careful
choice of the predicates of separation logic, also this technique can prove the termination
of the panhandle list reversal. Note that we prove termination of the program in Figure 5,
which uses trees rather than flavours of lists, and that we support functions. Nevertheless,
the results in [Loginov et al. 2006; Berdine et al. 2006; Bouajjani et al. 2006; Brotherston
et al. 2008] show that termination analysis, tied to a specific data structure, leads to more
precise results than a general approach as ours. For instance, it proves the termination of
the panhandle list reversal, where our analysis fails.

Termination of Concurrent ProgramgPodelski and Rybalchenko 2007] prove termi-
nation of generic concurrent programs working over integers. It is not clear how this work
can be generalised to deal with dynamically allocated data structures in the heap, since
sharing allows one process to modify the data of another process and this effect should be
somehow modelled. The complexity of the concurrent update of memory should also be
modelled, by using the results of [Manson and Pugh 2001; Manson et al. 2005]. Analysis
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of concurrentlavais alsotackledin [Cook et al. 2007]. They provethe terminationof
a threadby providingan abstractiorof the behaviourof all otherconcurrenthreadgthe
environment) This abstractiorcanthenbe refinedon the basisof counterexamplefound
during the proof. The techniquemight not terminatein general. They only considerthe
caseof afinite andfixed numberof threadsThegeneralisatioto thecaseof anunbounded
numberof dynamicallycreatedhreadsmightbe moredifficult thanit seemsAlthoughall
examplenly useprimitive types,thereis asmallcommentt theendof page327saying
thatthey haveaugmentedheir analysiswith somedatastructureon the heap.We do not
knowwhich datastructureshavebeenconsidereéndhowtheyhavebeenmodelledin the
analysis.Thereis no correctnesproof nor exampleof this lastaugmente@dnalysis.

TerminationProofsbasedonnon-Linearlnvariants. In somecasesprogramgerminate
becausesomenon-linearquantity decreasesver a well-foundeddomain. For that pur-
pose recentresearcthasdevelopedewtechniqueghatproveterminationof loopsusing
non-linearexpressions[Bradleyet al. 2005]build finite differencetreesfor expressions.
Thisonly workswhensuchexpressionbavefinite trees.[Cousot2005]buildspolynomial
rankingfunctionsof non-lineatoops.lt is limited to expressionthatcanbeapproximated
by sumsof squaresandit requiresheavyfloating point calculations.[Babic et al. 2007]
provesterminationby checkingfor possibledivergenceo infinite of everyvariablednside
loops. Theauthorssaythattheirtechniqueprovesterminationin morecaseghan[Bradley
et al. 2005]and[Cousot2005],withoutrequiringheavyfloatingpoint calculations While
non-linearexpressiongareimportantfor the terminationof programdealingwith integer
variablesit is not clearto usthattheyalsocontributeto the proof of terminationof pro-
gramsdealingwith dynamicdatastructuresn theheap.

Terminationof Floating Point Computations While terminationof loopsoverintegers
hasbeenlargely studied,thereare only a few resultsaboutterminationof loopsdealing
with floating point numbers. They makethe analysiscomplexsince,becausef round-
ing errors,the expectedbehavioumight be differentfrom the real behaviourof the pro-
gram[Monniaux 2008]. [Serebrenikand De Schreye2002] prove terminationof these
programsy modellingtheofficial standardisednplementatiorof floatingpointnumbers.
Theyuselevel mappingsoverreals,but decreasemustbe boundedrom belowby some
positiveconstant.In this paper,we do not proveterminationof loopsoverfloating point
numbers.

Formalisationsof the Semanticof Java. Our formalisationof the semanticsof Java
bytecodas indebtedo [Klein andNipkow 2006],whereJavaandJavabytecodearemath-
ematicallyformalisedandthe compilationof Javainto bytecodeandits type-safenesare
machine-provedOur formalisationof the stateof the JavaVirtual Machine(Definition 1)
is similar to theirs,with the exceptionthatwe do not usea programcountemor keepthe
nameof the currentmethodandclassinsidethe state.This informationis not relevantfor
our abstractiorinto path-lengthandwe avoid programcountersby usingblocksof code
linked by arrowsas concreterepresentatiomf the structureof the bytecode. Also our
formalisationof the heapand of the objectsinside the heapis identicalto theirs. Their
mathematicaformalisationhasbeencodedinside the Isabelle/HOLtheoremproverand
thenusedto provethe absencef overflowsin a program[WildmoserandNipkow 2005]
with the help of codeannotationginvariants)which havebeenlater computedautomati-
cally throughintervalanalysigWildmoseret al. 2005]. Our formalisationis denotational
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rather than operational since we use it to define an abstraction of a relational property of
the semantics of the commands (the path-length), that is, an abstraction of the denotations.
The same abstraction, based on an operational semantics, would be awkward. Another
formalisation of the semantics of the Java bytecode is presented in [Bannwart and Muller
2005] but it is relatively different from ours in the definition of the heap and in the use of
weakest preconditions rather than denotational semantics.

Abstract Domains for the Static Analysis of Javaur abstract domain fgrath-length
(Section 6) abstracts a property of the heap, namely, the maximal length of a chain of
pointers reachable from each variable in the program. From this point of view, it is re-
lated to a traditionahormused to prove termination of logic programs, which measures
the heightof a term, seen as a tree. The main difference is that, for its definition, we
need precise information about the shape of the heap at run-time at each program point.
Namely, we need information about sharing and cyclicity of data structures. Determining
an over-approximation of the pairs of program variables that share at each program point
is an extensively studied problem. There is a huge literature ghmnter or aliasing
analysis [Choi et al. 1993; Steensgaard 1996] and astoapeanalysis [Wilhelm et al.

2002; Distefano et al. 2006] of data structures. Many flavours of such analyses are fully
qualified for computing possible sharing pairs of variables. More generally, separation
logic [Reynolds 2000; Ishtiag and O’Hearn 2001] is a framework which allows one to de-
fine analyses of properties of the heap and can express properties like sharing and cyclicity
of data structures. It is known, however, that a static analysis for sharing can be much
more abstract than aliasing or shape analysis, which justifies the development of abstract
domains which track those properties explicitly, rather than as a side-effect [Pollet et al.
2001]. Namely, the abstract domain, defined and proved correctin [Secci and Spoto 2005],
is just made of sets of pairs of possibly sharing variables. This results in a static analysis
which can be implemented in a completely context and flow sensitive way and still requires
one or two orders of magnitude less time than, for instance, aliasing analysis [Payet and
Spoto 2007]. It must be clear, however, that sharing is too abstract if possible aliasing is
what is needed, but this is not the case in this paper.

Tools for the Static Analysis of JavéMany tools have been devoted to the analysis or
verification of Java or Java bytecode programs. Although such systems have not been used
for termination analysis, we think that they could be instantiated for that purpose. They
should be enriched with analyses computing information about the shape of the memory,
such as our sharing and cyclicity analyses; hence some measure similar to our path-length
information could be computed and termination proved by showing that, along loops and
recursion, this measure is decreasing over a well-founded ordenBrA [Corbett et al.

2000] takes a source Java program and extracts compact finite-state models of the program
which can then be sourced to a model checker. It also performs some static analyses. It
includes a program slicer for better efficiency and uses abstract interpretation for the finite
representation of the statesivd PATHFINDER [Visser et al. 2003] uses model-checking

to explore the states of a Java program and its scheduling sequences. As a consequence,
it has shown to be effective to prove properties of real-time Java [Lindstrom et al. 2005].
JMoPED[Suwimonteerabuth et al. 2007] is a test environment for a subset of Java. It uses
model-checking to explore the set of states reachable from some input states taken from a
testing set. It signals bugs or problems such as assertion violatiohk,pointer excep-
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tionsandarrayboundviolations.Testingis notin generatompletesoit is hardto foresee
anapplicationof thistool to terminationanalysiswhereterminatiormustbeprovedfor all
input statesMoreover,only a subsebf Javais consideredwith stronglimitationssuchas
a banof negativenumbers.JM oPED hasalsobeenusedfor testingJavabytecodgSuwi-
monteerabutlet al. 2005],with stronglimitationssuchasaboundon the heapsizewhich
preventsa new bytecodefrom occurringinsidea loop. KEY [Ahrendtet al. 2005]is a
tool for the design,implementationspecificationandverificationof object-orientegro-
grams.lt verifiespropertieeexpressedh the ObjectConstraint_anguageor in JML. It is
a semi-automatitool, basedon theoremproving. Programsnustfirst be annotatedvith
thepropertiedo proveandatheorenproverthenattemptgheir proofwith possiblehuman
interaction.BoOGIE [Barnettet al. 2005]is a programverifier for Spec#programsn the
.NET framework.It hasbeenrecentlyappliedto JavabytecodglLehnerandMller 2007],
by translatingt into BOOGIEPL, theinputlanguageof BOOGIE. It includesaframework
for abstractnterpretatiorto build loopinvariantghatit usego instrumenthecode.Invari-
antsaboutthe heapcanbe constructedhroughthe abstracdomaindefinedin [Changand
Leino2005]. Namely,this allowsoneto trackwhich partsof the heaparepreserve@dcross
updatesandgetinformationaboutpurity of functionargumentsProofsare built through
theorem-proving.The goal of this tool is the proof of objectinvariants[Leino andWal-
lenburg2008],thatis, dataconsistencypropertiesaboutthe objectsof a program.Those
invariantamightbeviolatedwithin asmallscopebutmusthold afterthateachcall fromthe
externalenvironmenhascompleted.Objectinvariantsare specifiedby the userandver-
ified by the system.The useof ownership[Leino andM{ller 2004;Miiller 2007] allows
oneto modelinvariantswhich musthold of datastructuresasawholeratherthanfor single
componenbbjects.lt is alsopossibleto proveclassinvariants which arerelatedto static
fields[Leino andMdller 2005]. A distinguishingfeatureof theseworksis the modularity
of theverification,whichwe currentlylack. Theseworksbasedntheorenprovingcannot
be consideredully automaticsincethe userhasto providea specificatiorof the property
to proveandthe theoremproverwill likely requirehumaninterventionto reachthe proof.
Moreover,althoughit is possiblejn principle,to proveterminationwith suchtechniques,
we arenot awareof any generaltechniquefor that purpose.In object-orientegprograms
thesetof classedo analysemustbeextractedfrom thestartingclass,containingthemai n
method by usingsomeform of applicationextraction This extractionis importantin or-
derto avoidtheanalysisof all classeseventhosethatarenotrelevantor theanalysis.Our
JuLIA tool usesa sophisticatedalgorithm basedon [Palsbergand Schwartzbacli991],
rephrasedor the Javabytecode.We are not awareof othertoolsimplementingsimilar,
very preciseapplicationextractiontechniques.

PreviousPublicationsof this Material. The materialpresentedh this paperis partially
basedon our previouswork. [Secciand Spoto2005]and[Rossignoliand Spoto2006]
presenthesharingandcyclicity analyseshatwe usein Sectiord. Thepath-lengtrabstract
domainhasbeendefinedin [Spotoet al. 2006]. The last threepapersare presentedor
Java,while we rephraseheir analysesherefor Javabytecodeand embedtheminto the
semanticframeworkof [Payetand Spoto2007], wherethe operationaland denotational
semantic®f Section5 arepresente@ndtheir equivalenceés shown.
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10. DISCUSSION

We have shown that our analyser proves, automatically, termination of programs using
non-trivial forms of loops and recursion (Section 2 and Figure 16). However, as the larger
analyses in Section 8 show, it cannot of course decide termination in all cases. Many
terminating methods are not proved to terminate. We consider some of them here.

A first example are methods that work over graphs. Since graphs are typically cyclical,
it is not possible for us to prove termination of such methods. Methods over graphs often
terminate because visited nodes getoured The set of coloured nodes is typically held
in aSet , as in the following method defined on the node of a graph:

voi d visit(Set<Node> col oured) {
if (coloured.contains(this)) return;
el se col oured. add(t hi s);

visit this node and its successors, recursively ...

}

Here,col our ed avoids repeated visits since a node cannot be coloured twice. Termina-
tion of this (very frequent) programming pattern would follow from a proof that a node
cannot be put twice in the set, that the set our ed does not shrink and that the set of
nodes does not grow. Note that this proof cannot be obtained by simply using the size of
the set as the path-lengthobél our ed.

Another notable example are those methods whose termination depends on computa-
tions over real numbers, such as some approximation algorithms. In our implementation,
the path-length of | oat anddoubl e variables is not computed, so that all such methods
cannot be proved to terminate. The problem here is that numerical rounding must be taken
into account for a faithful approximation of the values of real variables [Monniaux 2008].
Moreover, the set of real numbers is not well-founded even if a lower bound is considered.
It might be possible here to use techniques which prove strict decrease by some positive
constant [Serebrenik and De Schreye 2002].

The precision of our termination analysis is also limited by the fact that arithmetic byte-
codes such amul oridiv have no linear approximation that we can use for their path-length
analysis. For the moment, we provide no path-length approximation for their result. This
situation might be improved with some preliminary constant propagation, since in many
cases those operations involve a variable and a constant, so that their path-length can be
approximated by a linear constraint. A more general solution is to use non-linear approx-
imations of the path-length, such as in [Bradley et al. 2005; Cousot 2005; Babic et al.
2007]. This will increase the cost of the analysis, though.

The precision of the preliminary analyses is important for the precision of the termina-
tion analysis. For instance, our analyser does not prove the termination of the method

public void expand(Sharing other) {
Sharing cursor = this;
while (cursor !'= null) {
try {
ot her. next = new Sharing(null);
ot her = ot her. next;
cursor = cursor.next;
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}
catch (Nul | Poi nter Exception e) {
}
}
}

whenit is calledwith anonsnull argumenbt her . Thisis becaus®urpreliminarynull
pointeranalysiss notableto provethatot her remainsnon-zwull insidethewhi | e loop.
In orderto provethatresult,we would needa moreprecisenull pointeranalysisandwe
shouldincludethej ava. | ang. hierarchyin theanalysissothattheanalysercanprove
that the Qut Of Menor yEr r or which might be thrown by new Shari ng(nul ) is
notasubclas®f Nul | Poi nt er Excepti on.

In general betterinformationaboutthe fields of the objectsis neededn our analyses.
Sharing cyclicity andpath-lengthareby definition propertieghatinvolve someinforma-
tion aboutthe fields. But this is not alwaystrue. For instance jntegerfields of objects
do not contributeto the definition of the path-length(Definition 24). As a consequence,
we cannotproveterminationof a loop decreasingn integerfield which is boundedrom
below. We planto studytheapplicability of the domainin [ChangandLeino 2005]to our
framework.It providesaway of approximatindieldswhichis finerthanours.

It mustbestressealsothatouranalysiss meantfor sequentiallavabytecodenotusing
multithreading.However,we sharethis limitation with mostotherworks on termination
analysis.If oneallows anykind of datastructurespossiblysharedetweenhreadsand
anunboundechumberof dynamicallycreatedhreadsyerylittle canbe saidabouttheter-
minationof theprogramsRecentesearcltanproveonly specialcasesyhenfor instance
thenumberof threadds fixedin advancgCooket al. 2007].

A final limitation of our analysisis a consequencef the use of native methodsand
reflection(the ability of Javaprogramso accesscreateand modify objects,classesand
theprogramitself throughsomemethodof the standardlavalibraries,mostly native). We
havemanuallyprovidedapproximationgor a few hundredsof suchmethodsfor all the
staticanalyseghatwe perform. For othernative methods Julia signalsa warningto the
user,meaningthatthe resultof the analysesnight not be reliable. Most native methods
implementingeflectionhavenotbeenmanuallyspecified Sincereflectioncanmodify the
sameprogramunderanalysiswe cannotseea simpleway of analysingprogramsdealing
with reflection.

Letusmakeafinal consideratiorboutthe costof ouranalysis.Figurel7 reportsanaly-
sisof programsf up to 1201methodssincethe costof theanalysiss still relativelyhigh.
Thisproblemis notrelatecto preprocessingndto thepreliminaryanalyseswhichareable
to scaleto programof up to 10000methodshputit is relatedto the costof the path-length
analysisand of the subsequenterminationproof. A possiblesolutionto this problemis
to uselessprecisebut more efficient abstraction®r algorithms. OctagongMin é 2006]
or size-changaerminationin polynomialtime [Ben-AmramandLee 2007] are possible
candidates.Moreover,the standardJavalibrary classesould be analysedonceand for
all, sothata path-lengttapproximatiorfor themcanbe pluggednto all programghatuse
thoselibraries,insteadof reanalysinghelibrarieseachtime. Besides|ibrary methodghat
areknownto terminate for instanceby usingsemi-automatitechniquesuchastheorem
proving, neednot be provedto terminateby our analyser. This would increaseboth its
efficiencyand its precision.
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In conclusion, our analyser shows that a completely automatic termination proof for Java
bytecode is possible. Future research will improve its precision and reduce the cost of the
analysis.
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11. PROOFS (TO BE KEPT IN AN ELECTRONIC APPENDIX ONLY)

11.1 Proof of Proposition 21
LEMMA 57. Letins be a bytecode instruction and; } ;c; € Twith J C N. Then

[[ins]]ujeﬂj = UjEJ[[ins]]Lj'
PrROOFE If insis not acall then

lins]u,c,0; = {ins} = Uje[ins],;.

We also know (Definition 19) thdtall my, ..., mu]u;c ., 1S
U extend,,, ({selecty, }; {makescope,,,, }; (Wjert;)(bm;)) (12)
1<i<n
whereb,,, is the block where methott; = «,(t1, ..., tp) : ¢ starts. Sinceis the extension

of ; over sets of denotations, it is by definition additive; the same holdaferd. Hence
Equation (12) is

U extend,,, ({select, }; {makescope,,, };Ujcs(tj(bm,)))

1<i<n

= U extend,, (Ujes({selectym, }; {makescope,, . };1;(bm,)))
1<i<n

= U Ujeextend,,, ({selecty, }; {makescope,,,, }; tj(bm,))
1<i<n

= Ujey U extend,,, ({selectn, }; {makescope,, };tj(bm,))

1<i<n
= UjeJ[[Ca” mi,... ,mn]]Lj.

O

We cannow proveProposition21:
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PROOF Let{:;};cs C Iwith J C N. We prove that
Tp(Ujestj)(b) = (UjesTr(e4))(b)
for all blocksb.

Letb = '::1 = :1 with w > 0 andm > 0 (the casen = 0 is considered later). We
have
Tp(Ujesti)(b) = [b]u,ese,
= [insi]ujesesi s linswluseseys (Wiere)(01) U- - U (Ujests) (bm))
which by Lemma 57 is equal to
Ujealinsi],s - sUjerlinsw], s (Ujes (6i(01)) U UUjes (4 (bm))) - (13)

Since; is the extension of over sets of denotations, it is by definition additive; the same
holds forU. Since the composition of additive functions is additive, Equation (13) can be
rewritten into

Ujes ([[insl]]Lj; cee [[insw]]bj; (Lj(bl) J---u Lj(bm)))
= Ujes[bl.; = Ujes (Tr(z5) (b))
= (UjesTp(e5)) (b) -
The casen = 0 follows similarly: we just have to remove the denotations of the blocks
bi,...,bm. O

11.2 Proof of Proposition 46
First, we need a lemma:

LEmMmMA 58. LetI C N be finite,{pl,}icr C PLy, 5,—1,.s, @ndp be an assignment of
integer values to a superset of the variablegbffor every: € I. Thenp = pl, for all
ieIifandonlyifp = U pl,.

i€l

PROOF We first note that, since the uniane;pl; is finite, the resulting set is still a
convex polyhedron. 1p |= pl; for all i € I then for everye € U;erpl; we havec € pl;
for a suitablej € T so thatp |= c. Itfollows thatp = U;crpl;. Conversely, ifp = U;erpl;
then for everyi € I andc € pl, we havec € U;crpl; so thatp = c. It follows that
pEpl. O

We need another lemma:

LEMMA 59. Let#l, #s be the number of local variables and stack elements at a pro-
gram pointg. Let instructionins,, different fromcall, occur atq. Leto = (I|s| )
iN X 4s. LetL C{0,...,#l — 1} andS C {0,...,#s — 1}. Assume thains, (o) is
defined and it does not modify = {i’ | i € L} ands® = {s’ | i € S} w.r.t. 0. Moreover,
assume that the following property holds:

(U) every location/ reachable from/“ or s in ¢ is also reachable fromi” or s° in
insq(o) and is bound to the same objects, up to the values of integer fields, and vice
versa (for instance, it is enough thats, (o) does not modify)

thenlen (o) U len(ins,(0)) = Unchanged (L, S).



68 . F. Spoto and F. Mesnard and E. Payet

PROOFR Let#!’' be the number of local variableg,s’ be the number of stack elements
andy’ be the memory irins (o). Notice that
len(o) U len(insy (o))
= [I"len(l', 1) | 0 < i < #I U5 len(s',u) | 0 < i < #s]U
I len(l', 1) |0 <i < #1]U [ — len(s, 1) | 0 < i < #']

V)

I“ v len(l', ) | i € L)U[8" + len(s',p) | i € SJU
" len(lI', 1) | i € LU 8" + len(s', 1) | i € 9] .

[
[
[
We have assumed thats, (o) is defined, that it does not modil)P ands? w.r.t.c and
that propertyU holds. Hence, for eache L, we havelen(l*, ') = len(l*, 1) and, for

eachi € S, we havelen (s, u') = len(s?, u). Consequently,
len(o) U len(insg (o)) ={l' =1"|ie L}yu{s' =5 |ie S} . (14)
Moreover,

—for eachi,j € {0,...,s, — 1} such thats?, according to our definite alias analysis, is
an alias ofs’ at g, we have, by the correctness of the alias analysis, ithdt’, 1) =
len(s?, ),

—for eachi € {0,...,s, — 1} andj € {0,...,l, — 1} such thats’, according to our
definite alias analysis, is an alias Bfat ¢, we have, by the correctness of the alias
analysis, thaten (s?, u) = len(l7, 1),

—for eachi, j € {0,...,l, — 1} such that, according to our definite alias analy&iss
an alias ofl’ at ¢, we have, by the correctness of the alias analysis, ithdt®, 1) =
len(l7, ),

—for eachi € {0,...,s, — 1} such thats’ does not have integer type at we have
len(s®, 1) > 0 by Definition 24 and

—for eachi € {0,...,l, — 1} such that* does not have integer type at we have
len(I*, i) > 0 by Definition 24.

Therefore,

- A i .1 0<14,j <sq,ands’ is an alias ofs’ at
len() U len(ins,(0)) = {S =& accor(iing t(q) our definite alias analygis}
0<i<sy, 0<j<;and
U {3 =107|s"isanalias of’ atq
according to our definite alias analys)s
0 <i,j <l,andl’is an alias of’ atq
{ according to our definite alias analysi

>0]0<i< s,ands’ does not have integer typegt
I">0]0<1i<l,andl’ does not have integer typegt .
(15)
Hencepy (14),(15)andLemma58,wehavelen (o)Ulen (ins, (o)) = Unchanged (L, S). 0
We cannow provePropositior46:

PROOF Let #1, #s be the numberof local variablesand stackelementadefinedat q.
Leto = (I|s|p) in Ly 4s. Supposehatins,(o) is defined.Below, we considereach
possibleform for ins,.
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‘ msy = consty c‘

By Definition 7, ins,(0) = (I c :: s| u). So,ins,(c) does not modify{i* | 0 < k <
#1} U {s* | 0 < k < #s} nor u. Hence, by Lemma 59, we have

len(o) U len(insq(0)) = Unchanged, (#1, #s) . (16)
Moreover, notice thas#* — len(c, 1)) € len(insy(o)), SO
(575 = len(c, p)] € len(o) U len(ins, (o)) . (17)
—If ¢ € Z thenlen(c, 1) = ¢ by Definition 24. Hence by (17),
len(o) U len(insy (o)) = {c = §7°} .
Consequently, by (16) and Lemma 58, we have
len(o) U len(insq(0)) = Unchanged (#1,4s) U {c = §%°} .
—If ¢ = null thenlen(c, 1) = 0 by Definition 24. Hence by (17),
len(o) U len(insy(0)) = {0 = §7°} .
Consequently, by (16) and Lemma 58, we have
len(o) U len(insq(0)) f= Unchanged  (#1,4£s) U {0 = §%°} .

Therefore, by Definition 3ﬂén(a)ulén(insq(cr)) = const, " ci.e., insq € y(const" c).

insq = dup,

By Definition 7,#s > 0 andins,(c) = (1| s#*71 :: s| p). So,ins, (o) does not modify
{I*10<k<#1}U{s"| 0 <k < +#s} noru. Hence, by Lemma 59, we have

len(o) U len(insq(0)) |= Unchanged, (#1, #s) . (18)
Moreover, notice thats#* — len(s#5~1, u)] € len(insy (o)), SO
(575 len(s7571, p)] € len(o) U len(insy (o)) .
We also havés#*—! s len(s#5~1, )] € len(o), which implies that
(57571 len(s™°71, w)] € len(o) U len(ins,(0)) .

So, len(o) U len(insy (o)) = {3#5~1 = 4#5}. Therefore, by (18) and Lemma 58, we
have

len(o) U len(insy(0)) = Unchanged,,(#1, #s) U {3#°71 = §#°} .
Consequently, by Definition 37¢n (') U len(insq(0)) |= dup,” i.e. ins, € v(dupy").

Nsg = Newq K

By Definition 7, insq(c) = (1| £ :: s| p[¢ — o]) wherel is a fresh location and is an
object of class: whose fields hold ornull. So,ins, (o) does not modify{i* | 0 < k <
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#1} U {s* | 0 < k < #s}. Moreover, property/ of Lemma 59 holds sincéis a fresh
location. Hence, by Lemma 59, we have

len(o) U len(insy(0)) = Unchanged ,(#1, #s) . (19)

Moreover, notice thals#* — len (£, u[¢ — o])] € len(ins,(o)) with len(¢, u[l — o) =
1 because is an object whose fields hofdor null. Hence,

[§7% — 1] € len(o) U len(ins,(0)) .
So,len(o) U len(ins, (o)) = {1 = 5#¢}. Therefore, by (19) and Lemma 58, we have
len(o) U len(insy(0)) = Unchanged ,(#1, #s) U {1 = g}
Consequently, by Definition 3%n(o)Ulen (ins, (o)) |= new'™ ki.e, ins, € y(newt™ k).

q
insqg = loady @

By Definition 7, ins,(c) = (1| 1(i) :: s | p). S0,ins,(c) does not modify{i* | 0 < k <
#1} U {s* | 0 < k < #s} noru. Hence, by Lemma 59, we have

len(o) U len(insy(0)) = Unchanged ,(#1, #s) . (20)

Moreover, notice thats#* — len(i(i), u)] € len(ins, (o)) with len(1(i), u) = len(l%, ).
Hence,[§%° — len(l*, )] € len(ins, (o)) which implies that

(575 len(I', p)] € len(o) U len(insq(0)) -
We also havél’ — len(I*, )] € len(o) which implies that
[ — len(l’, p)] € len(o) U len(ins,(0)) .
So,len (o) U len(ins,(0)) |= {I* = §#*}. Therefore, by (20) and Lemma 58, we have
len(o) U len(insy(0)) = Unchanged ,(#1, #s) U {I" = &%=} .
Consequently, by Definition 3%n(o)Ulen (ins, (o)) = load, " ii.e. ins, € v(loady" 7).

msy = storeg v

By Definition 7, #s > 0 andins,(o) = (I[i — s#571]|s#*72 = ... 0 s ) (with
s#572 o 89 = ¢if #s = 1). S0,ins,(c) does not modify{i* | 0 < k < #I, k #
i} U{s* |0 <k < #s— 1} noru. Hence, by Lemma 59, we have

len(o) U len(insy(0)) = Unchanged ,({0, ..., #1 — 1} \ i,{0,...,#s —2}) . (21)
Moreovernoticethat[i’ — len(s#5~1, u)] € len(ins,(7)), SO
(1" — len(s**71, 1)) € len(o) U len(ins, (o)) .
We alsohave[3#5~! — len(s#°~', )] € len(o), whichimpliesthat
(57571 s len(s77, u)] € len(o) U len(ins, (o)) .
So,len(o) U len(insy(0)) = {5#5~1 = ['}. Thereforepy (21) andLemma58, we have
len(o)Ulen(insg(0)) = Unchanged ,({0, . .., #1—1}\i, {0, . . ., #s—2})u{s#* 1 =

I}
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Consequently, by Definition 3%n(o)Ulen (ins, (o)) k= storef- ii.e, ins, € v(storet™ ).

q q
mnsq = add,

By Definition 7,#s > 1 andins,(c) = (L |(s#*71 + s#572) it s#573 o0 o010 80| ).
S0, ins,(c) does not modify{l* | 0 < k < #1} U {s* | 0 < k < #s — 2} nor . Hence,
by Lemma 59, we have

len(o) U len(ins, (o)) b= Unchanged ,(#1, #s — 2) . (22)

Moreover, notice thg#5 2 — len(s#5~14-s#572 1))] € len(ins, (o)) with len(s#5~1 4
s7#572 1) = len(s?571 1) + len(s#572 ), sO

(67572 — len(s?*71, p) + len(s7°72, p)] € len(o) U lén(insq(cr)) .

We also havgs#*—! — len(s#5~1, 1), 5#5°2 s len(s#5=2 )] € len(o), which im-
plies that

(57571 s len(s?57Y ), 57572 = len(s7° 72 )] € len(o) U len(insy(0)) -

So, len(o) U len(insy(0)) | {3#571 4+ s#5-2 = g#5-2}, Therefore, by (22) and
Lemma 58, we have

len(o) U len(insy(0)) = Unchanged ,(#1, #s — 2) U {tem1 4 gtts=2 — g#s=21

Consequently, by Definition 3Z¢n (o) U len(insq(c)) [= addy” i.e. insq € v(addy").

‘ ins, = getfield, f‘

By Definition 7, #s > 0, s#*~1 is a location withs#*~1 = null and ins,(oc) =
) (s (f) = s7572 oo 89 p). So,ins,(o) does not modify{l* | 0 <
k< #1}U{s* | 0 <k < #s — 1} nor u. Hence, by Lemma 59, we have

len(o) U len(ins (o)) b= Unchanged ,(#1,#s — 1) . (23)

Moreover, notice thats#* 1 — len(u(s#°~1)(f), u)] € len(ins (o)), SO
(7571 s len(u(s#* 1) (f), 1)] € len(o) U lén(insy(@)) -
We also havés#s—1 — len(s#*~', 1)] € len(o), which implies that
(57571 s len(s?°7, p)] € len(o) U len(ins, (o)) .
Suppose thaf does not have integer type.

—If s7s~1 might be cyclical at then whether it is actually cyclical, so that(s#*~!, ) =
oo > len(u(s?*71)(f), u), or it is not actually cyclical, so thaen(s#*~1 u) =
1+ max{len(¢,p) | € € rng(u(s#*~ 1)) NL} > 1+ len(u(s**~1)(f), ). In both
caseden (o) U len(ins, (o)) = {5#5-1 > §#5-1} Therefore, by (23) and Lemma 58,
we have

len(o) U lén(insq(a)) = Unchanged ,(#1,4s — 1) U {3571 > gs—11
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—If f cannot be cyclical af only the second possibility above hoids, len(s#*~1, 1) >

1+ len(u(s#5=1)(f), ). So,len (o) Ulen(insy (o)) = {5#°~1 > 14 %51}, There-
fore, by (23) and Lemma 58, we have

len(o) U len(insy(0)) = Unchanged ,(#1,#s — 1) U {7571 > 1 45771y

Consequently, by Definition 37en(c) U len(insq(0)) = getfield,” f ie, ins, €
V(getﬁeldﬂgﬂ“ 1)

‘ insq = putfield, f‘

By Definition 7, #s > 1, s#°~2 is a location withs#*=2 = null and ins,(oc) =
(U572 e O ™72 1o p(s#072) [ f 1o sTo 1)),

—Suppose thaf has integer type. Theins, (o) does not modify{i* | 0 < k < #I} U
{s* | 0 < k < #s — 2} and only modifies an integer field of an object. Hence property
U of Lemma 59 holds and by that lemma we have

len(o) U len(ins,(0)) = Unchanged ,(#1, #s — 2) .

—Suppose that has not integer type. Ldt be the indexes of the local variables which
cannot share wits#*—2 at g and S be the indexes of the stack elements, witth <
x < #s — 2, which cannot share witk#*~2 at q. Then,ins,(c) does not modify
{I* | k € L} U {s* | k € S} nor any object bound to the locations reachable from those
variables. Hence, by Lemma 59, we have

len (o) U len(insy (o)) = Unchanged (L, S) . (24)
Lety/ = p[s#72 — p(s*572)[f — s#571]]. The variablesinL = {I* | 0 < k <
#l, k¢ LyandS = {s* | 0 < k < #s— 2, k ¢ S} are affected by theutfield.
Suppose that#s—2 cannot share with#*~! at¢. Then, theputfield cannot build a

cycle and the variables ih U S can only grow by the path-length of the value which is
stored inside the field, bound t&*~!. Hence, for each € L,

len(I%, 1) + len (s 1, ) > len (1%, i)

and for eaclk € S,
len(s®, p) + len(s?71 ) > len(s®, /) .

Notice that

len(o) U len(insy (o))

= [[* = len(lF, 1) | 0 < k < #1U[" — len(s®, 1) | 0 < k < #s]U

(1% len(*, 1) | 0 < k < #U[8" — len(s®, /) |0 < k < #s—2] .
Therefore,
len(o) Ulen(insy(0)) = {I* + 57 ' >1* |ke Tyu{s" + 51 > 5" | ke S}.
S0, by (24) and Lemma 58, we have

len (o) U len(insy(0)) = Unchanged (L, S) U

{lF+s# 1> |kel} U
{3k + 57571 > 5% | ke S},
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Consequently, by Definition 37en (o) U len(insy(0)) |= putfield,” f i.e, insq €
v(putﬁeldlgﬂ‘ ).

‘ insq = ifeq of type, t‘

By Definition 7, #s > 0, ins,(0) = (| s#*72 = - = s%|p) ands#5~1 = 0 or
s#571 = null. So,ins, (o) does notmodif{l* | 0 < k < #1}U{s" |0 <k < #s—1}
nor u. Hence, by Lemma 59, we have

len(o) U len(ins (o)) b= Unchanged ,(#1,#s — 1) . (25)

Moreover, notice thas#s—1 i len(s#~1 )] € len(o) with len(s#5~* 1) = 0 be-
causes™*~! =0 ors#*~! = null. So

(57571 0] € len(o) U len(insy (o))
i.e. len(o) U len(ins, (o)) = {3#5~1 = 0}. Therefore, by (25) and Lemma 58, we have
len(o) U lén(insq(cr)) = Unchanged ,(#1, #s — 1) U {s#571 =0} .

Consequently, by Definition 37¢n (o) U len(insy(c)) = ifeq of typel" ti.e. ins, €
(ifeq of typey - t).

‘ insq = ifne of type, t‘

By Definition 7,#s > 0, insq(0) = (1| s#572 - 2 0| ), 7571 £ 0 ands#s—1 £
null. So,ins,(c) does not modify{l* | 0 < k < #1} U {s* |0 < k < #s — 1} norp.
Hence, by Lemma 59, we have

len(o) U len(ins (o)) b= Unchanged ,(#1,#s — 1) . (26)
Suppose that # int. Notice thafls#5~! — len(s#5~1, u)] € len(o), SO
(57571 len(s™°71, w)] € len(o) U len(ins,(0)) .
)

Moreover,len(s#5~1, ;1) > 1 becauses#*~! # null. So,len(o) U len(ins,(0)) =
{57*~1 > 1}. Therefore, by (26) and Lemma 58, we have

len(o) U lén(insq(cr)) = Unchanged ,(#1, #s — 1) U {s#s71 > 1} .
Consequently, by Definition 37¢n (o) U len(insq(0)) |= ifne of type,~ t i.e, ins, €
~(ifne of type]l;]l‘ t). O
11.3 Proof of Proposition 47

PROOF. | § = args

q,k.m(t1,..., tp):it
Leto € X, , be such thab (o) is defined. Theng has the form({l | a, :: --- :: ap =
s|p)yandd(o) = (e|ap::---:ag| ). Notice that

len(o) Ulen(8(0)) = [I* — len(I*, 1) | 0 <i < 1] U
[5° = len(s', ) | 0 <i < s,]U
[8° — len(a;,p) |0 <i<p+1]
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with

(50 = len(s', pu) |0 < i < sq—(p+ 1)U

[5° — len(s, ) | sg— (p+1) <i<sg

(5" len(s',pu) |0 < i< sq— (p+1)]U

(350~ (PHDH L fop (5% @PHD+ )10 <j < p+ 1]

(5% = len(s', pu) |0 < i< s,] =

and for eachi € {0,...,p}, s~ PtD+i = ¢, Therefore,

len(o) U len(5(c)) =

it

|—>l€n(lZ W) 10 <i<lg]U

s len(s',p) [0 <i < sy — (p+ 1)U
g5~ T+ Jen(a;, p0) |0<i<p+1]U
L en(ai,u)|0§i<p+1].

5

[
[
[
[

Consequentlyjen (o) U len(6(0)) = {ssq P+ — 5 | 0 < i < p+ 1} i.e, by
Definition 10,len (o )Ulen( (0)) Ea gsq,ﬂn(t1 _____ ) Hencej € v(argsqnm(tl _____ 1))
Letnowo = (g sP : st s ) in Xo pia.

.....

Suppose that(c) is defined. Thenj(c) = o, sod(c) does not modify anything in
o. Hence, we havéen(o) U len( (0)) = Unchanged(0,p + 1) i.e., by Definition 43,
len(o) U len(5(o)) [= selectr, (t1,.t,):- Thereforeg € v(select™ L (tseesty)it)-

.....

)= mak@scopen,m(h »»»»» tp):t

Suppose thaf(o) is defined. Thenj(o) = ([i — s | 0 < i < p] | €| 1). Notice that
len(o) U len(8(c)) = [8" — len(s', ) | 0 <@ < plU[I* — len(l*, 1) | 0 < i < p]
with, for each0 < i < p, len(l%, ) = len(1(i), p) = len(s', u). So,
len(o) U len(8(c)) = {5 = 17| 0< i < p}
i.e., by Definition 43,len (o) U len(d(c)) |= makescope, p,, ;). Therefores €
~(makescopeP™

rom(ti,..., tp):t)‘ U

11.4 Proof of Proposition 48
PROOF. Let us consider each of the operations and extend.

Letply € PLy, 5,—1,.5, @Ndply € PLy, 5,1, .5, LEtG € v(ply);v(ply). Then,there
existsd; € y(ply) andds € v(ply) suchthatd = d1;02. Noticethato, € Ay, s, 1,5,

§2 € Ay, s,—1,5, ANAS € Ay, 5, 1,s,- We provethats € ~(ply;tE ply) i.e, for all
o € ¥, 5, suchthaté(o) is defined we have

len(o) U len(8(0)) = ply;T ply .
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Leto € %, 5, be such thab(o) is defined. Thend; (o) andd2(d1(0)) are defined. As
51 € v(ply), we have

len(o) U len(8,(0)) = ply .
Moreover, ash, € v(pl,), we havelen(8, (o)) U len(82(61(0))) [ pls i€,
len(81(0)) U len(8(0)) = ply .
LetT = {I',... 7“71,50, ...,5 71} and u be the memory i, (o). Let
= »—>len( W) |0<i<l]UE +len(s',p) | 0 <i < s .

Then, asien( 1(0)) = (17— len(l',u) | 0 <i < L] U[§ — len(s’,u) | 0 <i < s;] and
len(61(0)) = [ — len(l*, ) | 0 <i < 1] U [5° = len(s’, ) | 0 < i < s4], we have

len(o)Up k= pl,[0+— 7| T €T
and
pUlen(5(o)) = plyfo — T |T € T].
Notice the following facts:

—The domains ofen(o), p andlen(5(c)) are disjoint.
—ply [0 — T | T € T] is a constraint over the variables in the domaingafos) andp.
—pl, [0 — T | T € T]is a constraint over the variables in the domaing afidlen(6()).

So, we havéen (o) U pU len(d(0)) = ply[6 — 7| T € T) andlen(o) U pU len(8(0))
ply[0 — T | T € T, which implies by Lemma 58 that

len(o) UpUlen(5(o)) b= ply[o — T | T € T)Uplylo — 7 |T€T).
Then, as the domain ¢fis T, we have
len(o) U len(5(o)) |= 3r(ply[6 — T | T € T) U ply[io — T | T € T))
i.e., by Definition 44,
len(o) U len(8(0)) = ply;T ply .
S0,6 € v(ply;™ ply).

Let ply, ply € PLy; 5;,—1,.5,- LeLO € v(ply) U~(ply). Then,d € y(pl;) ord € v(ply).
We prove thab € v(pl, U™ pl,) i.e, forallo € %, 5, such that(o) is defined, we have

len(o) U len(8(c)) = ply UP" pl,, .
Leto € ¥, ,, be such thad(c) is defined. Lep denote the assignmelatu (o) Ulen (5(c)).

—Suppose that € v(pl;). Then,p = pl, i.e, p defines a point inside the polyhedron
defined bypl,. As pl, UL pl, is the polyhedral hull opl, andpl,, p defines a point
inside the polyhedron defined by, U™ pl,. Henceyp = pl, UL pl, ie,

len(o) U len(5(c)) = ply UP- pl,, .
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—Suppose that € v(pl,). Then, reasoning as above, we get
len(o) U len(5(o)) = ply UP- pl,, .

Consequently, we havee ~(pl, UL pl,).

‘ extendn.m(tl,... tp):t ‘

Letpl € PLopt1-1,.5,- LELS € extend,m,,....t,):c(7(pl)). Then, there exists’ €
v(pl) such thad = extend,. ms,,....+,)(0"). By Definition 33 we have’ € Ag 411, 5,
and by Definition 16 we havé € Ay, s, 1,,2+s,- We prove that

b€ V(extendz].l‘m(tl,...,tp):t(pl))

i.e,forallo € ¥;_ ;. suchthat(o) is defined, we have

len(0) U len(8(0)) | eatend, i, 1, (1) -
Leto € %, s, be such thab(o) is defined. Theng has the form(i | a, == --- :: ay =
ap :: s | p) andd(o) has the form{l | v :: s| p') whered’ ({e | ap = - -+ = a1 ap | ) =

(I"| v | i), wherev stands for the return value of the callee, if any, or otherwise «;
moreover, we know thafom(u) C dom(y') and that every € dom(u) which is not
reachable froma,, :: - - - :: a; = ag is such thap(¢) = ' (¢). We also know that if théth
argument is not modified insidem(t1,...,t,) : t thenay = (I')¥. We prove the case
v # ¢; the other case is similar. Namely, we prove that

) pllo— T |TeT]
(1) len(o)Ulen(5(0)) =3 | [3* — 5512 |0 <k < p+1][8°— 5] |;
UMSA U MLA
(2) len(o) Ulen(d(0)) = US U UL.

When (1) and (2) are proved, then by Lemma 58 and Definition 44 we will have the thesis,
since the variables i do not occur inUS U UL.

(1) Sinced’ € v(pl) andd’({e | ap :: -+ :: a1 = ag | w)) is defined, we have
len((eap - ay = ag | ) Ulen(8'((e ] ap = -+~ ay = ag | ) = pl
that is
len((e [ ap - ar = ao | 1) Ulen((U v 1)) = pl

which in turn means that

(8% len(ak, 1) |0 < k < p+ 1 U len(v, )]
—_—
=pl,

R P
U[I* = len((I)F, 1) |0 < k < 1,]
(wherep would be missing whes, = 0). Hence

[5F% s len(ag, u) |0 < k < p+1]
A U[8" — len(v, 1)) = pl[" — 5" | 0 < k < p+1][8° s 57
UE = len((I)*, 1) | 0 < k < 1]
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and
("% > len(ar, n) | 0 < k <p+1] pllo — T | T eT]
U[s" — len(v, p1')] = [ st o<k <p+1].
U™ = len((1)F, 1) | 0 < k < 1,] [0 57]

Letl” = & ¢ MSA; henced < i < 2,0 < k < p+ 1, s*is an alias ins of the
kth parameter, according to our definite aliasing analysis, andtth@arameter is
not modified insides.m(t1,...,t,) : t. By the correctness of our aliasing analysis
we havea; = s'. Since thekth argument is not modified, we hawg = (I')*.
Hences’ = (I')* andlen(s?, i//) = len((I')*, /). In a similar way we prove that
len(l', 1) = len((')*, ') for everyl” = I’ € MLA. Then

(8% = len(ag, p) | 0 < k < p+1] o
U[s* — len(v, u')] plfp =0 |7 eT]

- sk T 0 <k 1
U = ten((I), 1) [0 <k <1 | = B80S k<pad]

ok k) (87— 87]
U[,g —len(s®, 1) |0 <k < a] UMSA U MLA
U[F = len(I®, 1) | 0 < k < 1]
that is
[857% s len(ag, u) |0 < k < p+1] pllo—v|T€T)
U[8% — len(v, 1)) e [F 1= 587 |0 <k <p+1]
U[SF = len(sk, 1) |0 < k < 2] T (89 — 57
U[E — len(I%, 1) | 0 < k < 1] UMSA U MLA
In conclusion

pl[o — T |7 eT)
[§F — g+T |0 <k <p+1]
[80 — 5]

UMSA U MLA

len(o) U len(8(c)) |= I

(2) The local variables are bound to the same locations &amdd(o), as well as ther
lowest stack elements in We know thatu(¢) = p/(¢) for every ¢ which is not
reachable fromu, :: --- :: aq :: ap. This entails that’ can only modify the objects
bound to some location reachable fram:: - - - :: ag, the other objects are the same
in x and iny’. As a consequencé, does not change the set of objects which can
be reached from any local variable or any stack elementwhich does not share
with any updated parameter amoamg :: - -- :: ag. Thatis,len(l%, u) = len(l*, u')
for every0 < i < [, such that’ does not share with any updated parameter, and
len(s', ) = len(s', ') for every0 < i < z such thats’ does not share with any
updated parameter. Since our pair-sharing analysis is correct, we conclude that for
everys’ = ' € US we have that’ does not share with any updated parameter and
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hence

(zén(a) u zén(a(a))) (51) = len(o)(5)

= (ien(o) U zén(a(a))) (57 .

We conclude thaten (o) U len(5(o)) = 5 = §. Similarly len(o) U len(6(0)) =
[ = [ for everyl’ = ' € UL. By Lemma 58 this entails thdtn(c) U len(5(0)) |=
US U UL.

O

11.5 Proof of Theorem 52

PROOF. Itis a consequence, by induction, of Propositions 46, 47 and 48 and of the fact
that we use a widening operator proved correct in [Bagnara et al. 2005b].





