
Detecting Non-Termination of Term Rewriting
Systems Using an Unfolding Operator

Étienne Payet

IREMIA - Université de la Réunion, France
email: epayet@univ-reunion.fr

Abstract. In this paper, we present an approach to non-termination
of term rewriting systems inspired by a technique that was designed in
the context of logic programming. Our method is based on a classical
unfolding operation together with semi-unification and is independent of
a particular reduction strategy. We also describe a technique to reduce
the explosion of rules caused by the unfolding process. The analyser
that we have implemented is able to solve most of the non-terminating
examples in the Termination Problem Data Base.

1 Introduction

Proving termination of a term rewriting system (TRS)R consists in proving that
every term only has finite rewritings with respect to R (a particular reduction
strategy may be used). Termination of TRS’s has been subject to an intensive
research (see e.g. [10, 23] for surveys) that has given rise to several automatic
proof methods. One of the most powerful is the dependency pair approach [5],
recently extended to the dependency pair framework [14, 15], implemented in
the termination prover AProVE [16]. In comparison, the dual problem, i.e. non-
termination, has hardly been studied. It consists in proving that there exists a
term that loops, i.e. that leads to an infinite rewriting. Notice that designing
non-termination provers is an important issue as this kind of tools can be used
to disprove termination, i.e. to complement any termination prover. In [15], the
authors use the dependency pair framework to combine termination and non-
termination analyses. In order to detect non-terminating TRS’s, they apply for-
ward or backward narrowing to dependency pairs until they find two terms that
semi-unify. Some heuristics are used to select forward or backward narrowing
and to get a finite search space.

Termination has also been widely studied in the context of logic program-
ming. One of the approaches that have been introduced so far consists in inferring
terminating classes of queries, i.e. classes where every element only has finite
left-derivations with respect to a given logic program. Several automatic tools
performing termination inference have been designed, e.g. TerminWeb [13] or
cTI [19]. But as for term rewriting, there are only a few papers about the dual
problem, i.e. inference of non-terminating classes of queries (classes where there
exists an element that loops, i.e. that has an infinite left-derivation). In [21,

20], the authors introduce the unfold & infer approach to infer non-terminating
classes of queries. First, they unfold the logic program P of interest to a binary
logic program BP using the unfolding operator of [12]. By the results in [9], a
query loops with respect to BP if and only if it loops with respect to P . Then,
to infer looping queries, they consider every rule A←B in BP ; if the body B is
more general (up to some computed neutral argument positions) than the head
A, they conclude that A loops with respect to BP , hence with respect to P .

On the theoretical level, it can be noticed that the unfold & infer approach
also works with TRS’s. Indeed, there exists some techniques to unfold a TRS
R to a TRS U such that if a term loops with respect to U then it also loops
with respect to R (see for instance [7, 22, 3]). Moreover, semi-unification is a
powerful tool for detecting looping terms: if there is a rule l→ r in U where
lθ1θ2 = r′θ1 for some substitutions θ1 and θ2 and some subterm r′ of r, then we
can deduce that lθ1 loops with respect to U , hence with respect to R. Notice
that the subsumption order is different from that used in logic programming,
where the body has to be more general than the head, while here, lθ1 has to be
more general than r′θ1. This is due to definition of the operational semantics of
both paradigms.

On the practical level, however, it is not known how the unfold & infer
approach behaves in the context of term rewriting. In this paper, we present
our experiments on using the narrowing-based unfolding operation described
in [3] together with semi-unification to prove non-termination of TRS’s. The
first analysis that we describe is very simple but leads to an explosion of the
number of generated rules. Hence, we refine it into a second one by providing
a mechanism that allows us to eliminate some useless rules produced by the
unfolding process. The simple and refined analyses are powerful enough to solve
most of the non-terminating examples in the Termination Problem Data Base
(TPDB) [25], but the refined one runs much faster. We insist that the results we
present herein are independent of any particular reduction strategy. This does
not mean that our method is parametric in a reduction strategy but that we
always consider the whole rewrite relation and not subsets of it.

Our motivations are the following. We want to design a simple formalism for
proving non-termination of TRS’s (the unfold & infer theory is very simple and
clear, as presented above). We do not want any heutistics as in [15]. Moreover, we
want another illustration of the unfold & infer technique which was introduced
in the context of logic programming. Such an illustration would provide a con-
nection between the paradigm of logic programming and that of term rewriting,
by a transfer of a logic programming technique to term rewriting.

The paper is organized as follows. First, in Sect. 2, we give the basic defi-
nitions and fix the notations. Then, in Sect. 3 and Sect. 4, we present a non-
termination analysis based on an existing unfolding operation together with
semi-unification. In Sect. 5, we refine this analysis and in Sect. 6, we present
an implementation and some experiments using TRS’s from the TPDB. Finally,
Sect. 7 discusses related works and concludes the paper.

2

2 Preliminaries

We briefly present the basic concepts of term rewriting (details can be found e.g.
in [6]) and the notations that we use in the paper.

We let N denote the set of non-negative integers and, for any n ∈ N, [1, n]
denotes the set of all the integers i such that 1 ≤ i ≤ n (if n = 0, then [1, n] = ∅).

From now on, we fix a finite signature F , i.e. a finite set of function symbols
where every f ∈ F has a unique arity, which is the number of its arguments. We
write f/n ∈ F to denote that f is an element of F whose arity is n ≥ 0. We also
fix an infinite countable set V of variables with F ∩ V = ∅. The set of terms
T (F ,V) is defined as the smallest set such that:

– V ⊆ T (F ,V),
– if f/n ∈ F and t1, . . . , tn ∈ T (F ,V) then f(t1, . . . , tn) ∈ T (F ,V) .

For t ∈ T (F ,V), root(t) denotes the root symbol of t and is defined by:

root(t) =
{
⊥ if t ∈ V,
f if t = f(t1, . . . , tn)

where ⊥ is a special symbol not occurring in F ∪ V. We let Var(t) denote the
set of variables occurring in t. The set of positions in t, denoted by Pos(t), is
defined as:

Pos(t) =
{
{ε} if t ∈ V,
{ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)} if t = f(t1, . . . , tn) .

When p ∈ Pos(t), we write t|p to denote the subterm of t at position p, with
t|ε = t. We write t[p← s] to denote the term obtained from t by replacing t|p
with a term s. We say that p is a non-variable position of t if t|p is not a variable.
The set of non-variable positions of t is denoted by NPos(t).

We write substitutions as sets of the form {x1/t1, . . . , xn/tn} denoting that
for each i ∈ [1, n], variable xi is mapped to term ti (note that xi may occur in
ti). Applying a substitution θ to an object O is denoted by Oθ. The composition
of substitutions θ and η is denoted by θη and is the substitution that maps
any variable x to (xθ)η. A term t is more general than a term t′ when there
exists a substitution θ such that t′ = tθ. A substitution θ is more general than a
substitution η when η = θτ for some substitution τ . A renaming is a substitution
that is a 1-1 and onto mapping from its domain to itself. We say that a term t
is a variant of a term t′ if there exists a renaming γ such that t′ = tγ.

Two terms t and t′ unify when there exists a substitution θ such that tθ = t′θ.
Then we say that θ is a unifier of t and t′. A most general unifier of t and t′ is a
unifier of t and t′ that is more general than all unifiers of t and t′. We let mgu(t, t′)
denote the set of most general unifiers of t and t′. We say that t semi-unifies
with t′ if there exists some substitutions θ and θ′ such that tθθ′ = t′θ.

A term rewriting system (TRS) over F is a set R ⊆ T (F ,V) × T (F ,V) of
rewrite rules, every element l→ r of which is such that l 6∈ V and Var(r) ⊆

3

Var(l). For every s and t in T (F ,V), we write s→
R

t if there is a rewrite rule

l→ r in R, a substitution θ and a position p in Pos(s) such that s|p = lθ and
t = s[p← rθ]. We let +→

R
(resp. ∗→

R
) denote the transitive (resp. reflexive and

transitive) closure of →
R

. In this paper, we only consider finite TRS’s. We say

that a term t loops with respect to (w.r.t.) R when there exists infinitely many
terms t1, t2, . . . such that t→

R
t1→

R
t2→

R
· · · . We say that R is non-terminating

when there exists a term that loops with respect to R.

3 Unfolding a TRS

Usually, unfolding a rule of a term rewriting system consists in performing two
elementary transformations: instantiation and unfolding (see e.g. [7, 22]). These
transformations can be combined into a single one using narrowing:

Definition 1 (Unfolding [3]). Let R be a TRS and l→ r ∈ R. If for some
l′→ r′ ∈ R renamed with fresh variables and for some non-variable position p of
r we have θ ∈ mgu(r|p, l′), then (l→ r[p← r′])θ is an unfolding of l→ r.

The non-termination analysis presented in this paper proceeds by iteratively
unfolding sets of rules using a fixed TRS. This is why we rephrase Definition 1
above in the form of an unfolding operator that takes two sets of rules as input:
the rules X to be unfolded and the rules R that are used to unfold:

Definition 2 (Unfolding operator). For every TRS R, the unfolding oper-
ator TR is defined as: for any set X of rewrite rules,

TR(X) =

(l→ r[p← r′])θ

l→ r ∈ X
p ∈ NPos(r)
l′→ r′ ∈ R renamed with fresh variables
θ ∈ mgu(r|p, l′)

 .

Notice that this operator is not monotone. As in [2], the unfolding sequence
starting from R is

TR ↑ 0 = R
TR ↑ (n + 1) = TR(TR ↑ n) ∀n ∈ N .

Example 1 (Giesl, Thiemann and Schneider-Kamp [15], Example 28). Consider

R =
{
f(x, y, z)→ g(x, y, z), g(s(x), y, z)→ f(z, s(y), z)

}
.

We have:

– TR ↑ 0 = R.
– TR ↑ 1 = TR(TR ↑ 0). If we take f(x, y, z)→ g(x, y, z) in TR ↑ 0, p = ε,

l′→ r′ as g(s(x1), y1, z1)→ f(z1, s(y1), z1) in R, θ = {x/s(x1), y/y1, z/z1}, we
get the rule

f(s(x1), y1, z1)→ f(z1, s(y1), z1)

as an element of TR ↑ 1. ut

4

Example 2 (Toyama [24]). Consider:

R =
{
f(0, 1, x)→ f(x, x, x), g(x, y)→x, g(x, y)→ y

}
.

We have:

– TR ↑ 0 = R.
– TR ↑ 1 = TR(TR ↑ 0). Notice that the rules g(x, y)→x and g(x, y)→ y

in TR ↑ 0 cannot be unfolded because there are no non-variable positions
in the right-hand side. The rule f(0, 1, x)→ f(x, x, x) cannot be unfolded
too because f(x, x, x), the only non-variable subterm in the right-hand side,
cannot be unified with any variant of a left-hand side. So, TR ↑ 1 = ∅. ut

In Sect. 4 below, in order to prove non-termination, we consider the rules
l→ r in the unfolding sequence. If l semi-unifies with a subterm of r, then we
deduce that R is non-terminating. Notice that using this mechanism directly,
one gets a very limited tool that is unable to solve the smallest examples.

Example 3 (Example 2 continued). R is known to be non-terminating (for in-
stance, f(0, 1, g(0, 1)) loops). Note that TR ↑ 0 = R and for each n ∈ N \ {0},
TR ↑ n = ∅. As no left-hand side in R semi-unifies with a subterm of the corre-
sponding right-hand side, we cannot conclude. ut

In order to get a practical analyser, a solution consists in pre-processing the
TRS R of interest by replacing every variable with the left-hand side of each
rule of R. The intuition is that as a variable represents any term, it stands in
particular for a term that can be rewritten.

Definition 3 (Augmented TRS). Let R be a TRS. The augmented TRS R+

is defined modulo renaming as follows: R+ consists of all the rules (l→ r)θ where
l→ r is an element of R and θ is a substitution of the form {x1/t1, . . . , xn/tn}
(with n ∈ N) such that {x1, . . . , xn} ⊆ Var(l) and for each i ∈ [1, n], ti is a
variant of a left-hand side in R and is variable disjoint from l→ r and from
every tj, j ∈ [1, n] \ {i}. Note that θ can be empty (take n = 0).

Example 4 (Example 2 continued). The rule f(0, 1, x)→ f(x, x, x) only contains
variable x. Hence, we consider the substitutions

θ0 = ∅, θ1 = {x/f(0, 1, x1)} and θ2 = {x/g(x1, y1)}

and apply them to f(0, 1, x)→ f(x, x, x). This leads, respectively, to:

f(0, 1, x)→ f(x, x, x)
f(0, 1, f(0, 1, x1))→ f(f(0, 1, x1), f(0, 1, x1), f(0, 1, x1))
f(0, 1, g(x1, y1))→ f(g(x1, y1), g(x1, y1), g(x1, y1)) .

The variables in rules g(x, y)→x and g(x, y)→ y are x and y. So, we consider
the above substitutions θ0, θ1, θ2 together with

θ3 = {y/f(0, 1, x1)} θ4 = {y/g(x1, y1)}
θ5 = {x/f(0, 1, x1), y/f(0, 1, x2)} θ6 = {x/f(0, 1, x1), y/g(x2, y2)}
θ7 = {x/g(x1, y1), y/f(0, 1, x2)} θ8 = {x/g(x1, y1), y/g(x2, y2)}

5

that lead to (the rules on the left are obtained from g(x, y)→x and those on the
right from g(x, y)→ y):

θ0 : g(x, y)→ x g(x, y)→ y
θ1 : g(f(0, 1, x1), y)→ f(0, 1, x1) g(f(0, 1, x1), y)→ y
θ2 : g(g(x1, y1), y)→ g(x1, y1) g(g(x1, y1), y)→ y
...

...
...

Now, we can compute the unfolding sequence starting from R+ instead of R.
From the rule

f(0, 1, g(x1, y1))→ f(g(x1, y1), g(x1, y1), g(x1, y1))

computed above, using position 1 of the right-hand side and g(x2, y2)→x2 in
R, we get f(0, 1, g(x1, y1))→ f(x1, g(x1, y1), g(x1, y1)) as an element of TR ↑ 1.
Then, from this new rule, using position 2 of the right-hand side together with
g(x3, y3)→ y3 in R, we get f(0, 1, g(x1, y1))→ f(x1, y1, g(x1, y1)) as an element
of TR ↑ 2. As f(0, 1, g(x1, y1))θ1θ2 = f(x1, y1, g(x1, y1))θ1 for θ1 = {x1/0, y1/1}
and θ2 = ∅, we conclude that R is non-terminating. ut

Following the intuitions of the preceding example, we give these new defini-
tions:

Definition 4 (Unfolding semantics). The augmented unfolding sequence of
R is

TR ↑ 0 = R+

TR ↑ (n + 1) = TR(TR ↑ n) ∀n ∈ N .

The unfolding semantics unf (R) of R is the limit of the unfolding process de-
scribed in Definition 2, starting from R+:

unf (R) =
⋃
n∈N

TR ↑ n .

Notice that the least fixpoint of TR is the empty set. Moreover, unf (R) is not
a fixpoint of TR. This is because R+ ⊆ unf (R) (because TR ↑ 0 = R+) but we
do not necessarily have R+ ⊆ TR(unf (R)) because

TR(unf (R)) = TR(
⋃
n∈N

TR ↑ n) =
⋃
n∈N

TR(TR ↑ n) =
⋃

n∈N\{0}

TR ↑ n .

In the logic programming framework, every clause H←B of the binary un-
foldings specifies that a call to H necessarily leads to a call to B. In the context
of term rewriting, we get the following counterpart:

Proposition 1. Let R be a TRS. If l→ r ∈ unf (R) then l
+→
R

r.

This result allows us to prove that the unfoldings exhibit the termination
properties of a term rewriting system:

Theorem 1. Let R be a TRS and t be a term. Then, t loops w.r.t. R if and
only if t loops w.r.t. unf (R).

6

4 Inferring Looping Terms

The unfoldings of a TRS can be used to infer terms that loop, hence to prove non-
termination. It suffices to add semi-unification [18] to Proposition 1. Notice that
semi-unification encompasses both matching and unification. A polynomial-time
algorithm for semi-unification can be found in [17].

Theorem 2. Let R be a TRS. Suppose that for l→ r ∈ unf (R) there is a sub-
term r′ of r such that lθ1θ2 = r′θ1 for some substitutions θ1 and θ2. Then, lθ1

loops w.r.t. R.

In order to use Theorem 2 as a practical tool, one can for instance fix a
maximum number of iterations of the unfolding operator.

Example 5 (Example 4 continued). f(0, 1, g(x1, y1))→ f(x1, y1, g(x1, y1)) is an
element of TR ↑ 2 with f(0, 1, g(x1, y1))θ1θ2 = f(x1, y1, g(x1, y1))θ1 for θ1 =
{x1/0, y1/1} and θ2 = ∅. Hence, f(0, 1, g(x1, y1))θ1 = f(0, 1, g(0, 1)) loops with
respect to R. ut

Example 6 (Example 1 continued). f(s(x1), y1, z1)→ f(z1, s(y1), z1) is an element
of TR ↑ 1 with f(s(x1), y1, z1)θ1θ2 = f(z1, s(y1), z1)θ1 for θ1 = {z1/s(x1)} and
θ2 = {y1/s(y1)}. Hence, f(s(x1), y1, z1)θ1 = f(s(x1), y1, s(x1)) loops with respect
to R. ut

Example 7 (file Rubio-inn/test76.trs in the TPDB). Consider

R =
{

f(0, s(0), x)→ f(x,+(x, x), x), +(x, s(y))→ s(+(x, y)),
+(x, 0)→x, g(x, y)→x, g(x, y)→ y

}
.

The augmented TRS R+ contains the rule

R0 = f(0, s(0), g(x0, y0))→ f(g(x0, y0),+(g(x0, y0), g(x0, y0)), g(x0, y0))

obtained from f(0, s(0), x)→ f(x, +(x, x), x) and substitution {x/g(x0, y0)}.

– If we take position p = 2.2 in the right-hand side of R0, g(x1, y1)→x1 in R
and θ = {x1/x0, y1/y0}, we get the rule

R1 = f(0, s(0), g(x0, y0))→ f(g(x0, y0),+(g(x0, y0), x0), g(x0, y0))

as an element of TR ↑ 1.
– If we take position p = 2 in the right-hand side of R1, +(x2, 0)→x2 in R

and θ = {x0/0, x2/g(0, y0)}, we get the rule

R2 = f(0, s(0), g(0, y0))→ f(g(0, y0), g(0, y0), g(0, y0))

as an element of TR ↑ 2.

7

– If we take position p = 1 in the right-hand side of R2, g(x3, y3)→x3 in R
and θ = {x3/0, y3/y0}, we get the rule

R3 = f(0, s(0), g(0, y0))→ f(0, g(0, y0), g(0, y0))

as an element of TR ↑ 3.
– If we take position p = 2 in the right-hand side of R3, g(x4, y4)→ y4 in R

and θ = {x4/0, y4/y0}, we get the rule

R4 = f(0, s(0), g(0, y0))→ f(0, y0, g(0, y0))

as an element of TR ↑ 4.

Notice that the left-hand side f(0, s(0), g(0, y0)) of R4 semi-unifies with the
right-hand side f(0, y0, g(0, y0)) for θ1 = {y0/s(0)} and θ2 = ∅. Consequently,
f(0, s(0), g(0, y0))θ1 = f(0, s(0), g(0, s(0))) loops with respect to R. ut

5 Eliminating Useless Rules

The operator of Definition 2 produces many useless rules, i.e. rules that cannot
be unfolded to l→ r where l semi-unifies with a subterm of r.

Example 8 (Example 4 continued). The augmented TRS R+ contains the rule

f(0, 1, f(0, 1, x1))→ f(f(0, 1, x1), f(0, 1, x1), f(0, 1, x1)) .

The left-hand side does not semi-unify with any subterm of the right-hand side.
Applying TR to this rule, one gets:

f(0, 1, f(0, 1, x1))→ f(f(x1, x1, x1), f(0, 1, x1), f(0, 1, x1))
f(0, 1, f(0, 1, x1))→ f(f(0, 1, x1), f(x1, x1, x1), f(0, 1, x1))
f(0, 1, f(0, 1, x1))→ f(f(0, 1, x1), f(0, 1, x1), f(x1, x1, x1)) .

None of these new rules satisfies the semi-unification criterion. Applying TR
again, one gets:

f(0, 1, f(0, 1, x1))→ f(f(x1, x1, x1), f(x1, x1, x1), f(0, 1, x1))
f(0, 1, f(0, 1, x1))→ f(f(x1, x1, x1), f(0, 1, x1), f(x1, x1, x1))
f(0, 1, f(0, 1, x1))→ f(f(0, 1, x1), f(x1, x1, x1), f(x1, x1, x1))
f(0, 1, f(0, 1, x1))→ f(f(x1, x1, x1), f(0, 1, x1), f(x1, x1, x1)) .

None of these rules satisfies the semi-unification criterion. Finally, unfolding one
more time leads to:

f(0, 1, f(0, 1, x1))→ f(f(x1, x1, x1), f(x1, x1, x1), f(x1, x1, x1)),

a rule that does not satisfy the semi-unification criterion and cannot be unfolded.
ut

8

5.1 Abstraction

The analysis described in the preceding sections leads to an explosion of the
number of generated rules (this is illustrated by the results of Sect. 6). A solution
to reduce this explosion consists in designing a mechanism that detects, as soon
as possible, rules that are useless for proving non-termination. We can also notice
that the semi-unification criterion we introduced before consists in checking, for
each subterm of a right-hand side, that the corresponding left-hand side semi-
unifies. One disadvantage of this technique is that a same semi-unification test
may be performed several times.

Example 9 (Example 8 continued). The left-hand side of each rule computed
in Example 8 is f(0, 1, f(0, 1, x1)). Moreover, each rule, except the last one, has
f(0, 1, x1) as a subterm of the right-hand side. Consequently, semi-unification of
f(0, 1, f(0, 1, x1)) with f(0, 1, x1) is checked several times. ut

In order to avoid any repetition of the same semi-unification test, one solution
consists in making those tests explicit by “flattening” each rule l→ r into pairs
of terms (l, r′) where r′ is a subterm of r. Then, semi-unification test on a pair
(l, r′) is only performed at the root position of r′.

Following these intuitions, we introduce a new domain.

Definition 5 (Abstract domain). An abstract TRS is a finite set, each el-
ement of which is either a pair of terms or true or false. The abstract domain
P# is the set of all abstract TRS’s.

The special element true denotes any pair of terms (l, r) such that l semi-unifies
with r. The special element false corresponds to any non-useful pair of terms:

Definition 6 (Useful pair). Let R be a TRS. A pair (l, r) of terms is useful
for R when it can be unfolded, using the rules of R, to a pair (l1, r1) where l1
semi-unifies with r1.

The set P# is a sort of abstract domain, the corresponding concrete domain
of which is the set P [of TRS’s as defined in Sect. 2. The abstraction function
that transforms a concrete TRS to an abstract one is defined as follows.

Definition 7 (Abstraction function). The abstraction function α maps ev-
ery element R of P [to an element of P# as follows:

α(R) =
⋃

l→ r∈R

{
αR(l, r|p)

∣∣ p ∈ Pos(r)
}

where, for any pair (l, r) of terms,

αR(l, r) =

 if l semi-unifies with r then true
else if (l, r) is useful for R then (l, r)
else false

The operator that we use to unfold abstract TRS’s is defined as follows.

9

Definition 8 (Abstract unfolding operator). Let R be a concrete TRS. For
any abstract TRS X#, if true ∈ X# then T#

R (X#) = {true}, otherwise

T#
R (X#) =

αR(lθ, r[p← r′]θ)

(l, r) ∈ X#

p ∈ NPos(r)
l′→ r′ ∈ R renamed with fresh variables
θ ∈ mgu(r|p, l′)

This operator allows us to define an abstract semantics.

Definition 9 (Abstract unfolding semantics). Let R be a concrete TRS.
The abstract unfolding sequence of R is

T#
R ↑ 0 = α(R+)

T#
R ↑ (n + 1) = T#

R (T#
R ↑ n) ∀n ∈ N .

The abstract unfolding semantics unf #(R) of R is the limit of the unfolding
process described in Definition 8:

unf #(R) =
⋃
n∈N

T#
R ↑ n .

The relevance of a non-termination analysis based on these notions is clarified
by the following correctness result.

Proposition 2 (Correctness). Let R be a concrete TRS. If true ∈ unf #(R),
then R is non-terminating.

5.2 Detecting Useful Pairs

The intuitions and results of this section rely on the following observation.

Lemma 1. If (l, r) is a useful pair of terms where l is not a variable, then (l, r)
can be unfolded to a pair (l1, r1) such that root(l1) = root(l) and root(r1) ∈
{root(l),⊥}.

Consider a useful pair of terms (l, r). Then, l semi-unifies with r or (l, r) can
be unfolded, in at least one step, to (l1, r1) such that l1 semi-unifies with r1.
By Definition 2, the latter case corresponds to narrowing r to r1 in at least one
step and then in applying to l the computed substitution θ to get l1. As there
is at least one step of narrowing, r cannot be a variable. Hence, r has the form
f(t1, . . . , tn). Let us consider the possible forms of the narrowing from r to r1.

1. There does not exist a step of the narrowing that is performed at the root
position, i.e. r1 has the form f(t′1, . . . , t

′
n) and, roughly, each ti is narrowed

to t′i, in 0 or more steps.
2. There exists a step of the narrowing that is performed at the root position,

i.e. (roughly) first each ti is narrowed (in 0 or more steps) to a term t′i
then f(t′1, . . . , t

′
n) is narrowed at root position using a rule f(s1, . . . , sn)→· · ·

whose right-hand side further leads to r1.

10

Consider the first case above when l is not a variable. As root(r1) 6= ⊥, by
Lemma 1 root(r1) = root(l) so l has the form f(s1, . . . , sn). Hence, by Lemma 1
again, l1 has the form f(s′1, . . . , s

′
n). Notice that for each i ∈ [1, n], ti is narrowed

to t′i and s′i semi-unifies with t′i. Consequently, (si, ti) is a useful pair.
Now, consider the second case above, again when l is not a variable. We note

that the following result holds.

Lemma 2. Let f(t1, . . . , tn) be a term where each ti can be narrowed to t′i, in 0
or more steps. Suppose that for a term f(s1, . . . , sn), we have

mgu(f(t′1, . . . , t
′
n), f(s1, . . . , sn) renamed with fresh variables) 6= ∅ .

Then, each ti unifies with any variable disjoint variant of si or can be narrowed
in at least one step to a term whose root symbol is that of si or ⊥.

Moreover, the right-hand side of the rule f(s1, . . . , sn)→· · · has to lead to r1,
i.e., by Lemma 1, to a term whose root symbol is that of l or ⊥. This corresponds
to a path in the graph of functional dependencies that we define as follows, in
the style of [4, 1].

Definition 10 (Graph of functional dependencies). The graph of func-
tional dependencies induced by a concrete TRS R is denoted by GR. The follow-
ing transformation rules define the edges E and the initial vertices I of GR:

l→ r ∈ R
〈R, E, I〉 7→ 〈R \ {l→ r}, E ∪ {l→ root(r)}, I ∪ {l}〉

l→ f ∈ E ∧ l′→ g ∈ E ∧ l ∈ I ∧ l′ ∈ I ∧ f 6∈ I ∧ g 6∈ I ∧ (root(l′) = f ∨ f = ⊥)
〈R, E, I〉 7→ 〈R, E ∪ {f→ l′}, I〉

To build GR, the algorithm starts with 〈R, ∅, ∅〉 and applies the transformation
rules as long as they add new arrows.

Example 10. Consider Toyama’s example again:

R =
{
f(0, 1, x)→ f(x, x, x), g(x, y)→x, g(x, y)→ y

}
.

The graph GR can be depicted as follows:

g(x, y) ←→ ⊥ −→ f(0, 1, x) ←→ f

where the boxes correspond to the initial vertices. ut

Notice that the initial vertices of GR are the left-hand sides of the rules of R.
Hence, a path in GR from an initial vertex s to a symbol f indicates that any
term s′ such that mgu(s, s′ renamed with fresh variables) 6= ∅ may be narrowed
(using the rules of R) to a term t with root(t) = f. The first step of such a
narrowing is performed at the root position of s′. We synthesize case 2 above by
the following definition.

11

Definition 11 (The transition relation +→
GR

). Let GR be the graph of func-

tional dependencies of a concrete TRS R, f(t1, . . . , tn) be a term and g be a
function symbol or ⊥. We write f(t1, . . . , tn) +→

GR
g if there exists a non-empty

path in GR from an initial vertex of the form f(s1, . . . , sn) to g and, for each
i ∈ [1, n], one of these conditions holds:

– mgu(ti, si renamed with fresh variables) 6= ∅,
– ti

+→
GR

root(si) or ti
+→
GR
⊥.

Example 11 (Example 10 continued). g(g(0, 0), 1) +→
GR
⊥ holds as there is a non-

empty path from g(x, y) to ⊥ and g(0, 0) +→
GR
⊥ (because there is a non-empty

path from g(x, y) to ⊥ and g(0, 0) unifies with g(x, y)) and 1 unifies with y. ut

Finally, we synthesize both cases 1 and 2 above as follows:

Definition 12 (The relation usefulR). For any concrete TRS R and any
terms l and r, we write usefulR(l, r) if one of these conditions holds:

– l semi-unifies with r,
– l = f(s1, . . . , sn), r = f(t1, . . . , tn) and, for each i ∈ [1, n], usefulR(si, ti),
– l = g(s1, . . . , sm), r = f(t1, . . . , tn) and r

+→
GR

g or r
+→
GR
⊥.

Note that in the third condition, we may have g/m = f/n.

This definition allows us to compute a superset of the set of useful pairs:

Proposition 3 (Completeness). Let R be a concrete TRS and (l, r) be a pair
of terms. If (l, r) is useful for R, then usefulR(l, r) holds.

In order to get a practical tool from the theory of Sect. 5.1, we use the relation
usefulR in function αR of Definition 7.

Example 12. Consider Toyama’s example. In R+, one can find the rule:

f(0, 1, f(0, 1, x1))→ f(f(0, 1, x1), f(0, 1, x1), f(0, 1, x1))

(see Example 4). Let l and r be the left and right-hand side of this rule, re-
spectively. Notice that l does not semi-unify with r, so the first condition of
Definition 12 is not satisfied. Let us try the second one. As the root symbols
of l and r are identical, we check if each argument of l is in relation with the
corresponding argument of r. This test fails for the first argument: we do not
have usefulR(0, f(0, 1, x1)) because 0 does not semi-unify with f(0, 1, x1) and in
GR there is no path from a vertex of the form f(. . .) to 0 or to ⊥. Finally, the
third condition of Definition 12 is not satisfied as well because neither r

+→
GR

f nor

r
+→
GR
⊥ holds. Hence, we do not have usefulR(l, r), so (l, r) is not useful for R

and we get αR(l, r) = false. Consequently, this pair will be eliminated. ut

12

6 Experimental Results

We have implemented two analysers, one performing concrete analyses as de-
scribed in Sect. 4 and the other performing abstract analyses as described in
Sect. 5. Both are written in C++ and are available at

www.univ-reunion.fr/~epayet/Research/TRS/TRSanalyses.html

Our analysers compute the concrete or abstract unfolding sequence until a user-
fixed maximum number of iterations is reached or a looping term is found.

Despite its name, the nontermin directory of the TPDB [25] contains subdi-
rectories with terminating TRS’s:

– in AG01, only #4.2.trs, #4.3.trs, #4.4.trs, #4.5.trs, #4.7.trs and
#4.12a.trs, #4.13.trs, #4.14.trs, #4.15.trs, #4.16.trs, #4.17.trs,
#4.18.trs, #4.19.trs are non-terminating;

– in cariboo, all the TRS’s are non-terminating except tricky1.trs;
– in CSR, all the TRS’s are non-terminating except Ex49 GM04.trs;
– in Rubio-inn, all the TRS’s are non-terminating except test830.trs.

We have run our analysers together with AProVE 1.2 on all the non-terminating
TRS’s in the nontermin directory. We have also run these programs on Exam-
ple 26, Example 26-2, Example 29, Example 34 and Example 40 of [5] and on
Example 28 and footnote 8 of [15]. We fixed a 2 minutes time limit. Using a Pow-
erPC G4, 1.25 GHz, 512 Mo DDR SDRAM, MacOS 10.4.6, we get the results in
Table 1. Timings are average over 5 runs. In column “gen” we have reported the
number of rules generated by the unfolding process. The abstract analyser runs

concrete analysis abstract analysis AProVE 1.2
directory

solved gen min:sec solved gen min:sec solved min:sec

AG01 12/13 31218 0:56 12/13 9471 0:41 11/13 3:00

cariboo 6/6 833 0:00 6/6 234 0:00 6/6 0:06

CSR 36/36 39937 2:03 36/36 128 0:00 36/36 1:26

HM 1/1 8 0:00 1/1 6 0:00 1/1 0:00

Rubio-inn 8/9 33436 2:04 8/9 19283 2:01 7/9 2:29

TRCSR 1/1 13 0:00 1/1 2 0:00 1/1 0:04

[5] 5/5 397 0:00 5/5 73 0:00 5/5 0:01

[15] 2/2 932 0:00 2/2 292 0:00 2/2 0:00

total 71/73 106774 5:03 71/73 29489 2:42 69/73 7:06

Table 1.

much faster than its counterparts. The best total score in column “solved” is
achieved by both the concrete and abstract analysers. As expected, the abstract
analyser produces much fewer rules than the concrete one.

13

The TRS #4.13.trs in subdirectory AG01 was given by Drosten [11]:

R =
{

f(0, 1, x)→ f(x, x, x), f(x, y, z)→ 2, 0→ 2, 1→ 2,
g(x, x, y)→ y, g(x, y, y)→x

}
.

AProVE answers “maybe” within the time limit when run on this TRS. Both
unf (R) and unf #(R) are finite (for each n ≥ 11, TR ↑ n = ∅ and for each
n ≥ 5, T#

R ↑ n = ∅). These sets are computed by our analysers before the time
limit is reached. No rule in unf (R) satisfies the semi-unification criterion and
true 6∈ unf #(R). So, this TRS is an example of failure of our method that is not
caused by the explosion of the unfolding process.

7 Conclusion

We have presented an automatic technique for proving non-termination of TRS’s
independently of a particular reduction strategy. It is based on the “unfold &
infer” mechanism that was designed in the context of logic programming, thus
establishing a connection between both paradigms. We have also described a
method for eliminating useless rules to reduce the search space. Notice that we
did not implement such a method in our logic programming non-termination
tool as unfolding in this context is less explosive than with TRS’s (because the
particular left-to-right selection rule is classically considered). We have also run
our analyser on TRS’s from the TPDB; the results are very encouraging as our
tool is able to solve 71 over 73 non-terminating examples.

In comparison, the AProVE system solves 69 examples and is slower. The
technique implemented in AProVE consists in narrowing dependency pairs until
two terms that semi-unify are found. Narrowing operations are performed either
directly with the rules of the TRS of interest (forward narrowing) or with the
reversed rules (backward narrowing). To select forward or backward narrowing,
heuristics are introduced: if the TRS is right and not left-linear, then forward
narrowing is performed, otherwise backward narrowing is used. To obtain a finite
search space, an upper bound is used on the number of times that a rule can
be applied for narrowing. An approximation of the graph of dependency pairs is
also constructed and AProVE processes the strongly connected components of
this graph separately.

Our approach directly works with the rules (not the dependency pairs) and
forward narrowing is sufficient as we pre-process the TRS’s. We also do not
need heuristics and in order to get a finite search space, we introduce a user-
fixed maximum number of iterations. The graph that we use is not a graph
of dependency pairs and is closely related to that of [4, 1]. In these papers,
the authors define a framework for the static analysis of the unsatisfiability of
equation sets. This framework uses a loop-checking technique based on a graph
of functional dependencies. Notice that in order to eliminate useless rules within
our approach, an idea would consist in using the results of [4, 1] as we are also
interested in a form of satisfiability: is a pair of terms (l, r) unfoldable to (l′, r′)
such that l′ semi-unifies with r′? However, [4, 1] consider unification instead

14

of semi-unification and both sides of the pairs can be rewritten (whereas the
unfolding operation only rewrites the right-hand side). We are also aware of the
work described in [8] where the authors consider a graph of terms to detect loops
in the search tree. The graph of terms is used within a dynamic approach whereas
our paper and [4, 1] consider a static approach. Another future work consists in
designing a bottom-up technique for proving non-termination of TRS’s. What we
describe in this paper is a top-down mechanism, as the unfolding process starts
from the rules of the TRS R of interest and then rewrites the right-hand sides
down as much as possible. In [21, 20], the authors use the unfolding operator T β

P

of [12] that leads to a bottom-up computation of the unfoldings of P starting
from the emptyset, instead of P . Given a set of rules X, T β

P (X) unfolds P using
the elements of X whereas TR(X) unfolds X using the rules of R.

Acknowledgements. We greatly thank an anonymous reviewer for many con-
structive comments. We also thank Fred Mesnard, Germán Puebla and Fausto
Spoto for encouraging us to submit the paper.

References

1. M. Alpuente, M. Falaschi, and F. Manzo. Analyses of unsatisfiability for equational
logic programming. Journal of Logic Programming, 311(1–3):479–525, 1995.

2. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe folding/unfolding with
conditional narrowing. In Proc. of ALP/HOA 97, pages 1–15, 1997.

3. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Rules + strategies for trans-
forming lazy functional logic programs. Theoretical Computer Science, 311(1–
3):479–525, 2004.

4. M. Alpuente, M. Falaschi, M. J. Ramis, and G. Vidal. Narrowing approximations
as an optimization for equational logic programs. In Proc. of PLILP 1993, pages
391–409, 1993.

5. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

6. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge, 1998.
7. R. M. Burstall and J. Darlington. A transformation system for developing recursive

programs. Journal of the ACM, 24(1):44–67, 1977.
8. J. Chabin and P. Réty. Narrowing directed by a graph of terms. In G. Goos

and J. Hartmanis, editors, Proc. of RTA’91, volume 488 of LNCS, pages 112–123.
Springer-Verlag, Berlin, 1991.

9. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

10. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1
& 2):69–116, 1987.

11. K. Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung alge-
braischer Spezifikationen. Springer Verlag, Berlin, 1989.

12. M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the
analysis of logic programs. In Proc. of SAC’94, pages 394–399. ACM Press, 1994.

13. S. Genaim and M. Codish. Inferring termination conditions for logic programs
using backwards analysis. In R. Nieuwenhuis and A. Voronkov, editors, Proc. of
LPAR’01, volume 2250 of LNCS, pages 685–694. Springer-Verlag, Berlin, 2001.

15

14. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair frame-
work: combining techniques for automated termination proofs. In F. Baader and
A. Voronkov, editors, Proc. of LPAR’04, volume 3452 of LNAI, pages 210–220.
Springer-Verlag, 2004.

15. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In B. Gramlich, editor, Proc. of FroCoS’05, volume
3717 of LNAI, pages 216–231. Springer-Verlag, 2005.

16. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In V. van Oostrom, editor, Proc. of RTA’04, volume 3091 of
LNCS, pages 210–220. Springer-Verlag, 2004.

17. D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. Theoretical
Computer Science, 81:169–187, 1991.

18. D.S. Lankford and D.R. Musser. A finite termination criterion. Unpublished Draft,
USC Information Sciences Institute, Marina Del Rey, CA, 1978.

19. F. Mesnard and R. Bagnara. cTI: a constraint-based termination inference tool
for iso-prolog. Theory and Practice of Logic Programming, 5(1–2):243–257, 2005.

20. E. Payet and F. Mesnard. Non-termination inference for constraint logic programs.
In R. Giacobazzi, editor, Proc. of SAS’04, volume 3148 of LNCS, pages 377–392.
Springer-Verlag, 2004.

21. E. Payet and F. Mesnard. Non-termination inference of logic programs. ACM
Transactions on Programming Languages and Systems, 28, Issue 2:256–289, 2006.

22. A. Pettorossi and M. Proietti. Rules and strategies for transforming functional
and logic programs. ACM Comput. Surv., 28(2):360–414, 1996.

23. J. Steinbach. Simplification orderings: history of results. Fundamenta Informaticae,
24:47–87, 1995.

24. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-
ing systems. Information Processing Letters, 25(3):141–143, 1987.

25. Termination Problem Data Base. http://www.lri.fr/~marche/termination-com
petition/.

16

