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Abstract. Denotational static analysis of Java bytecode has a nice and
clean compositional definition and an efficient implementation with bi-
nary decision diagrams. But it models only the functional i.e., input/out-
put behaviour of a program P , not enough if one needs P ’s internal
behaviours i.e., from the input to some internal program points. We
overcome this limitation with a technique used up to now for logic pro-
grams only. It adds new magic blocks of code to P , whose functional be-
haviours are the internal behaviours of P . We prove this transformation
correct with an operational semantics. We define an equivalent denota-
tional semantics, whose denotations for the magic blocks are hence the
internal behaviours of P . We implement our transformation and instan-
tiate it with abstract domains modelling sharing of two variables and
non-cyclicity of variables. We get a static analyser for full Java bytecode
that is faster and scales better than another operational pair-sharing
analyser and a constraint-based pointer analyser.

1 Introduction

Static analysis determines at compile-time properties about the run-time be-
haviour of computer programs. It is used for optimising their compilation [1], de-
riving loop invariants, verifying program annotations or security constraints [13].
This is very important for low-level languages such as Java bytecode, downloaded
from insecure networks in a machine-independent, non-optimised format. Since
its source code is not available, its direct analysis is desirable.

Correctness is usually mandatory for static analysis and proved w.r.t. a refer-
ence semantics of the analysed language. Abstract interpretation [7] shows here
its strength since it derives static analyses from the semantics itself, so that they
are by construction correct or even optimal. The derived analyses inherit seman-
tical features such as compositionality and can only model program properties
that can be formalised in terms of the reference semantics.

There are three main ways of giving semantics to a piece of code c [18]:
operational semantics models c’s execution as a transition relation over config-
urations, which include implementational details such as activation stacks and
return points from calls; denotational semantics provides instead a denotation
i.e., a function from the input state provided to c (the values of the variables be-
fore c is executed) to the resulting output state (the same values after c has been



executed); axiomatic semantics derives the weakest precondition which must hold
before the execution of c from a given postcondition which holds after it.

public class List {

private C head; private List tail;

public List(C head, List tail) {
this.head = head; this.tail = tail;

}

private List() {

List cursor = null;
for (int i = 5; i > 0; i--)
cursor = new List(new C(i),cursor);

head = new C(0); tail = cursor;
}

public List clone() {

if (tail == null) return new List(head,null);
else return new List(head,tail.clone());

}

public List deepClone() {

if (tail == null)
return new List(head.clone(),null);

else

return new List(head.clone(),tail.deepClone());
}

public static void main(String[] args) {

List v1 = new List();
List v2 = v1.clone();
v2 = v1.deepClone();

}
}

Fig. 1. Our running example.

A major drawback of denotational
semantics is that denotations model
only the functional i.e., input/output
behaviour of the code: they do not ex-
press its internal i.e., input/internal
program points behaviours. The de-
rived static analyses inherit this draw-
back, which makes them almost use-
less in practice. Consider the Java code
in Fig. 1, which implements a list of
C’s with two cloning methods: clone
returns a shallow copy of a list and
deepClone a deep copy, where also the
C’s have been cloned. Hence, in main:

1. the return value of clone shares
data structures with the list v1,
namely, its C’s objects. Moreover,
it is a non-cyclical list, since v1 is
a non-cyclical list;

2. the return value of deepClone

does not share with v1, since it is a
deep copy, and is also non-cyclical.

Sharing analysis of pairs of variables
and non-cyclicity analysis of variables,
based on denotational semantics and implemented with a pair-sharing do-
main [14] and a non-cyclicity domain [12], can only prove 2, since 1 needs
information at the internal program point just after the call to clone. If we
add a command at the end of main, they cannot even prove 2 anymore.

Years ago abstract interpretation was largely secluded in the nowadays crys-
tallised realm of logic (sometimes functional) languages and denotational seman-
tics was one of the standard reference semantics. The above problem about inter-
nal program points was solved with a magic-sets transformation of the program
P , specific to logic languages, which adds extra magic clauses whose functional
behaviours are the internal behaviours of P [2,3,6]. Codish [5] kept the over-
head of the transformation small by exploiting the large overlapping between
the clauses of P and the new magic clauses. Abstract interpretation has moved
later towards mainstream imperative languages, even low-level ones such as Java
bytecode. Suddenly, operational semantics became the reference semantics. This
was a consequence of the lack of a magic-sets transformation for imperative lan-
guages and of the intuitive definition of operational semantics, very close to an
actual implementation of the run-time engine of the language.

Our contributions here are the definition of a magic-sets transformation for
Java bytecode, its proof of correctness, its implementation inside our Julia de-



notational analyser [15], its instantiation with two domains for pair-sharing [14]
and non-cyclicity [12] and its evaluation and comparison with an operational
analyser for pair-sharing [10] and the points-to analyser Spark [8]. Julia is one
or two orders of magnitude faster. It scales to programs of up to 19000 methods,
for which the other two analysers are not always applicable.

To understand why we want to rediscover denotational static analysis and
why its implementation Julia is so efficient, consider the following:

– if method m (constructor, function, procedure. . . ) is called in program points
p1, . . . , pn, denotational analyses compute m’s denotation only once and then
extend it at each pi. Hence they can be very fast for analysing complex soft-
ware where n is often large. Operational analyses process instead m from
scratch for every pi. Memoisation, which takes note of the input states for
which m has been already analysed and caches the results, is a partial solu-
tion to this problem, since each pi often calls m with different input states;

– denotations i.e., functions from input to output, can be represented as
Boolean functions, namely, logical implications from the properties of the
input to the properties of the output. Boolean functions have an efficient
implementation as binary decision diagrams [4]. Hence there is a potentially
very efficient implementation of denotational static analyses, which is not
always the case for operational static analyses;

– denotational semantics is compositional i.e., the denotation of a piece of
code is computed bottom-up from those of its subcomponents (commands
or expressions). The derived static analyses are hence compositional, an in-
valuable simplification when one formalises, implements and debugs them;

– denotational semantics does not use activation stacks nor return points from
calls. Hence it is simpler to abstract than an operational semantics;

– denotational semantics models naturally properties of the functional be-
haviour of the code, such as information flows [13]. Operational semantics is
very awkward here.

These are not theoretical insights, as our experiments show in Section 7.

2 Our Magic-Sets Transformation for Java Bytecode

The left of Fig. 2 reports the Java bytecode for the main method in Fig. 1, after a
light preprocessing performed by our Julia analyser. It has a simple sequential
control, being a single block of code. This is because we do not consider excep-
tions for simplicity, which are implicitly raised by some instructions and break
the sequential structure of the code without changing the sense of our magic-
sets transformation (our actual implementation in Julia considers exceptions).
The code in Figure 2 is typed i.e., instructions are decorated with the type of
their operands, and resolved i.e., method and field references are bound to their
corresponding definition. For type inference and resolution we used the official
algorithms [9]. A method or constructor implementation in class κ, named m,
expecting parameters of types τ and returning a value of type t is written as



new List
dup List

call List()
store 1 of type List
load 1 of type List

call List.clone():java.lang.Object
cast java.lang.Object into List

store 2 of type List
load 1 of type List

call List.deepClone():java.lang.Object
cast java.lang.Object into List

store 2 of type List
return void

load 2 of type int

if_le int
load 0 of type List

new C
dup C
const 0

call C(int)
putfield List.head:C
load 0 of type List
load 1 of type List

putfield List.tail:List
return void

if_gt int
new List
dup List
new C
dup C

load 2 of type int
call C(int)

load 1 of type List
call List(C,List)

store 1 of type List
increment 2 by -1

load 0 of type List
call java.lang.Object()

const null
store 1 of type nil

const 5
store 2 of type int

Fig. 2. The Java bytecode of main and of the empty constructor of List in Fig. 1.

κ.m(τ ) : t. The call instruction implements the four invoke’s available in Java
bytecode. It reports the explicit list of method or constructor implementations
that it might call at run-time, accordingly with the semantics of the specific
invoke that it implements. We allow more than one implementation for late-
binding, but we use only one in our examples, for simplicity. Dynamic lookup
of the correct implementation of a method is performed by filter instructions at
the beginning of each method, which we do not show for simplicity.

Local variable 1 on the left of Fig. 2 implements variable v1 in Fig. 1. Hence,
just after the call to clone, it shares with the return value of clone, left on top of
the stack, and is non-cyclical; after the call to deepClone, it does not share with
the return value of deepClone, left on top of the stack, and is non-cyclical. To
prove these results with a denotational analysis, our magic-sets transformation
builds new magic blocks of code whose functional behaviours are the internal
behaviours just after the calls to clone and deepClone on the left of Fig. 2.

Let us describe this transformation. It starts by splitting the code after the
two calls to clone and deepClone, since we want to observe the intermediate
states there. For reasons that will be clear soon, it also splits the code be-
fore each call. The result is in Fig. 3. The original code is split into blocks
0, . . . , 5 now. These have outgoing dashed arrows leading to new grey magic
blocks m0, . . . , m5. Block mk contains the same bytecode as block k plus a
leading blockcall mp, where p is the predecessor of block k, if any.

The functional behaviour of magic block mk coincides with the internal be-
haviour at the end of block k. For instance, the functional behaviours of m2 and
m4 are maps from the input state provided to the program to the intermediate
states just after the calls to clone and deepClone, respectively. To understand
why, let us start from m0. It is a clone of block 0 so that, at its end, the com-
putation reaches the intermediate state at the internal program point between 0



and 1. Block m1 executes m0 (because of the blockcall m0 instruction), then
the same instructions as block 1. At its end, the computation reaches hence the
intermediate state at the internal program point between 1 and 2. The same
reasoning applies to the other magic blocks.

Consider the Java bytecode of the empty constructor of List in Fig. 1 now,
called by main and shown on the right of Fig. 2. It is not sequential since
it contains a loop. Its magic-sets transformation is in Fig. 4. As for main,

new List
dup List

0

call List()
store 1 of type List
load 1 of type List

new List
dup List

1

call List.clone():java.lang.Object

blockcall m0
call List()

store 1 of type List
load 1 of type List

  2

cast java.lang.Object into List
store 2 of type List
load 1 of type List

blockcall m1
call List.clone():java.lang.Object

3

call List.deepClone():java.lang.Object

blockcall m2
cast java.lang.Object into List

store 2 of type List
load 1 of type List

  4

cast java.lang.Object into List
store 2 of type List

return void

blockcall m3
call List.deepClone():java.lang.Object

5
blockcall m4

cast java.lang.Object into List
store 2 of type List

return void

   m5

   m4

   m3

   m2

   m1

   m0

Fig. 3. The magic-sets transformation of the
Java bytecode on the left of Fig. 2.

we split the original code before
each call; each magic block mk

contains the code of k plus a
leading blockcall to the pre-
decessor(s) of k, if any. Since 8
has two predecessors 7 and 11,
block m8 starts with blockcall

m7 m11 i.e., there are two ways of
reaching 8 and the states observ-
able at its end are obtained by
executing load 2 of type int

from a state reachable at the end
of 7 or 11. Something new hap-
pens for m6. It starts with a
call to m0 in Fig. 3, which pro-
vides the intermediate states just
before the only call in the pro-
gram to this empty constructor
of List. Block m6 continues with
a makescope List() instruction
which builds the scope of the con-
structor: in Java bytecode the
caller stores the actual arguments

on the operand stack and the callee retrieves them from the local variables [9].
Hence makescope List() copies the List object, left on top of the stack by m0
(i.e., the implicit this parameter), into local variable 0 and clears the stack. At
the end of m6 we observe hence the states reachable at the internal program
point between blocks 6 and 7. This is why we split the code before each call:
to allow the states of the callers at the call points to flow into the callees.

3 A Formalisation of Our Magic-Sets Transformation

We formalise here the magic-sets transformation. ¿From now on we assume that
P is a program i.e., a set of blocks as those in Fig. 3 and Fig. 4. We assume that
the starting block of a method has no predecessors and does not start with a
call, without loss of generality since it is always possible to add an extra initial
block containing nop; we assume that the other blocks have at least a predecessor,
since otherwise they would be dead-code and eliminated; we assume that each



load 0 of type List
6

call java.lang.Object()
const null

store 1 of type nil
const 5

store 2 of type int

blockcall m0
makescope List()
load 0 of type List

7
load 2 of type int

blockcall m6
call java.lang.Object()

const null
store 1 of type nil

const 5
store 2 of type int

                            8

if_gt int
new List
dup List
new C
dup C

load 2 of type int

if_le int
load 0 of type List

new C
dup C
const 0

blockcall m7 m11
load 2 of type int

9

call C(int)
load 1 of type List

blockcall m8
if_gt int
new List
dup List
new C
dup C

load 2 of type int

                               10

call List(C,List)
store 1 of type List
increment 2 by -1

blockcall m9
call C(int)

load 1 of type List

                  11 blockcall m10
call List(C,List)

store 1 of type List
increment 2 by -1

   12

call C(int)
putfield List.head:C
load 0 of type List
load 1 of type List

putfield List.tail:List
return void

blockcall m8
if_le int

load 0 of type List
new C
dup C
const 0

   13

blockcall m12
call C(int)

putfield List.head:C
load 0 of type List
load 1 of type List

putfield List.tail:List
return void

     m11

       m10

   m9

      m13

       m12

                              m8     m7

   m6

Fig. 4. The magic-sets transformation of the constructor on the right of Fig. 2.

call starts a block and that each return ends a block with no successors; we
assume that the main method is not called from inside the program, without
loss of generality since we can always rename main into main’ wherever in the
program and add a new main which wraps a call to main’.

Original blocks are labelled with k and magic blocks with mk with k ∈ N. If
` is a label, P (`) is block ` of P . We write block ` with n bytecode instructions
and m immediate successor blocks b1, . . . , bm, with m, n ≥ 0, as

ins1
ins2
···
insn

`

⇒
b1
···
bm

or just as
ins1
ins2
···
insn

`

when m = 0.

The magic-sets transformation of P builds a magic block mk for each block k.



Definition 1. The magic block mk, with k ∈ N, is built from P (k) as

magic
(

code
k
⇒

b1
···
bm

︸ ︷︷ ︸

P (k)

)

=







blockcall mp1···mpl

code

mk

if l > 0

blockcall mq1···mqu

makescope κ.m(τ):t
code

mk

if l = 0 and u > 0

code
mk

if l = 0 and u = 0

where p1, . . . , pl are the predecessors of P (k) and q1, . . . , qu those of the blocks
of P which begin with a call to the method κ.m(τ ) : t starting at block k. ut

Definition 1 has three cases. In the first case block k does not start a method
(or constructor). Hence it has l > 0 predecessors and magic block mk begins
with a blockcall to their magic blocks, as block m8 in Fig. 4. In the second
and third case block k starts a method or constructor κ.m(τ ) : t, so that it has
no predecessors. If the program P calls κ.m(τ ) : t (second case) there are u > 0
predecessors of those calls, since we assume that call does not start a method.
Magic block mk calls those predecessors and then uses makescope to build the
scope for κ.m(τ ) : t, as for block m6 in Fig. 4. Otherwise (third case), P never
calls κ.m(τ ) : t and mk is a clone of k, as for block m0 in Fig. 3.

4 Operational Semantics of the Java Bytecode

In this section we describe an operational semantics of the Java bytecode, which
we use in Section 5 to prove our magic-sets transformation correct.

Definition 2. A state of the Java Virtual Machine is a triple 〈l || s ||µ〉 where l

maps local variables to values, s is a stack of values (the operand stack), which
grows leftwards, and µ is a memory, or heap, which maps locations into objects.
We do not formalise further what values, memories and objects are, since this
is irrelevant here. The set of states is Σ. ut

The semantics of a bytecode instruction ins different from call and blockcall

is a partial map ins from states to states. For instance, the semantics of dup t is

dup t = λ〈l || s ||µ〉.〈l || top :: s ||µ〉

where s = top :: s′ and top has type t. This is always true since legal Java
bytecode is verifiable [9]. The semantics of load i of type t is

load i of type t = λ〈l || s ||µ〉.〈l || l(i) :: s ||µ〉

where l(i) exists and has type t since legal Java bytecode is verifiable.
Also the semantics of a return t bytecode is a map over states, which leaves

on the operand stack only those elements which hold the return value of type t:

return t = λ〈l || s ||µ〉.〈l || vs ||µ〉



where s = vs :: s′ and vs are the stack elements which hold the return value.
If t = void then vs = ε. We formalise later in Definition 5 how control returns
to the caller. Also the semantics of a conditional bytecode is a map over states,
undefined when its condition is false. For instance, the semantics of if le t is

if le t = λ〈l || s ||µ〉.

{

〈l || s′ ||µ〉 if top ≤ 0

undefined otherwise,

where s = top :: s′ and top has numerical type t.
When a caller transfers the control to a callee κ.m(τ ) : t, the Java Virtual

Machine performs an operation makescope κ.m(τ ) : t which copies the topmost
stack elements into the corresponding local variables and clears the stack.

Definition 3. Let κ.m(τ ) : t be a method or constructor and p the number
of stack elements needed to hold its actual parameters, including the implicit
parameter this, if any. We define (makescope κ.m(τ ) : t) : Σ → Σ as

makescope κ.m(τ ) : t = λ〈l || s ||µ〉.〈[i 7→ vi | 0 ≤ i < p] || ε ||µ〉,

where s = vp−1 :: · · · :: v0 :: s′ since legal Java bytecode is verifiable. ut

Definition 3 formalises the fact that the ith local variable of the callee is a copy
of the element p − 1 − i positions down the top of the stack of the caller.

Definition 4. A configuration is a pair 〈b ||σ〉 of a block b (not necessarily in
P ) and a state σ. It represents the fact that the Java Virtual Machine is going
to execute b in state σ. An activation stack is a stack c1 :: c2 :: · · · :: cn of
configurations, where c1 is the topmost, current or active configuration. ut

We can define now the operational semantics of a Java bytecode program.

Definition 5. The (small step) operational semantics of a Java bytecode pro-
gram P is a relation a′ ⇒P a′′ (P is usually omitted) providing the immediate
successor activation stack a′′ of an activation stack a′. It is defined by the rules:

ins is not a call nor a blockcall

〈 ins
rest

`

⇒
b1
···
bm

||σ〉 :: a ⇒ 〈 rest
`
⇒

b1
···
bm

|| ins(σ)〉 :: a

(1)

b is the block where method κ.m(τ ) : t starts
σ = 〈l || pars :: s ||µ〉, pars are the actual parameters of the call

σ′ = (makescope κ.m(τ ) : t)(σ)

〈 call κ.m(τ):t
rest

`

⇒
b1
···
bm

|| σ〉 :: a ⇒ 〈b ||σ′〉 :: 〈 rest
`
⇒

b1
···
bm

||〈l || s ||µ〉〉 :: a

(2)

〈 k||〈l || vs ||µ〉〉 :: 〈b ||〈l′ || s′ ||µ′〉〉 :: a ⇒ 〈 b ||〈l′ || vs :: s′ ||µ〉〉 :: a
(3)

1 ≤ i ≤ m

〈 k
⇒

b1
···
bm

||σ〉 :: a ⇒ 〈bi ||σ〉 :: a
(4)



1 ≤ i ≤ l

〈 blockcall mp1···mpl

rest

mk

||σ〉 :: a ⇒ 〈P (mpi) ||σ〉 :: 〈 rest
mk

||σ〉 :: a

(5)

〈 mk ||σ〉 :: 〈b ||σ′〉 :: a ⇒ 〈 b ||σ〉 :: a
(6)

ut

Rule (1) executes an instruction ins, different from call and blockcall, by
using its semantics ins . The Java Virtual Machine moves then forward to run
the rest of the instructions. Instruction ins might be here a makescope, whose
semantics is given in Definition 3. Rule (2) calls a method. It looks for the block
b where the latter starts and builds its initial state σ′, by using makescope. It
creates a new current configuration containing b and σ′. It removes the actual
arguments from the old current configuration and the call from the instructions
still to be executed at return time. Control returns to the caller by rule (3),
which rehabilitates the configuration of the caller but forces the memory to be
that at the end of the execution of the callee. The return value of the callee is
pushed on the stack of the caller. Rule (4) applies when all instructions inside a
block have been executed; it runs one of its immediate successors, if any. This
rule is normally deterministic, since if a block of the Java bytecode has two or
more immediate successors then they start with mutually exclusive conditional
instructions and only one thread of control is actually followed. Rule (5) runs
a blockcall by choosing one of the called blocks mpi and creating a new con-
figuration where it can run. This is true non-determinism, corresponding to the
fact that there might be more ways of reaching a magic block and hence more
intermediate states at an internal program point. Rule (6) applies at the end of
the execution of a magic block mk . It returns the control to the caller of mk and
keeps the state reached at the end of the execution of mk . Rules (1) and (2) can
be used both for the original and for the magic blocks of the program; rules (3)
and (4) only for the original blocks; rules (5) and (6) only for the magic ones.

Our small step operational semantics allows us to define the set of interme-
diate states at a given, internal program point ∗, provided ∗ ends a block. This
can always be obtained by splitting after ∗ the block where ∗ occurs.

Definition 6. Let σin be the initial state provided to the method main of P

starting at block bin . The intermediate states at the end of block k ∈ N during
the execution of P from σin are

Σk = {σ | 〈bin ||σin 〉 ⇒
∗ 〈 k

⇒
b1
···
bm

|| σ〉 :: a}

ut

Note that Σk is in general a set since there might be more ways of reaching block
k, for instance through loops or recursion.



5 Correctness of the Magic-Sets Transformation

By using the operational semantics of Section 4, we show that the final states
reached at the end of the execution of a magic block mk are exactly the inter-
mediate states reached at the end of block k, before executing its successors: the
functionalbehaviour of mk coincides with the internalbehaviour at the end of k.

Theorem 1. Let σin be the initial state provided to the main method of P and
k ∈ N a block of P . We have Σk =

{
σ

∣
∣〈P (mk) ||σin 〉 ⇒

∗ 〈 mk ||σ〉
}
. ut

In Section 6 we define a denotational semantics for the Java bytecode and
prove it equivalent to our operational semantics of Section 4 w.r.t. functional
behaviours. By Theorem 1, we will conclude that the denotational semantics of
mk is the internal behaviour at the end of block k.

6 Denotational Semantics of the Java Bytecode

A denotational semantics for the Java bytecode maps each block of code b in a
denotation [[b]] i.e., in a partial function from an initial state at the beginning of
b to an output or final state at the end of the execution of the code starting at
b. Hence, if bin is the initial block of method main, then [[bin ]] is the functional
behaviour of the whole program.

Definition 7. A denotation is a partial function from an input state to an
output or final state. The set of denotations is written as ∆. Let δ1, δ2 ∈ ∆.
Their sequential composition is δ1; δ2 = λσ.δ2(δ1(σ)), which is undefined when
δ1(σ) is undefined or when δ2(δ1(σ)) is undefined. ut

It follows that the semantics ins of a bytecode ins is a denotation.

Let δ ∈ ∆ be the functional behaviour of a method κ.m(τ ) : t. At its begin-
ning the operand stack is empty and the local variables hold the actual arguments
of the call. At its end the operand stack holds the return value of κ.m(τ ) : t only,
if any (the semantics of return drops all stack elements but the return value.
See Section 4). From the point of view of a caller executing a call κ.m(τ ) : t,
the local variables and the operand stack do not change, except for the actual
arguments which get popped from the stack and substituted with the return
value, if any. The final memory is that reached at the end of κ.m(τ ) : t. These
considerations let us extend δ into the denotation of the call instruction.

Definition 8. Let δ ∈ ∆ and κ.m(τ ) : t be a method. We define the operator
extend κ.m(τ ) : t ∈ ∆ 7→ ∆ as

(extend κ.m(τ ) : t)(δ) = λ〈l || pars :: s ||µ〉.〈l || vs :: s ||µ′〉

where 〈l′ || vs ||µ′〉 = δ((makescope κ.m(τ ) : t)(〈l || pars :: s ||µ〉)), pars are the
actual parameters passed to κ.m(τ ) : t and vs its return value, if any. ut



An interpretation is a set of denotations for each block of P . Sets can express
non-deterministic behaviours, which means for us that we can observe more
intermediate states between blocks. The operations extend and ; over denotations
are consequently extended to sets of denotations.

Definition 9. An interpretation for P is a map from P ’s blocks into sets of
denotations. The set of interpretations I is ordered by pointwise set-inclusion. ut

Given an interpretation ι providing the functional behaviour of the blocks of P ,
we can determine the functional behaviour [[b]]ι of the code starting at a given
block b, not necessarily in P , which can call methods and blocks of P .

Definition 10. Let ι ∈ I. The denotations in ι of an instruction are

[[ins]]
ι
= {ins} if ins is not a call nor a blockcall

[[blockcall mp1 · · ·mpl]]
ι
= ι(P (mp1)) ∪ · · · ∪ ι(P (mpl))

[[call κ.m(τ ) : t]]
ι
= (extend κ.m(τ ) : t)(ι(bκ.m(τ ):t))

where bκ.m(τ):t is the block where method or constructor κ.m(τ ) : t starts. The
function [[ ]]ι is extended to blocks as

[[

ins1
···
insn

`

⇒
b1
···
bm

]]ι

=

{

[[ins1]]
ι
; · · · ; [[insn]]

ι
if m = 0

[[ins1]]
ι
; · · · ; [[insn]]

ι
; (ι(b1) ∪ · · · ∪ ι(bm)) if m > 0.

with the assumption that if n = 0 then [[ins1]]
ι
; · · · ; [[insn]]

ι
= {id}, where the

identity denotation id is such that id = λσ.σ. ut

The blocks of P are in general interdependent, because of loops and method
calls, and a denotational semantics must be built through a fixpoint computation.
Given an empty approximation ι ∈ I of the denotational semantics, one improves
it into TP (ι) ∈ I and iterates the application of TP until a fixpoint3.

Definition 11. The transformer TP : I 7→ I for P is defined as TP (ι)(b) =
[[b]]

ι
for every ι ∈ I and block b of P . ut

Proposition 1. The operator TP is additive, so its least fixpoint exists [17]. ut

Definition 12. Let P be a Java bytecode program (possibly enriched with its
magic blocks). Its denotational semantics DP is the least fixpoint ti≥0T

i
P of TP ,

where T 0
P (b) = ∅ for every block b of P and T i+1

P = TP (T i
P ) for every i ≥ 0. ut

We show now that the operational semantics of Section 4 and the denota-
tional semantics of this section coincide, so that (Theorem 1) the denotation of
a magic block mk is the internal behaviour at the end of block k.

Theorem 2. Let b a block (not necessarily of P ) and σin an initial state for
b. The functional behaviour of b, as modelled by the operational semantics of
Section 4, coincides with its denotational semantics:

{σout | 〈b ||σin 〉 ⇒
∗
P 〈b′ ||σout 〉 6⇒P } = {δ(σin) | δ ∈ [[b]]

DP, δ(σin ) is defined }. ut

3 Our implementation Julia performs smaller fixpoints on each strongly-connected
component of blocks rather than a huge fixpoint over all blocks. This is important
for efficiency reasons but irrelevant here for our theoretical results.



7 Experiments

We have implemented our magic-sets transformation inside the generic anal-
yser Julia for Java bytecode [15] and used it with two abstract domains. The
first [14] overapproximates the set of pairs of program variables, which for the
Java bytecode means local variables or stack elements, which share i.e., reach
the same memory location; it is used for automatic program parallelisation and
to support other analyses. The second [12] overapproximates the set of cyclical
program variables, those which reach a loop of memory locations; it needs a
preliminary pair-sharing analysis. We used Boolean formulas to abstract sets of
denotations by relating properties of their input to properties of their output.
For instance, (l1 , s1 ) ⇒ (l1 , l2 ) abstracts those denotations δ such that for every
state σ, where only local variable 1 and stack element 1 might share (the base
of the stack is s0 ), we have that in δ(σ) only local variables 1 and 2 might share
(for simplicity, we do not report variables sharing with themselves [14]). We have
implemented Boolean formulas through binary decision diagrams [4].

Let us consider pair-sharing. Julia computes the formula (l1 , s0 ) as abstract
denotation for block m2 in Fig. 3. It states that (l1 , s0 ) is true for m2 i.e., at its
end, only local variable 1, which holds the list v1 of Fig. 1, might share with stack
element 0 (the base of the stack), which holds the return value of clone. Hence
Julia proves that all other pairs of local variables and stack elements definitely
do not share. This is an optimal approximation of the behaviour of the program
between blocks 2 and 3. Julia computes (l1 , l2 ) as abstract denotation for block
m4 . Hence it proves that local variables l1 (v1 in Fig. 1) and l2 (v2 in Fig. 1)
might share there, while all other local variables and stack elements definitely
do not share; in particular, the return value of deepClone (the stack element
0) does not share with v1. Note that v1 and v2 actually share after the call
to deepClone, whose return value has not been stored into v2 yet. This is an
optimal approximation of the behaviour of the program between blocks 4 and 5.
Let us consider cyclicity analysis. Julia computes false as abstract denotation of
both m2 and m4 in Fig. 3 i.e., it proves that no local variable and stack element
might be cyclical there, which is an optimal approximation of the behaviour of
the program between blocks 2 and 3 and between blocks 4 and 5. In conclusion,
Julia proves both points 1 and 2 of Section 1.

Fig. 1 shows a simple program. More complex benchmarks such as those in
Fig. 5 challenge the scalability, the efficiency and the precision of the analyses.
The first and smaller 4 have been also analysed with the pair-sharing analyser
in [10] so we can build a comparison. The others are progressively larger to check
the scalability of the analyses. Fig. 5 reports their size (number of methods),
their preprocessing time with Julia (extraction and parsing of the .class files,
building a high-level representation of the bytecode and the magic-sets) and its
percentage due to the magic-sets transformation, which is never more than 31%.
We consider two scenarios: whether the Java libraries are not analysed (calls to
the missing classes use a worst-case assumption) or they are analysed, for more
precise but more costly analyses. We used an Intel Xeon machine running at
2.8GHz, with 2.5 gigabytes of RAM, Linux 2.6.15 and Sun jdk 1.5.



libraries are not included libraries are included

methods preproc. magic-sets methods preproc. magic-sets

Qsort 8 369 2.14% 72 767 3.65%

IntegerQsort 9 369 2.14% 72 765 3.66%

Passau 10 351 1.51% 13 388 1.19%

ZipVector 13 395 2.48% 76 778 4.08%

JLex 130 1292 14.53% 744 2160 10.97%

JavaCup 293 1502 9.8% 1136 2657 21.88%

julia 1441 3351 13.56% 4809 8552 14.9%

jess 1506 3344 25.1% 6046 9911 28.88%

jEdit 2473 6887 22.74% 7943 15156 30.77%

soot 15617 75925 10.49% 19032 84709 14.54%

Fig. 5. Size and preprocessing times (in milliseconds) for our benchmarks.

sharing analysis cyclicity analysis

libr. not included libr. included libr. not included libr. included

time precision time precision time precision time precision

Qsort 127 35.09% 267 71.79% 20 100.00% 43 100.00%

IntegerQsort 208 36.17% 295 53.46% 23 100.00% 38 100.00%

Passau 152 36.88% 118 43.03% 14 100.00% 6 100.00%

ZipVector 251 21.15% 395 40.47% 34 98.38% 50 100.00%

JLex 1438 30.34% 2312 33.86% 269 80.69% 877 83.22%

JavaCup 2418 16.26% 4996 22.96% 474 87.25% 1836 93.82%

julia 10829 11.03% 33589 12.22% 2852 78.48% 5245 83.59%

jess 24526 12.79% 66163 15.96% 4136 73.00% 8293 79.64%

jEdit 42332 16.34% 135208 19.92% 6654 76.08% 15926 81.50%

soot 125819 6.26% 282923 7.69% 113884 73.70% 196456 80.42%

Fig. 6. Time (in milliseconds) and precision of our sharing and cyclicity analyses.

Fig. 6 reports the results of pair-sharing and cyclicity analyses with Ju-

lia. Precision, for sharing analysis, is the percentage of pairs of distinct local
variables or stack elements which are proved not to share, definitely, before a
putfield, an arraystore or a call. We consider only variables and stack ele-
ments of reference type since primitive types cannot share in Java (bytecode);
only putfield’s, arraystore’s and call’s since it is there that sharing analysis
helps other analyses (see for instance [12] for its help to cyclicity analysis). Pre-
cision, for cyclicity analysis, is the percentage of local variables or stack elements
which are proved to be non-cyclical, definitely, before a getfield bytecode. We
consider only variables and stack elements of reference type since primitive val-
ues are never cyclical; only getfield’s since cyclicity information is typically
used there, for instance to prove termination of iterations over dynamic data-
structures [16]. For better efficiency, we cache the analysis of each bytecode so
that, if it is needed twice, we only compute it once. This happens frequently with
our magic-sets transformation, which introduces code duplication. For instance,
block m1 in Fig. 3 shares three bytecodes which block 1. This technique has



been inspired by a similar optimisation of the analysis of magic logic programs,
defined in [5]. Since it caches the functional behaviour of the code, it is different
from memoisation, which only caches its behaviour for each given input state.

We are not aware of any other cyclicity analysis for Java bytecode. An op-
erational pair-sharing analyser was instead applied [10] to the smallest 4 bench-
marks in Fig. 5, without including the library classes. We asked its authors
to try it on our machine and benchmarks, without any answer. They take
time P + T + A: P is the preprocessing time, which they do not report. Since
they use the generic analyser Soot, we could compute P with Soot version
2.2.2; T is the time to transform the output of Soot into the format required
in [10]. We cannot estimate T without the analyser; A is the preliminary running
time reported in [10], normalised w.r.t. the relative speeds of our machine and
theirs. Fig. 7 compares the running time of Julia, including preprocessing and

Julia [10]

Qsort 496 ≥1625
IntegerQsort 577 ≥1335

Passau 502 ≥1595
ZipVector 646 ≥2780

Fig. 7. Times (in millisec-
onds) of our pair-sharing
analysis and of that in [10].

without analysing the libraries, with P + A,
since T is unknown. Julia is faster, even with-
out T . Exceptions, subroutines, static initialis-
ers and native methods are not tested by such
small benchmarks. So it is not clear if the anal-
yser in [10] is ready for real analyses. Pre-
cision is expressed in [10] as a level of mul-
tivariance which we could not translate into
our (more natural) notion. Another analysis for
(definite) sharing is implemented in [11] for
a restricted subset of Java. Times and pre-
cision are not reported. The code is not publicly available.

Julia [8]

Qsort 1.0 93
IntegerQsort 1.1 92

Passau 0.5 89
ZipVector 1.2 90

JLex 4.5 95
JavaCup 7.7 99

julia 42.1 fails
jess 76.1 fails

jEdit 150.4 fails
soot 367.7 452

Fig. 8. Times (in seconds)
of our pair-sharing anal-
ysis and of the points-to
analysis in [8].

We compared our pair-sharing analysis with the
Spark [8] points-to analysis, also based on Soot.
Points-to and sharing information are somehow sim-
ilar. Spark includes all Java libraries in the analysis
as also Julia can do. Soot, Spark and Julia are
all written in Java. Hence a comparison is relatively
fair. Fig. 8 compares the overall running times, in-
cluding preprocessing. Julia is always faster, up to
two orders of magnitude as for Passau; it completes
all analyses while Spark stops in three cases with
hard-to-understand run-time errors (for jEdit and
jess: This operation requires resolving level hierar-
chy but someclass is at resolving level dangling;
for julia: couldn’t find class jdd.bdd.BDD, which does
not exist and is not used by Julia). We stress that
sharing and points-to analyses are anyway differ-
ent analyses and neither of them is an abstraction
of the other. Hence this comparison only indicates
that Julia compares well w.r.t. an existing tool.



8 Conclusion

Our experiments show that denotational analyses of Java bytecode, with a pre-
liminary magic-sets transformation, are feasible, fast and compare well with
other analyses. We will soon use widenings [7] to still improve their efficiency.

Our magic-sets transformation is completely independent from the abstract
domains, which can be developed without even knowing its existence. Then all
abstract domains defined so far for the analysis of Java bytecode can in principle
be used in our framework. The domain developer must only specify the internal
program points where he wants to observe the results of the analysis, which
depends on the specific goal for which he develops the abstract domain.
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9 Proofs (not meant for publication)

We use the notation ⇒n, standing for n ≥ 0 steps of derivation, and the notation
⇒
(r)

standing for a single derivation step through rule r.

9.1 Proof of Theorem 1

The proof follows from the next 2 propositions.

Proposition 2. Let P be a program and k ∈ N. If

〈bin ||σin〉 ⇒
∗ 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a

then
〈P (mk) || σin〉 ⇒

∗ 〈 rest
mk

||σ〉 .

Proof. For any n ∈ N, we let Prop⊆(n) denote the property:

for any program P and any k ∈ N, if

〈bin ||σin 〉 ⇒
n 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a

then
〈P (mk) || σin〉 ⇒

∗ 〈 rest
mk

||σ〉 .

We prove by induction on n that Prop⊆(n) holds for any n ∈ N.

– (Basis) We prove that Prop⊆(0) holds. Let 〈bin ||σin〉 ⇒
0 〈 rest

k
⇒

b1
···
bm

||σ〉 ::

a. Then, bin = rest
k
⇒

b1
···
bm

, σin = σ and a is empty. Notice that P (mk) =

magic(P (k)) with P (k) = bin . Since the first block of method main has no
predecessors and is not called by any method, by the third case of Defini-

tion 1, we have P (mk) = rest
mk

. As 〈P (mk) || σin〉 ⇒∗ 〈P (mk) ||σin 〉 we

have 〈P (mk) ||σin〉 ⇒
∗ 〈 rest

mk
||σ〉.

– (Induction) Suppose that for each i ≤ n, Prop⊆(i) holds. We prove that
Prop⊆(n + 1) also holds. Assume that

〈bin ||σin 〉 ⇒
n+1 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a .

Then 〈bin ||σin 〉 ⇒
n an ⇒ 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a. Let us consider the rule of

Definition 5 that is used in the last derivation step, from an.

1. If rule (1) is used then an = 〈 ins
rest

k

⇒
b1
···
bm

||σ′〉 :: a and σ = ins(σ′). By

inductive hypothesis,

〈P (mk) ||σin 〉 ⇒
∗ 〈 ins

rest

mk

|| σ′〉 .



Moreover,

〈 ins
rest

mk

|| σ′〉⇒
(1)

〈 rest
mk

|| ins(σ′)〉 .

Consequently, as ins(σ′) = σ,

〈P (mk) ||σin〉 ⇒
∗ 〈 rest

mk
||σ〉 .

2. If rule (2) is used then an is

〈 call κ.m(τ):t
rest

k′

⇒ ··· ||σ′〉 :: a′

where σ′ = 〈l || pars :: s ||µ〉 and σ = (makescope κ.m(τ ) : t)(σ′). More-

over, a has the form 〈 rest
k′

⇒ ··· ||〈l || s ||µ〉〉 :: a′.
Notice that we have assumed that only the starting blocks of the methods
have no predecessor and that such blocks do not start with a call. Con-

sequently, call κ.m(τ):t
rest

k′

⇒ ··· has some predecessors, say p1, . . . , pl.

So, the derivation from 〈bin ||σin〉 to an has the form

〈bin ||σin 〉 ⇒
∗ 〈 pi⇒ ··· ||σ′〉 :: a′

⇒
(4)

〈 call κ.m(τ):t
rest

k′

⇒ ··· ||σ′〉 :: a′

︸ ︷︷ ︸

an

with 1 ≤ i ≤ l.

As rest
k
⇒

b1
···
bm

is the first block of method κ.m(τ ) : t, then it has no

predecessor and P (k) = rest
k
⇒

b1
···
bm

. Consequently, by the second case

of Definition 1, we have

P (mk) = magic(P (k)) =
blockcall···mpi···

makescope κ.m(τ):t
rest

mk

.

So, we have:

〈P (mk) ||σin〉⇒
(5)

〈P (mpi) || σin〉 :: 〈 makescope κ.m(τ):t
rest

mk

||σin〉

and, by inductive hypothesis,

〈P (mpi) ||σin 〉 ⇒
∗ 〈 mpi ||σ′〉 .

Consequently,

〈P (mk) || σin〉 ⇒
∗ 〈 mpi ||σ′〉 :: 〈 makescope κ.m(τ):t

rest

mk

||σin 〉

⇒
(6)

〈 makescope κ.m(τ):t
rest

mk

||σ′〉

⇒
(1)

〈 rest
mk

|| (makescope κ.m(τ ) : t)(σ′)
︸ ︷︷ ︸

σ

〉 .



3. If rule (3) is used then an has the form

〈 k′

||〈l′ || vs ||µ′〉〉 :: 〈 rest
k
⇒

b1
···
bm

||〈l || s ||µ〉〉 :: a

and σ = 〈l || vs :: s ||µ′〉. Notice that rule (3) corresponds to the situation
where control returns to the caller P (k), since the only rule which can
create a new top configuration with a normal block is rule (2). As a call

instruction is always located at the beginning of a block, we have

P (k) = call κ.m(τ):t
rest

k

⇒
b1
···
bm

hence P (k) has some predecessors (because we have assumed that only
the starting blocks of the methods have no predecessor and that such
blocks do not start with a call), say p1, . . . , pl. So, the derivation from
〈bin ||σin 〉 to an has the form

〈bin ||σin 〉 ⇒
∗ 〈 pi⇒ ··· ||σi〉 :: a

⇒
(4)

〈P (k) ||σi〉 :: a

⇒
(2)

〈b ||σ′
i〉 :: 〈 rest

k
⇒

b1
···
bm

||〈l || s ||µ〉〉 :: a

⇒∗ 〈 k′

||〈l′ || vs ||µ′〉〉 :: 〈 rest
k
⇒

b1
···
bm

||〈l || s ||µ〉〉 :: a
︸ ︷︷ ︸

an

where 1 ≤ i ≤ l, σi = 〈l || pars :: s ||µ〉, σ′
i = (makescope κ.m(τ ) :

t)(σi) and b is the starting block of κ.m(τ ) : t. Moreover, 〈b ||σ′
i〉 ⇒∗

〈 k′

||〈l′ || vs ||µ′〉〉. By the first case of Definition 1, we have

P (mk) = magic(P (k)) =
blockcall mp1···mpl

call κ.m(τ):t
rest

mk

Then,

〈P (mk) ||σin 〉⇒
(5)

〈P (mpi) || σin〉 :: 〈 call κ.m(τ):t
rest

mk

||σin〉

and, by inductive hypothesis,

〈P (mpi) || σin〉 ⇒
∗ 〈 mpi ||σi〉 .

So we have

〈P (mk) ||σin〉 ⇒
∗ 〈 mpi ||σi〉 :: 〈 call κ.m(τ):t

rest

mk

||σin〉

⇒
(6)

〈 call κ.m(τ):t
rest

mk

||σi〉

⇒
(2)

〈b ||σ′
i〉 :: 〈 rest

mk
||〈l || s ||µ〉〉 .



Since we have observed that 〈b ||σ′
i〉 ⇒

∗ 〈 k′

||〈l′ || vs ||µ′〉〉, we conclude
that

〈P (mk) ||σin〉 ⇒
∗ 〈 k′

||〈l′ || vs ||µ′〉〉 :: 〈 rest
mk

||〈l || s ||µ〉〉

⇒
(3)

〈 rest
mk

||〈l || vs :: s ||µ′〉〉

i.e., 〈P (mk) ||σin 〉 ⇒
∗ 〈 rest

mk
||σ〉.

4. If rule (4) is used then an has the form 〈 k′

⇒
b′1
···

b′
m′

||σ〉 :: a and

rest
k
⇒

b1
···
bm

is a b′i. Then, rest
k
⇒

b1
···
bm

= P (k). By the first case of

Definition 1,

P (mk) = magic(P (k)) = blockcall···mk′···
rest

mk

.

Hence,

〈P (mk) ||σin〉⇒
(5)

〈P (mk′) ||σin〉 :: 〈 rest
mk

||σin 〉 .

As 〈bin ||σin〉 ⇒
n an, by inductive hypothesis we have

〈P (mk′) || σin〉 ⇒
∗ 〈 mk′

||σ〉 .

Consequently,

〈P (mk) ||σin〉 ⇒
∗ 〈 mk′

||σ〉 :: 〈 rest
mk

||σin〉

⇒
(6)

〈 rest
mk

||σ〉 .

5. Rule (5) cannot be used. Indeed, bin is a “normal” (i.e., non-magic)
block and a normal block does not call any magic block. Hence, the
block in an is not a magic block.

6. Rule (6) cannot be used for the same reasons as above.
ut

Proposition 3. Let P be a program and k ∈ N. If

〈P (mk) ||σin 〉 ⇒
∗ 〈 rest

mk
|| σ〉

where rest does not contain any blockcall nor makescope then

〈bin ||σin〉 ⇒
∗ 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a

for some a.

Proof. For any n ∈ N, we let Prop⊇(n) denote the property:



for any k ∈ N, if

〈P (mk) || σin〉 ⇒
n 〈 rest

mk
||σ〉

where rest does not contain any blockcall nor makescope then

〈bin ||σin〉 ⇒
∗ 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a

for some a.

We prove by induction on n that Prop⊇(n) holds for any n ∈ N.

– (Basis) We prove that Prop⊇(0) holds. Let k ∈ N. Suppose that

〈P (mk) ||σin 〉 ⇒
0 〈 rest

mk
|| σ〉

where rest does not contain any blockcall nor makescope. Then, σin =

σ and P (mk) = rest
mk

, so P (mk) does not contain any blockcall nor
makescope. Hence, as P (mk) = magic(P (k)), P (mk) is obtained from the
third case of Definition 1. Consequently:

• P (k) = rest
k
⇒

b1
···
bm

,

• P (k) has no predecessor, so P (k) is the starting block of a method
κ.m(τ ) : t,

• each block of P starting with call κ.m(τ ) : t has no predecessor, hence
it is the starting block of a method; as the starting block of any method
does not start with a call, no block of P starts with call κ.m(τ ) : t.
Then κ.m(τ ) : t is the method main and P (k) = bin .

Therefore, as 〈bin ||σin 〉 ⇒
∗ 〈bin ||σin 〉 with σin = σ, we have

〈bin ||σin〉 ⇒
∗ 〈 rest

k
⇒

b1
···
bm

|| σ〉 .

– (Induction) Suppose that for each i ≤ n, Prop⊇(i) holds. We prove that
Prop⊇(n + 1) also holds. Suppose that

〈P (mk) ||σin 〉 ⇒
n+1 〈 rest

mk
|| σ〉

where rest does not contain any blockcall nor makescope. Then, we have

〈P (mk) || σin〉 ⇒n an ⇒ 〈 rest
mk

||σ〉. Let us consider the rule of Defini-
tion 5 that is used in the derivation from an.

1. If rule (1) is used then an has the form 〈 ins
rest

mk

||σ′〉 and σ = ins(σ′).

If ins is not a makescope then, by inductive hypothesis,

〈bin ||σin〉 ⇒
∗ 〈 ins

rest

k

⇒
b1
···
bm

||σ′〉 :: a .

Moreover,

〈 ins
rest

k

⇒
b1
···
bm

||σ′〉 :: a⇒
(1)

〈 rest
k
⇒

b1
···
bm

|| ins(σ′)〉 :: a .



Consequently, as ins(σ′) = σ,

〈bin || σin〉 ⇒
∗ 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a .

If ins = makescope κ.m(τ ) : t then, as P (mk) = magic(P (k)), by the
second case of Definition 1, which is the only case which introduces a
makescope instruction in the code, we have:

• P (k) = rest
k
⇒

b1
···
bm

,

• P (k) is the starting block of method κ.m(τ ) : t,

• P (mk) =
blockcall ···mk′···
makescope κ.m(τ):t

rest

mk

,

• P (k′) is a predecessor of a block of P , say P (k′′), that begins with
call κ.m(τ ) : t.

Moreover, the derivation from 〈P (mk) || σin〉 to an has the form

〈P (mk) || σin〉 ⇒
(5)

〈P (mk′) ||σin〉 :: 〈 ins
rest

mk

||σin 〉

⇒∗ 〈 mk′

|| σ′〉 :: 〈 ins
rest

mk

||σin 〉

⇒
(6)

〈 ins
rest

mk

||σ′〉
︸ ︷︷ ︸

an

where 〈P (mk′) ||σin 〉 ⇒
∗ 〈 mk′

|| σ′〉 in less than n steps. So, by induc-
tive hypothesis, we have

〈bin ||σin〉 ⇒
∗ 〈 k′

⇒ ··· ||σ′〉 :: a′ .

As P (k′′) is a successor of P (k′) and P (k′′) begins with call κ.m(τ ) : t,
we have

〈bin ||σin 〉 ⇒
∗ 〈 k′

⇒ ··· ||σ′〉 :: a′

⇒
(4)

〈 call κ.m(τ):t
rest

k′′

⇒ ···

︸ ︷︷ ︸

P (k′′)

||σ′〉 :: a′

⇒
(2)

〈P (k) || ins(σ′)〉 :: 〈 rest
k′′

⇒ ··· ||σ′′〉 :: a′

since ins = makescope κ.m(τ ) : t. Hence, since P (k) = rest
k
⇒

b1
···
bm

and σ = ins(σ′):

〈bin ||σin 〉 ⇒
∗ 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a .

2. Rule (2) cannot be used because otherwise the length of the resulting ac-
tivation stack would be at least equal to 2. Here, the resulting activation

stack is 〈 rest
mk

||σ〉, whose length is equal to 1.



3. If rule (3) is used then an has the form

〈 k′

||〈l′ || vs ||µ′〉〉 :: 〈 rest
mk

||〈l || s ||µ〉〉

and σ = 〈l || vs :: s ||µ′〉. Notice that rule (3) corresponds to the situa-
tion where control returns to the caller P (mk). So, the derivation from
〈P (mk) || σin〉 to an has the form

〈P (mk) || σin〉 ⇒
∗ 〈 call κ.m(τ):t

rest

mk

||σ1〉

⇒
(2)

〈b ||σ′
1〉 :: 〈 rest

mk
||〈l || s ||µ〉〉

⇒∗ 〈 k′

||〈l′ || vs ||µ′〉〉 :: 〈 rest
mk

||〈l || s ||µ〉〉
︸ ︷︷ ︸

an

where σ1 = 〈l || pars :: s ||µ〉, σ′
1 = (makescope κ.m(τ ) : t)(σ1), b is the

starting block of κ.m(τ ) : t and

〈b ||σ′
1〉 ⇒

∗ 〈 k′

||〈l′ || vs ||µ′〉〉 .

Note that the block call κ.m(τ):t
rest

mk

does not contain any blockcall

nor makescope, since rest does not contain them. Hence, by inductive
hypothesis:

〈bin ||σin〉 ⇒
∗ 〈 call κ.m(τ):t

rest

k

⇒
b1
···
bm

||σ1〉

Consequently,

〈bin ||σin 〉 ⇒
∗ 〈 call κ.m(τ):t

rest

k

⇒
b1
···
bm

||σ1〉

⇒
(2)

〈b ||σ′
1〉 :: 〈 rest

k
⇒

b1
···
bm

||〈l || s ||µ〉〉

⇒∗ 〈 k′

||〈l′ || vs ||µ′〉〉 :: 〈 rest
k
⇒

b1
···
bm

||〈l || s ||µ〉〉

⇒
(3)

〈 rest
k
⇒

b1
···
bm

||〈l || vs :: s ||µ′〉〉

i.e.,

〈bin || σin〉 ⇒
∗ 〈 rest

k
⇒

b1
···
bm

||σ〉 .

4. Rule (4) cannot be used. Indeed, in this rule the top of the resulting ac-

tivation stack is 〈bi ||σ〉 where bi is not a magic block, while here rest
mk

is a magic block.
5. Rule (5) cannot be used because otherwise the length of the resulting ac-

tivation stack would be at least equal to 2. Here, the resulting activation

stack is 〈 rest
mk

||σ〉, whose length is equal to 1.



6. If rule (6) is used then an has the form 〈 mk′

|| σ〉 :: 〈 rest
mk

||σ′〉.
Since only rule (5) pushes a magic block on top of the stack, block P (mk)

has the form blockcall ···mk′···
rest

mk

and the derivation

〈P (mk) || σin〉 ⇒
∗ an

has the form

〈P (mk) || σin〉 ⇒
(5)

〈P (mk′) ||σin〉 :: 〈 rest
mk

||σin 〉

⇒n−1 〈 mk′

||σ〉 :: 〈 rest
mk

||σin〉
︸ ︷︷ ︸

an

where 〈P (mk′) ||σin 〉 ⇒n−1 〈 mk′

||σ〉. Moreover, as rest does not
contain any makescope, P (mk) is obtained from P (k) using the first

case of Definition 1. Consequently, P (k) has the form rest
k
⇒

b1
···
bm

and

P (k′) is a predecessor of P (k). By inductive hypothesis, 〈bin ||σin 〉 ⇒∗

〈 k′

⇒ ··· ||σ〉 :: a. Hence

〈bin ||σin〉 ⇒
∗ 〈 k′

⇒ ··· || σ〉 :: a

⇒
(4)

〈 rest
k
⇒

b1
···
bm

|| σ〉 :: a

i.e., 〈bin || σin〉 ⇒
∗ 〈 rest

k
⇒

b1
···
bm

||σ〉 :: a.

ut

9.2 Proof of Proposition 1

We first need a lemma.

Lemma 1. Let ins be a bytecode instruction and {ιj}j∈J ⊆ I with J ⊆ N. Then

[[ins]]tj∈J ιj = ∪j∈J [[ins]]ιj .

Proof. If ins is not a call nor a blockcall, then

[[ins]]
tj∈J ιj = {ins} = ∪j∈J [[ins]]

ιj .

If ins is a call κ.m(τ ) : t and bκ.m(τ):t is the block where κ.m(τ ) : t starts
then, since extend has been extended to sets of denotations:

[[ins]]
tj∈J ιj = (extend κ.m(τ ) : t)((tj∈J ιj)(bκ.m(τ):t))

= (extend κ.m(τ ) : t)(∪j∈J ιj(bκ.m(τ):t))

= ∪j∈J (extend κ.m(τ ) : t)(ιj(bκ.m(τ):t))

= ∪j∈J [[ins]]ιj .



If ins is a blockcall mp1 · · ·mpl then

[[ins]]tj∈J ιj = (tj∈J ιj)(P (mp1)) ∪ · · · ∪ (tj∈J ιj)(P (mpl))

=
(

∪j∈J ιj(P (mp1))
)

∪ · · · ∪
(

∪j∈J ιj(P (mpl))
)

= ∪j∈J

(

ιj(P (mp1)) ∪ · · · ∪ ιj(P (mpl))
)

= ∪j∈J [[ins]]ιj .

ut

We can now prove Proposition 1:

Proof. Let {ιj}j∈J ⊆ I with J ⊆ N. We prove that

TP (tj∈J ιj)(b) = (tj∈JTP (ιj))(b)

for all blocks b.

Let first b be
ins1
···
insk

`

⇒
b1
···
bm

with k > 0 and m > 0 (the cases when k = 0 or

m = 0 are considered later). We have:

TP (tj∈J ιj)(b) = [[b]]
tj∈J ιj

= [[ins1]]
tj∈J ιj ; · · · ; [[insn]]

tj∈J ιj ; ((tj∈J ιj)(b1) ∪ · · · ∪ (tj∈J ιj)(bm))

which by Lemma 1 is equal to

⋃

j∈J

[[ins1]]
ιj ; · · · ;

⋃

j∈J

[[insn]]
ιj ;




⋃

j∈J

(ιj(b1)) ∪ · · · ∪
⋃

j∈J

(ιj(bm))



 (7)

Since ; is the extention of ; over sets of denotations, it is by definition additive;
the same holds for ∪. Since the composition of additive functions is additive,
Equation (7) can be rewritten into

⋃

j∈J

([[ins1]]
ιj ; · · · ; [[insn]]

ιj ; (ιj(b1) ∪ · · · ∪ ιj(bm)))

=
⋃

j∈J

[[b]]
ιj =

⋃

j∈J

(TP (ιj)(b))

= (tj∈JTP (ιj)) (b) .

The cases when k = 0 or m = 0 follow similarly: when k = 0 we remove the
interpretations of the instructions ins1, . . . , insm; when m = 0 we remove the
interpretations of the blocks b1, . . . , bm. ut



9.3 Proof of Theorem 2

Lemma 2. Let 〈b ||σ〉 be a state such that 〈b ||σ〉 6⇒. Then b has the form `.

Proof. The proof follows from these remarks:

– b cannot have the form
ins1
···
insn

`

⇒
b1
···
bm

with n 6= 0, otherwise one of the rules

(1), (2) and (5) of Definition 5 would be applicable to 〈b ||σ〉. Note that
when ins1 is a call then rule (2) is applicable since the Java bytecode is
verifiable [9].

– b cannot have the form k
⇒

b1
···
bm

with m 6= 0 and k ∈ N, otherwise rule (4)

of Definition 5 would be applicable to 〈b ||σ〉.

– b cannot have the form mk
⇒

b1
···
bm

with m 6= 0 and k ∈ N since magic

blocks have no successors, accordingly with Definition 1.
ut

Proposition 4. Let b a block (not necessarily of P ) and σin an initial state for
b. Then,

{σout | 〈b ||σin〉 ⇒
∗ 〈b′ ||σout 〉 6⇒} ⊆ {δ(σin ) | δ ∈ [[b]]

DP, δ(σin ) is defined }. ut

Proof. For any n ∈ N, block b and state σin , we let Prop⊆(n) denote the prop-
erty:

if
〈b ||σin〉 ⇒

n 〈b′ ||σout 〉 6⇒

then
σout ∈ {δ(σin) | δ ∈ [[b]]DP, δ(σin ) is defined } .

We prove by induction on n that Prop⊆(n) holds for any n ∈ N.

– (Basis) We prove that Prop⊆(0) holds. Suppose that

〈b ||σin〉 ⇒
0 〈b′ ||σout 〉 6⇒ .

Then, b′ = b and σout = σin . So, by Lemma 2, b has the form `. Conse-

quently, [[b]]
DP = {id}. Hence, as id(σin) = σin , we have

σin ∈ {δ(σin) | δ ∈ [[b]]
DP, δ(σin) is defined }

so σout ∈ {δ(σin ) | δ ∈ [[b]]DP, δ(σin ) is defined }.
– (Induction) Suppose that for each i ≤ n, Prop⊆(i) holds. We prove that

Prop⊆(n + 1) also holds. Assume that

〈b ||σin〉 ⇒
n+1 〈b′ ||σout 〉 6⇒ .

Then, 〈b ||σin〉 ⇒ a ⇒n 〈b′ ||σout 〉 6⇒. Let us consider the rule of Definition 5
that is used in the first derivation step.



1. If rule (1) is used then

b = ins
rest

`

⇒
b1
···
bm

and a = 〈 rest
`
⇒

b1
···
bm

|| ins(σin )〉 .

Let ba = rest
`
⇒

b1
···
bm

. By Definition 10, [[b]]
DP = [[ins]]

DP

; [[ba]]
DP with,

as ins is not a call nor a blockcall, [[ins]]
DP

= {ins}. Therefore,

[[b]]
DP = {ins}; [[ba]]

DP .

By inductive hypothesis,

σout ∈ {δ(ins(σin )) | δ ∈ [[ba]]
DP, δ(ins(σin )) is defined } .

Then, there exists δ ∈ [[ba]]
DP such that δ(ins(σin )) is defined and σout =

δ(ins(σin)). Then, σout = (ins ; δ)(σin ) with ins ; δ ∈ {ins}; [[ba]]
DP i.e.,

ins ; δ ∈ [[b]]
DP . Consequently,

σout ∈ {δ(σin) | δ ∈ [[b]]
DP, δ(σin ) is defined } .

2. If rule (2) is used then

b = call κ.m(τ):t
rest

`

⇒
b1
···
bm

and a = 〈b1 ||σ1〉 :: 〈 rest
`
⇒

b1
···
bm

||〈l || s ||µ〉〉

where b1 is the starting block of method κ.m(τ ) : t, σin = 〈l || pars :: s ||µ〉
and σ1 = (makescope κ.m(τ ) : t)(σin ). Notice that the derivation from
a to 〈b′ || σout〉 has the form

〈b1 ||σ1〉 :: 〈 rest
`
⇒

b1
···
bm

||〈l || s ||µ〉〉

⇒∗ 〈 k ||〈l′ || vs ||µ′〉〉 :: 〈 rest
`
⇒

b1
···
bm

||〈l || s ||µ〉〉

⇒
(3)

〈 rest
`
⇒

b1
···
bm

||〈l || vs :: s ||µ′〉〉

⇒∗ 〈b′ ||σout 〉

where 〈b1 ||σ1〉 ⇒∗ 〈 k ||〈l′ || vs ||µ′〉〉 in less than n steps. Notice that
〈 k ||〈l′ || vs ||µ′〉〉 6⇒. So, by inductive hypothesis,

〈l′ || vs ||µ′〉 ∈ {δ(σ1) | δ ∈ [[b1]]
DP, δ(σ1) is defined } .

Then, there exists δ1 ∈ [[b1]]
DP such that δ1(σ1) is defined and

〈l′ || vs ||µ′〉 = δ1(σ1) = δ1((makescope κ.m(τ ) : t)(σin )) .

Consequently, by Definition 8,

〈l || vs :: s ||µ′〉 = (extend κ.m(τ ) : t)(δ1)(σin ) . (8)



Let ba = rest
`
⇒

b1
···
bm

. By Definition 10,

[[b]]
DP = [[call κ.m(τ ) : t]]

DP

; [[ba]]
DP

= (extend κ.m(τ ) : t)(DP (b1)); [[ba]]
DP .

As 〈 ba ||〈l || vs :: s ||µ′〉〉 ⇒∗ 〈b′ ||σout 〉 in less than n steps, by inductive
hypothesis

σout ∈ {δ(〈l || vs :: s ||µ′〉) | δ ∈ [[ba]]
DP, δ(〈l || vs :: s ||µ′〉) is defined } .

Hence, there exists δ2 ∈ [[ba]]
DP such that δ2(〈l || vs :: s ||µ′〉) is defined

and σout = δ2(〈l || vs :: s ||µ′〉). So, by (8), we have

σout = δ2((extend κ.m(τ ) : t)(δ1)(σin ))

= ((extend κ.m(τ ) : t)(δ1); δ2)(σin ) .

Notice that, by Definition 11, [[b1]]
DP = TP (DP )(b1). As DP is the

least fixpoint of Tp, we have TP (DP )(b1) = DP (b1). Hence, [[b1]]
DP =

DP (b1) which implies, as δ1 ∈ [[b1]]
DP , that δ1 ∈ DP (b1) i.e., that

(extend κ.m(τ ) : t)(δ1) ∈ (extend κ.m(τ ) : t)(DP (b1)). Therefore,

(extend κ.m(τ ) : t)(δ1); δ2 ∈ (extend κ.m(τ ) : t)(DP (b1)); [[ba]]
DP

i.e., (extend κ.m(τ ) : t)(δ1); δ2 ∈ [[b]]
DP . Consequently,

σout ∈ {δ(σin) | δ ∈ [[b]]
DP, δ(σin ) is defined } .

3. Rule (3) cannot be used because it requires a starting activation stack
whose length is at least equal to 2. Here, the starting activation stack is
〈b ||σin 〉, whose length is equal to 1.

4. If rule (4) is used then

b = k
⇒

b1
···
bm

and a = 〈bi ||σin〉

where i ∈ {1, . . . , m}. Notice that, by Definition 10,

[[b]]
DP = DP (b1) ∪ · · · ∪ DP (bm) .

Moreover, for each j ∈ {1, . . . , m}, we have [[bj ]]
DP = TP (DP )(bj) by

Definition 11. As DP is the least fixpoint of Tp, we have TP (DP )(bj) =

DP (bj). Therefore, [[bj ]]
DP = DP (bj). Consequently,

[[b]]DP = [[b1]]
DP ∪ · · · ∪ [[bm]]DP .

As 〈bi || σin〉 ⇒
n 〈b′ ||σout 〉, by inductive hypothesis

σout ∈ {δ(σin) | δ ∈ [[bi]]
DP, δ(σin ) is defined } .



Hence, there exists δ ∈ [[bi]]
DP such that δ(σin ) is defined and σout =

δ(σin ). As [[bi]]
DP ⊆ [[b]]

DP , we have δ ∈ [[b]]
DP . So,

σout ∈ {δ(σin) | δ ∈ [[b]]
DP, δ(σin ) is defined } .

5. If rule (5) is used then

b = blockcall mp1···mpl

rest

mk

and a = 〈P (mpi) ||σin 〉 :: 〈 rest
mk

||σin〉

where i ∈ {1, . . . , l}. The derivation from a to 〈b′ ||σout 〉 has the form

〈P (mpi) ||σin 〉 :: 〈 rest
mk

||σin〉

⇒∗ 〈 mpi || σ〉 :: 〈 rest
mk

||σin〉

⇒
(6)

〈 rest
mk

||σ〉

⇒∗ 〈b′ ||σout 〉

where 〈P (mpi) ||σin 〉 ⇒∗ 〈 mpi ||σ〉 in less than n steps. Notice that
〈 mpi ||σ〉 6⇒. So, by inductive hypothesis,

σ ∈ {δ(σin) | δ ∈ [[P (mpi)]]
DP, δ(σin ) is defined } .

Then, there exists δi ∈ [[P (mpi)]]
DP such that δi(σin ) is defined and

σ = δi(σin ) .

Let ba = rest
mk

. By Definition 10,

[[b]]DP = [[blockcall mp1 · · ·mpl]]
DP ; [[ba]]DP

= (DP (P (mp1)) ∪ · · · ∪ DP (P (mpl))); [[ba]]
DP .

Moreover, for each j ∈ {1, . . . , l}, [[P (mpj)]]
DP = TP (DP )(P (mpj)) by

Definition 11. As DP is the least fixpoint of Tp, TP (DP )(P (mpj)) =

DP (P (mpj)). Therefore, [[P (mpj)]]
DP = DP (P (mpj)). Consequently,

[[b]]
DP = ([[P (mp1)]]

DP ∪ · · · ∪ [[P (mpl)]]
DP ); [[ba]]

DP .

As 〈 ba ||σ〉 ⇒
∗ 〈b′ ||σout 〉 in less than n steps, by inductive hypothesis

σout ∈ {δ(σ) | δ ∈ [[ba]]DP, δ(σ) is defined } .

Hence, there exists δ′ ∈ [[ba]]
DP such that δ′(σ) is defined and σout =

δ′(σ) i.e., . σout = δ′(δi(σin )) = (δi; δ
′)(σin ). As δi ∈ [[P (mpi)]]

DP , we

have δi ∈ [[P (mp1)]]
DP ∪· · ·∪[[P (mpl)]]

DP . Moreover, δ′ ∈ [[ba]]
DP . Hence,

δi; δ
′ ∈ ([[P (mp1)]]

DP ∪ · · · ∪ [[P (mpl)]]
DP ); [[ba]]

DP

i.e., δi; δ
′ ∈ [[b]]

DP . Therefore,

σout ∈ {δ(σin) | δ ∈ [[b]]
DP, δ(σin ) is defined } .



6. Rule (6) cannot be used because it requires a starting activation stack
whose length is at least equal to 2. Here, the starting activation stack is
〈b ||σin 〉, whose length is equal to 1.

ut

Proposition 5. Let b a block (not necessarily of P ) and σin an initial state for
b. Then,

{σout | 〈b ||σin〉 ⇒
∗ 〈b′ ||σout 〉 6⇒} ⊇ {δ(σin ) | δ ∈ [[b]]

DP, δ(σin ) is defined }. ut

Proof. Notice that, by Definition 12, DP = ti≥0T
i
P . Hence, for any n ∈ N, we

let Prop⊇(n) denote the property:

for every δ ∈ [[b]]
T n

P such that δ(σin ) is defined we have

δ(σin) ∈ {σout | 〈b ||σin〉 ⇒
∗ 〈b′ ||σout 〉 6⇒ }.

We prove by induction on n that Prop⊇(n) holds for any n ∈ N. Without loss

of generality, suppose that b has the form
ins1
···
insk

`

⇒
b1
···
bm

with k ≥ 0 and m ≥ 0.

– (Basis) We prove that Prop⊇(0) holds.
• If m 6= 0 or if there is a i ∈ {1, . . . , k} such that insi is a call or a

blockcall, then, as T 0
P maps every block to ∅, we have [[b]]

T 0
P = ∅ by

Definition 10. So, Prop⊇(0) holds.
• If m = 0 and, for each i ∈ {1, . . . , k}, insi is not a call nor a blockcall

then, by Definition 10, we have

[[b]]
T 0

P = {ins1}; · · · ; {insk} = {ins1; · · · ; insk} .

Moreover, by Definition 5,

〈
ins1
···
insk

`

︸ ︷︷ ︸

b

||σin〉 ⇒
(1)

〈
ins2
···
insk

`

|| ins1(σin)〉

⇒
(1)

〈
ins3
···
insk

`

|| ins2(ins1(σin ))〉

...

⇒
(1)

〈 ` || insk(· · · ins1(σin ) · · · )〉

6⇒

with insk(· · · ins1(σin ) · · · ) = (ins1; · · · ; insk)(σin ). Consequently, for

every δ ∈ [[b]]
T 0

P such that δ(σin ) is defined we have

δ(σin ) ∈ {σout | 〈b ||σin 〉 ⇒
∗ 〈b′ || σout〉 6⇒ }

i.e., Prop⊇(0) holds.



– (Induction) Suppose that Prop⊇(n) holds. We prove that Prop⊇(n + 1) also
holds.
If [[b]]T

n+1

P = ∅ then Prop⊇(n + 1) holds. Suppose that [[b]]T
n+1

P 6= ∅. Let

δ ∈ [[b]]
T

n+1

P such that δ(σin) is defined. By Definition 10, we have

[[b]]
T

n+1

P = [[ins1]]
T

n+1

P ; · · · ; [[insk]]
T

n+1

P ; (T n+1
P (b1) ∪ · · · ∪ T n+1

P (bm)) .

Notice that for all i ∈ {1, . . . , m}, T n+1
P (bi) = TP (T n

P )(bi) with TP (T n
P )(bi) =

[[bi]]
T n

P by Definition 11. Hence,

[[b]]
T

n+1

P = [[ins1]]
T

n+1

P ; · · · ; [[insk]]
T

n+1

P ; ([[b1]]
T n

p ∪ · · · ∪ [[bm]]
T n

p ) .

Hence there exist δ1 ∈ [[ins1]]
T

n+1

P , . . . , δk ∈ [[insk]]
T

n+1

P , i ∈ {1, . . . , m} and

δ′ ∈ [[bi]]
T n

P such that
δ = δ1; · · · ; δk; δ′ .

If b is not a magic block, then b does not contain any blockcall and either b

does not contain any call or only the first instruction of b is a call. If b is a
magic block, derived from a non-magic block b′ accordingly to Definition 1,
then we assumed that b′ can only start with a call when it is not the first
block of a method. Hence either b does not contain any blockcall nor call
(third case of Definition 1), or b starts with a blockcall and then consists
of instructions that are not a call nor a blockcall (first and second case
of Definition 1), or b starts with a blockcall then with a call and then
consists of instructions that are not a call nor a blockcall (first case of
Definition 1). Let us consider each of these cases.
1. Suppose that b does not contain any blockcall nor call. Then, by

Definition 10,
δ = ins1; · · · ; insk; δ′ .

Moreover, by Definition 5,

〈
ins1
···
insk

`

⇒
b1
···
bm

︸ ︷︷ ︸

b

||σin〉 ⇒
(1)

〈
ins2
···
insk

`

⇒
b1
···
bm

|| ins1(σin )〉

⇒
(1)

〈
ins3
···
insk

`

⇒
b1
···
bm

|| ins2(ins1(σin ))〉

...

⇒
(1)

〈 `
⇒

b1
···
bm

|| insk(· · · ins1(σin ) · · · )〉

⇒
(4)

〈 bi || insk(· · · ins1(σin ) · · · )〉 .

As δ(σin ) is defined, (ins1; · · · ; insk; δ′)(σin ) = δ′(insk(· · · ins1(σin ) · · · ))

is defined. Consequently, as δ′ ∈ [[bi]]
T n

P , by induction hypothesis we have

〈 bi || insk(· · · ins1(σin) · · · )〉 ⇒∗ 〈 b′ || δ′(insk(· · · ins1(σin ) · · · ))〉 6⇒



So, 〈 b ||σin 〉 ⇒
∗ 〈 b′ || δ(σin )〉 6⇒ i.e.,

δ(σin ) ∈ {σout | 〈b ||σin〉 ⇒
∗ 〈b′ ||σout 〉 6⇒ }.

2. Suppose that b starts with a call and then consists of instructions that
are not a call nor a blockcall. Then, ins1 has the form call κ.m(τ ) : t

and, by Definition 10, [[ins1]]
T

n+1

P = (extend κ.m(τ ) : t)(T n+1
P (bκ.m(τ):t))

(where bκ.m(τ):t is the block where κ.m(τ ) : t starts) i.e.,

[[ins1]]
T

n+1

P = (extend κ.m(τ ) : t)(TP (T n
P )(bκ.m(τ):t))

= (extend κ.m(τ ) : t)([[bκ.m(τ):t]]
T n

P ) .

Moreover, by Definition 5, σin = 〈l || pars :: s ||µ〉 and

〈
ins1
···
insk

`

⇒
b1
···
bm

︸ ︷︷ ︸

b

||σin〉⇒
(2)

〈bκ.m(τ):t ||σ
′〉 :: 〈

ins2
···
insk

`

⇒
b1
···
bm

||〈l || s ||µ〉〉 (9)

where σ′ = (makescope κ.m(τ ) : t)(σin ). As δ1 ∈ [[ins1]]
T

n+1

P , there exists
δ′1 ∈ [[bκ.m(τ):t]]

T n
P such that δ1 = (extend κ.m(τ ) : t)(δ′1). As δ1(σin) is

defined (because δ(σin ) is defined) we have (by Definition 8)

δ1(σin ) = 〈l || vs :: s ||µ′〉

where 〈l′ || vs ||µ′〉 = δ′1((makescope κ.m(τ ) : t)(σin )) = δ′1(σ
′). Hence,

δ′1(σ
′) is defined and, as δ′1 ∈ [[bκ.m(τ):t]]]

T n
P , by inductive hypothesis we

have 〈bκ.m(τ):t ||σ
′〉 ⇒∗ 〈b′ || δ′1(σ

′)〉 6⇒ i.e.,

〈bκ.m(τ):t ||σ
′〉 ⇒∗ 〈b′ ||〈l′ || vs ||µ′〉〉 6⇒ .

Note that b′ is not a magic block (because no magic block is reach-
able from a non-magic blocks of a method, like bκ.m(τ):t) and that, by

Lemma 2, b′ has the form k′

. Therefore, by (9) and Definition 5, we
have

〈 b ||σin〉 ⇒
(2)

〈bκ.m(τ):t ||σ
′〉 :: 〈

ins2
···
insk

`

⇒
b1
···
bm

||〈l || s ||µ〉〉

⇒∗ 〈 k′

||〈l′ || vs ||µ′〉〉 :: 〈
ins2
···
insk

`

⇒
b1
···
bm

||〈l || s ||µ〉〉

⇒
(3)

〈
ins2
···
insk

`

⇒
b1
···
bm

||〈l || vs :: s ||µ′〉〉

i.e., 〈 b ||σin 〉 ⇒
∗ 〈

ins2
···
insk

`

⇒
b1
···
bm

|| δ1(σin )〉. Then, proceeding as in case 1

above, we prove that

δ(σin ) ∈ {σout | 〈b ||σin〉 ⇒
∗ 〈b′ ||σout 〉 6⇒ }.



3. Suppose that b starts with a blockcall and then consists of instruc-
tions that are not a call nor a blockcall. Then, ins1 has the form
blockcall mp1 · · ·mpl and, by Definition 10,

[[ins1]]
T

n+1

P = T n+1
P (P (mp1)) ∪ · · · ∪ T n+1

P (P (mpl))

= TP (T n
P )(P (mp1)) ∪ · · · ∪ TP (T n

P )(P (mpl))

= [[P (mp1)]]
T n

P ∪ · · · ∪ [[P (mpl)]]
T n

P .

As δ1 ∈ [[ins1]]
T

n+1

P , there is an i ∈ {1, . . . , l} such that δ1 ∈ [[P (mpi)]]
T n

P .
By Definition 5, we have

〈
ins1
···
insk

`

⇒
b1
···
bm

︸ ︷︷ ︸

b

||σin 〉⇒
(5)

〈P (mpi) ||σin〉 :: 〈
ins2
···
insk

`

⇒
b1
···
bm

||σin 〉 . (10)

As δ1(σin ) is defined (because δ(σin ) is defined) and δ1 ∈ [[P (mpi)]]
T n

P ,
by inductive hypothesis we have

〈P (mpi) ||σin〉 ⇒
∗ 〈b′ || δ1(σin )〉 6⇒ .

By the rules of Definition 5, b′ is a magic block labelled with mpi and,
by Lemma 2, b′ has the form mpi. Therefore, by (10) and Definition 5,
we have

〈 b ||σin〉 ⇒
(5)

〈P (mpi) ||σin 〉 :: 〈
ins2
···
insk

`

⇒
b1
···
bm

||σin〉

⇒∗ 〈 mpi || δ1(σin )〉 :: 〈
ins2
···
insk

`

⇒
b1
···
bm

||σin 〉

⇒
(6)

〈
ins2
···
insk

`

⇒
b1
···
bm

|| δ1(σin )〉 .

Then, proceeding as in case 1 above, we prove that

δ(σin ) ∈ {σout | 〈b ||σin〉 ⇒
∗ 〈b′ ||σout 〉 6⇒ }.

4. Suppose that b starts with a blockcall then with a call and then
consists of instructions that are not a call nor a blockcall. Notice
that this case is a combination of the three above. In order to conclude,
one has first to reason as in case 3, then as in case 2 and finally as in
case 1. ut


