
HAL Id: hal-01915777
https://hal.univ-reunion.fr/hal-01915777

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path-length analysis for object-oriented programs
Fausto Spoto, Patricia M Hill, Etienne Payet

To cite this version:
Fausto Spoto, Patricia M Hill, Etienne Payet. Path-length analysis for object-oriented programs. First
International Workshop on Emerging Applications of Abstract Interpretation (EAAI’06), Mar 2006,
Vienne, Austria. �hal-01915777�

https://hal.univ-reunion.fr/hal-01915777
https://hal.archives-ouvertes.fr

EAAI 2006

Path-Length Analysis
for Object-Oriented Programs

Fausto Spoto 1

Dipartimento di Informatica, Università di Verona, Italy

Patricia M. Hill 2

School of Computing, University of Leeds, United Kingdom

Étienne Payet 3

IREMIA, Université de La Réunion, France

Abstract

This paper describes a new static analysis for finding approximations to the path-
length of variables in imperative, object-oriented programs. The path-length of a
variable v is the cardinality of the longest chain of pointers that can be followed
from v. It is shown how such information may be used for automatic termination
inference of programs dealing with dynamically created data-structures.

Key words: Abstract interpretation, abstract compilation,
termination analysis, object-oriented programming.

1 Introduction

In this paper, by applying the standard framework of abstract interpreta-
tion [5], we present a new static analysis, called path-length analysis, that
provides information useful for verifying the termination of imperative, object-
oriented program code. Note that, since termination of computer programs is
an undecidable property, a termination analysis can only be approximate: if
the analyzer proves termination, then the program is guaranteed to terminate,
but, in general, the converse cannot hold.

1 Email: fausto.spoto@univr.it
2 Email: hill@comp.leeds.ac.uk
3 Email: Etienne.Payet@univ-reunion.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

For logic and functional programs, termination analysis has been widely
researched [1,7,8,11,12,13]; often the proof of termination of such programs will
aim to show that recursive calls strictly decrease w.r.t. a given norm. Norms
can both measure the size of the terms, and information more specific to the
kind of algorithm implemented by the program. For instance, for processing
lists which, for logic programs, are a standard, ubiquitous data-structure, the
length of the list is a useful norm. While this technique works fine for terms,
others consider termination in the presence of numerical variables [18].

For imperative or object-oriented programs, the problem seems more dif-
ficult than for (pure) logic programs because of the sharing of data-structure
between variables, cyclicity of data-structures and destructive updates. More-
over, apart from using the values of the numerical variables [14], norms re-
lating to the structure of the data such as list-length for logic programs have
not been considered. As a consequence, termination analyses for imperative
programs have been restricted, up to now, to programs dealing with numerical
variables only [3,10,15]. Thus, in spite of the fact that automatic certification
of termination is particularly relevant for real-time systems, where a program
has strict time constraints [4], research where non-termination may be due to
factors other than the actual values of the numerical variables is lacking.

In this paper, we are concerned with object-oriented programs, where ob-
jects are the main entities; so that their size and size of the data-structures
contained therein, are natural and useful norms for establishing termination.
The static path-length analysis we present here aims to provide a description
of the path-length of the program variables where the path-length of a variable
refers to the cardinality of the longest chain of pointers that can be followed
from that variable. The analysis is presented and proved correct in the ab-
stract interpretation framework [5] for static analysis. The main aim of the
analysis is to support (automatic) termination inference for programs working
over dynamically created data-structures (objects).

This paper shows how to transform a concrete program dealing with dy-
namically created data-structures into an abstract program dealing with nu-
merical constraints on the path-lengths of the data-structures. Observe that
the transformation may be viewed as an abstract compilation [9], since it is
defined as a fixpoint computation over an abstraction of the program; this
allows optimisation to take place before the abstract fixpoint is computed.
Proofs of correctness can be found in [19].

To obtain an intuition of our analysis, consider the classes in Figure 1,
which are written in the syntax of Section 4. That syntax is a normalised
version of the syntax of a Java-like language; that normalisation (Section 4)
is a useful simplification for presenting the analysis (Section 5); here we just
need to know that the keyword with introduces the methods’ local variables,
and the variable out holds the methods’ return value. The classes implement
a list of subscriptions to a service, such as cable television. Some subscriptions
come from abroad, and have a higher monthly cost than others. The method

2

foreigners over a list of subscriptions builds a new list, containing only the
foreign ones. Let variable s have type Subs and consider the following loop:

while (s ! = null) {s := s.next;}

Let us write š for the path-length of s before the command s:=s.next is
executed and ŝ for its path-length afterwards. We call š an input variable
and ŝ an output variable. A condition which lets us prove termination of
the loop is š > ŝ. It expresses the fact that the path-length of s strictly
decreases at each iteration of the loop. On the assumption that s does not
contain any cycle, our analysis compiles the command s:=s.next into that
constraint automatically. This shows the importance of cyclicity information
(which corresponds to occur-check in logic programs) and the use of a pair of
variables v̌, v̂ for the same program variable v, to model destructive updates.

Consider next a more complicated example:

while (s ! = null) {s := s.foreigners(); s := s.next;}

The loop body now consists of two commands. The first, s := s.foreigners(),
satisfies the constraint š ≥ ŝ (removing local subscriptions can only shrink the
list of subscriptions). Our path-length analysis will derive that constraint, as
shown in more detail in Section 2. The second command s := s.next is
compiled into the constraint š > ŝ, as before, so that the compilation of the
body of the loop is now the composition (š ≥ ŝ)◦(š > ŝ). This is computed by
matching the output variable ŝ on the left of ◦ with the input variable š on the
right, taking the conjunction and then projecting the matched variables away;
this results in the constraint š > ŝ proving that this loop also terminates.

The paper is organized as follows. Section 2 presents a detailed example
of path-length analysis. Section 3 contains the mathematical preliminaries of
the work. Section 4 presents a simplified object-oriented language. Section 5
defines the path-length constraints and the abstract semantics which derives
them for the program under analysis. Section 6 concludes.

2 A Detailed Example of Analysis

Let us show the analysis for the two methods foreigners in Figure 1. Both
methods work over a set of variables V = {temp, this, out}. In this exam-
ple, we want to prove that both foreigners methods in Figure 1 satisfy the
invariant ˆout ≤ ˇthis, which states that the path-length of the list of subscrip-
tions returned by those methods is no longer than the path-length of the list
provided to them as input, through the implicit this parameter.

The analysis starts by abstractly compiling the two foreigners methods.
The rules for this abstraction are given in Figure 3. Let us compute the
abstraction of the method Subs.foreigners, assuming it is called on a non-
cyclical object. By the rule for v.f in Figure 3, the abstraction of this.next is

3

class Object {}

class Subs extends Object {

int channels; Subs next;

int monthlyCost() { out := channels / 2 } // in euros

ForeignSubs foreigners() with temp:Subs {

temp := this.next;

if (temp = null) then {} else out := temp.foreigners() }

}

class ForeignSubs extends Subs {

int monthlyCost() { out := channels * 2 } // more expensive

ForeignSubs foreigners() with temp:Subs {

out := new ForeignSubs; // program point *

temp := this.next;

if (temp = null) then {} else out.next := temp.foreigners();

out.channels := this.channels }

}

Fig. 1. Our running example: a list of subscriptions to a service.

(
U(V) ∧ ˆres < ˇthis

)
=




ˆout = ˇout ∧ ˆtemp = ˇtemp∧

ˆthis = ˇthis ∧ ˆres < ˇthis



 . (1)

Equation (1) states that the path-length of the three variables in scope does
not change by evaluating this .next, while the result of this evaluation, stored
in the distinguished variable res, has a path-length which is strictly smaller
than that of this. To abstract the assignment temp:=this.next, we use the
rule for v:=exp in Figure 3. The abstraction is then




ˆout = ˇout ∧ ˆtemp = ˇtemp∧

ˆthis = ˇthis ∧ ˆres < ˇthis



 ◦ (U(V \ temp) ∧ ˆtemp = ˇres)

=




ˆout = ˇout ∧ ˆtemp = ˇtemp∧

ˆthis = ˇthis ∧ ˆres < ˇthis



 ◦




ˆout = ˇout ∧ ˆthis = ˇthis∧

ˆtemp = ˇres



 . (2)

We compute the sequential composition ◦ of two path-length constraints by
identifying the output variables of the left-hand side of ◦ with the input vari-
ables of its right-hand size. These variables are then projected away. For (2)
we get

∃{out ,res,temp,this}




out = ˇout ∧ temp = ˇtemp ∧ this = ˇthis ∧ res < ˇthis∧

ˆout = out ∧ ˆthis = this ∧ ˆtemp = res





= (ˆout = ˇout ∧ ˆthis = ˇthis ∧ ˆtemp < ˇthis). (3)

Equation (3) says that, by assigning this.next to temp, the final path-length

4

of temp is strictly smaller than the initial path-length of this.

Consider now the abstraction of temp.foreigners(). A preliminary shar-
ing analysis determines that out is the only variable which does not share,
here, with temp. Hence NS = {out} (Figure 3) and the abstraction of this
method call is

(ˆout = ˇout) ∧




J(Subs.foreigners)t

J(ForeignSubs.foreigners)





︸ ︷︷ ︸

ι





ˇthis 7→ ˇtemp,

ˆout 7→ ˆres



 . (4)

The interpretations J for the two foreigners methods are currently unknown
and we cannot simplify (4). The abstraction of out :=temp.foreigners() is
hence (4) ◦ (ˆthis = ˇthis ∧ ˆtemp = ˇtemp ∧ ˆout = ˇres) = ι[ˇthis 7→ ˇtemp], where
ι is defined in (4). We can now compute the abstraction of the conditional,
which by Figure 3 is




0 = ˇtemp ∧ ˆtemp = ˇtemp∧

ˆthis = ˇthis ∧ ˆout = ˇout



 t (0 < ˇtemp ∧ ι[ˇthis 7→ ˇtemp])

=




0 = ˇtemp = ˆtemp∧

ˆthis = ˇthis ∧ ˆout = ˇout



 t (0 < ˇtemp ∧ ι[ˇthis 7→ ˇtemp]). (5)

The abstraction of the whole Subs.foreigners should hence be (3) ◦ (5).
However, at the beginning of its execution, both out and temp are bound to
null . Hence we can assume ˇout = ˇtemp = 0. And at its end, we only want
to observe the value of out . Hence we remove all output variables but ˆout ,
by composing with ˇout = ˆout . In conclusion, the abstract compilation of that
method is (ˇout = ˇtemp = 0) ∧ [(3) ◦ (5) ◦ (ˇout = ˆout)], that is

(ˇout = ˇtemp = 0)∧



((3) ◦ (0 = ˇtemp = ˆtemp ∧ ˆthis = ˇthis ∧ ˆout = ˇout))t

((3) ◦ (0 < ˇtemp ∧ ι[ˇthis 7→ ˇtemp]))



 ◦ (ˇout = ˆout)

which we simplify into

(ˇout = ˇtemp = 0)∧



(0 = ˆtemp ∧ 0 < ˇthis ∧ ˆthis = ˇthis ∧ ˆout = ˇout)t

∃temp(0 < temp < ˇthis ∧ ι[ˇthis 7→ temp])



 ◦ (ˇout = ˆout). (6)

Consider ForeignSubs.foreigners now. We abstract its first two lines in

ˆout = 1 ∧ ˆthis = ˇthis ∧ ˆtemp < ˇthis. (7)

5

The abstraction of the call temp.foreigners() is as in Equation (4). To
abstract out .next :=temp.foreigners(), we use the rule for v.f :=exp in Fig-
ure 3, with S = {out}. Hence the abstraction of this field update is

(4) ◦ (ˆout ≤ ˇout + ˇres ∧ ˆthis = ˇthis ∧ ˆtemp = ˇtemp)

= ∃res

[
ι[ˇthis 7→ ˇtemp, ˆout 7→ res] ∧ ˆout ≤ ˇout + res

]
. (8)

The abstraction of the conditional is similar to that seen before. We do not
need to abstract out .channels :=this .channels since it deals with integer
values only, so it is irrelevant to our analysis. The abstraction of the method
ForeignSubs.foreigners() is, in conclusion:

(ˇout = ˇtemp = 0)∧
{
(7) ◦

[
(0 = ˇtemp = ˆtemp ∧ ˆthis = ˇthis ∧ ˆout = ˇout) t (0 < ˇtemp ∧ (8))

]}

◦ (ˇout = ˆout). (9)

Now that we have computed the abstraction of both foreigners methods,
we can prove that ˆout ≤ ˇthis is an invariant for them. To this purpose, we
plug the interpretation

J(Subs.foreigners) = J(ForeignSubs.foreigners) = ι = (ˆout ≤ ˇthis)

into Equations (6) and (9). From the first equation we get

(ˇout = ˇtemp = 0)∧



(0 = ˆtemp ∧ 0 < ˇthis ∧ ˆthis = ˇthis ∧ ˆout = ˇout)t

∃temp(0 < temp < ˇthis ∧ ˆout ≤ temp)



 ◦ (ˇout = ˆout)

which entails





(ˇout = 0) ∧








0 = ˆtemp ∧ 0 < ˇthis∧

ˆthis = ˇthis ∧ ˆout = ˇout



 t (ˆout < ˇthis)










◦ (ˇout = ˆout)

which itself entails
{

(0 = ˆtemp ∧ 0 < ˇthis ∧ ˆthis = ˇthis ∧ ˆout = 0) t (ˆout < ˇthis)
}

◦ (ˇout = ˆout)

and, finally,
{
(ˆout < ˇthis) t (ˆout < ˇthis)

}
◦ (ˇout = ˆout) = (ˆout < ˇthis). Note

that ˆout < ˇthis entails the invariant ˆout ≤ ˇthis.

For the second one, we first reduce (8) to ∃res(res ≤ ˇtemp ∧ (ˆout ≤ ˇout +
res)) = (ˆout ≤ ˇout + ˇtemp). Hence (9) is

(ˇout = ˇtemp = 0) ∧
{
(7) ◦

[
(0 = ˇtemp = ˆtemp ∧ ˆthis = ˇthis ∧ ˆout = ˇout)t

(0 < ˇtemp ∧ ˆout ≤ ˇout + ˇtemp)
]}

◦ (ˇout = ˆout)

6

which entails

(ˇout = ˇtemp = 0) ∧
{
(7) ◦

[
ˆout ≤ ˇout + ˇtemp

]}
◦ (ˇout = ˆout)

= (ˇout = ˇtemp = 0) ∧ ∃temp

{
temp < ˇthis ∧ ˆout ≤ 1 + temp

}
◦ (ˇout = ˆout)

= (ˇout = ˇtemp = 0 ∧ ˆout ≤ ˇthis) ◦ (ˇout = ˆout) = (ˆout ≤ ˇthis).

3 Preliminaries

A total (partial) function f is denoted by 7→ (→). The domain (codomain)
of f is dom(f) (rng(f)). We denote by [v1 7→ t1, . . . , vn 7→ tn] the function f
where dom(f) = {v1, . . . , vn} and f(vi) = ti for i = 1, . . . , n. Its update is
f [w1 7→ d1, . . . , wm 7→ dm], where the domain may be enlarged. By f |s (f |−s)
we denote the restriction of f to s ⊆ dom(f) (to dom(f) \ s). If f(x) = x
then x is a fixpoint of f . The composition f ◦ g of functions f and g is such
that (f ◦ g)(x) = g(f(x)) so that we also denote it as gf . The components of
a pair are separated by ?. A definition of S such as S = a ? b, with a and b
meta-variables, silently defines the pair selectors s.a and s.b for s ∈ S.

A poset S ? ≤ is a set S with a reflexive, transitive and antisymmetric
relation ≤. If C ? ≤ and A ? � are posets (the concrete and the abstract
domain), a Galois connection [6] is a pair of monotonic maps α : C 7→ A
and γ : A 7→ C (i.e., α(c1) � α(c2) if c1 ≤ c2, similarly for γ) such that
γα is extensive (i.e., c ≤ γα(c) for any c ∈ C) and αγ is reductive (i.e.,
αγ(a) ≤ a for any a ∈ A). It has been shown that in order to define a Galois
connection, and hence an abstract interpretation [6], it is enough to prove that
A is (isomorphic to) a Moore family of C i.e., that it is closed w.r.t. greatest
lower bounds of C and that it contains the top element of C .

4 Our Simple Object-Oriented Language

Syntax. Variables are typed and bound to values. We do not consider prim-
itive types that are not heap-allocated but rather held inside the activation
frame or the local frame of an object.

Definition 4.1 A program has a set of variables (or identifiers) V (including
res, out , this) and a finite poset of classes (or types) K?≤ ordered by a subclass
relation ≤. We write F (κ) for the set of fields of class κ ∈ K.

Example 4.2 In Figure 1, we have K = {Object, Subs, ForeignSubs}, where
Object is the top of the hierarchy. Moreover, ForeignSubs ≤ Subs. We
are not interested in primitive types. Hence we have F (Object) = ∅ and
F (Subs) = F (ForeignSubs) = {next}.

Our expressions and commands are normalised versions of Java’s. Only
syntactically distinct variables can be actual parameters of a method call
(this is just a form of normalisation and does not prevent them being bound

7

to shared data-structures at run-time); in assignments, leftvalues are either a
variable or the field of a variable; conditionals only check equality or nullness
of variables; loops, such as the while commands in Section 1, are implemented
through recursion. Note that these simplifying assumptions may be relaxed
without affecting subsequent results.

Definition 4.3 Expressions and commands are exp ::= null | new κ | v |
v .f | v .m(v1, . . . , vn) and com ::= v := exp | v.f := exp | {com; · · · ;com} |
if v = w then com else com | if v = null then com else com, where κ ∈
K and v, w, v1, . . . , vn ∈ V are distinct. Each method κ.m is defined in class
κ with a statement κ0 m(w1 : κ1, . . . , wn : κn) with wn+1 : κn+1, . . . , wn+m :
κn+m is com, where w1, . . . , wn, wn+1, . . . , wn+m ∈ V are distinct, not in {out ,
res, this} and have type κ1, . . . , κn, κn+1, . . . , κn+m ∈ K, respectively. Vari-
ables w1, . . . , wn are the formal parameters of the method, wn+1, . . . , wn+m

are its local variables. The method also uses a variable out of type κ0 to
store its return value. Let body(κ.m) = com, input(κ.m) = {this, w1, . . . , wn},
output(κ.m) = {out}, locals(κ.m) = {wn+1, . . . , wn+m} and finally scope(κ.m) =
input(κ.m) ∪ output(κ.m) ∪ locals(κ.m).

Example 4.4 For ForeignSubs.foreigners in Figure 1 (just foreigners

below) we have input(foreigners) = {this}, output(foreigners) = {out}
and locals(foreigners) = {temp}.

this out

null

null

next

ForeignSubscriptionForeignSubscription Subscription

nextnext
µ

φ

l l l1 2 3

locations

l l1 3

temp

l2 null

objects

5 6

channels channels channels

0

Fig. 2 State (frame φ ? memory µ).

Semantics.

We use a denotational semantics,
hence compositional, in the style
of [21]. However, we use a more com-
plex notion of state, which assumes
an infinite set of locations. As we
assume a denotational semantics, a
state has a single frame, rather than
an activation stack of frames.

A frame binds variables (identi-
fiers) to locations or null . A mem-
ory binds such locations to objects,
which contain a class tag and the frame for their fields.

Definition 4.5 Let Loc be an infinite set of locations. We define frames,
objects and memories as FrameV = {φ | φ ∈ V 7→ Loc∪{null}}, Obj = {κ?φ |
κ ∈ K, φ ∈ FrameF (κ)} and Memory = {µ ∈ Loc → Obj | dom(µ) is finite}.
A new object of class κ is new(κ) = κ?φ, with φ(f) = null for each f ∈ F (κ).

Example 4.6 Figure 2 shows a frame φ and a memory µ. Different occur-
rences of the same location are linked. For instance, variable this is bound to
location l1 and µ(l1) is a ForeignSubs object. Objects are shown as boxes in
memory with a class tag and a local frame mapping fields to locations or null .

8

A computation state is a frame and a memory with no dangling pointers.

Definition 4.7 Let V be the set of variables in scope at a given program
point p. The set of possible states at p is

ΣV =






φ ? µ

∣
∣
∣
∣
∣
∣

φ ∈ FrameV , µ ∈ Memory , rng(φ) ⊆ dom(µ)

for all l ∈ dom(µ) we have rng(µ(l).φ) ⊆ dom(µ)






.

Example 4.8 The state φ ? µ ∈ Σ{temp,this,out} in Figure 2 might be that of
an interpreter at program point ∗ in Figure 1.

Denotations are the input/output semantics of a piece of code. Interpre-
tations provide a denotation to each method.

Definition 4.9 A denotation from V to V ′ is a partial map from ΣV to ΣV ′.
The set of denotations from V to V ′ is ∆V,V ′ .

Definition 4.10 An interpretation I maps methods to denotations, such that
I(κ.m) : Σinput(κ.m) → Σoutput(κ.m) for each method κ.m.

Let V be a set of variables with res 6∈ V . Let I be an interpretation. In [19],
this is defined as the denotation for expressions E I[[]] : exp 7→ (ΣV → ΣV ∪{res})
and the denotation for commands CI [[]] : com 7→ (ΣV → ΣV). We only discuss
them informally here. Expressions in our language have side-effects and return
a value. Hence their denotations are partial maps from an initial to a final
state containing a distinguished variable res 6∈ V holding the expression’s
value: E I [[]] : exp 7→ (ΣV → ΣV ∪{res}), where I is an interpretation. Namely,
given an input state φ?µ, the denotation of null binds res to null in φ. That
of new κ binds res to a new location bound to a new object of class κ. That
of v copies v into res. That of v.f accesses the object o = µ(φ(v)) bound to v
(provided φ(v) 6= null) and copies the field f of o (i.e., o.φ(f)) into res. That
of method call uses the dynamic class of the receiver to fetch the denotation
of the method from I. It plugs it in the calling context, by building a starting
state σ† for the method, whose formal parameters (including this) are bound
to the actual parameters.

The denotation of a command is a partial map from an initial to a final
state: CI [[]] : com 7→ (ΣV → ΣV). The denotation of v:=exp uses that of
exp to get a state where res holds exp’s value. Then it copies res into v and
removes res. Similarly for v.f :=exp, but res is copied into the field f of the
object bound to v, if any. The denotation of the conditionals checks their
guard and then uses the denotation of then or that of else. The denotation
of a sequence of commands is the functional composition of their denotations.

The concrete denotational semantics of a program is the least fixpoint of
the following transformer of interpretations, which corresponds to the immedi-
ate consequence operator of logic programming [2]. It evaluates the methods’
bodies in I, expanding the input state with local variables bound to null . It
restricts the final state to out , so that Definition 4.10 is respected.

9

Definition 4.11 The following transformer on interpretations transforms an
interpretation I into a new interpretation I ′ such that I ′(κ.m) is

[
λ(φ ? µ) ∈ Σinput(κ.m).(φ[out 7→ null , wn+1 7→ null , . . . , wn+m 7→ null] ? µ)

]
◦

◦ CI [[body(κ.m)]] ◦
[
λ(φ ? µ) ∈ Σscope(κ.m).(φ|out ? µ)

]
.

The denotational semantics of a program is the least fixpoint of this trans-
former.

We introduce now a notion of reachability for locations. The reachable
locations are those bound to the variables or to their fields or to the fields of
the fields, and so on.

Definition 4.12 Let µ ∈ Memory and l ∈ dom(µ). We define the set of
locations reachable from l in µ as L(µ)(l) = ∪{Li(µ)(l) | i ≥ 0}, where
L0(µ)(l) = rng(µ(l).φ) ∩ Loc and Li+1(µ)(l) = ∪{rng(µ(l′).φ) ∩ Loc | l′ ∈
Li(µ)(l)}. Let φ ? µ ∈ ΣV and v ∈ V . We define

LV (φ ? µ)(v) =

{

∅ if φ(v) = null

{φ(v)} ∪ L(µ)(φ(v)) otherwise.

Example 4.13 Consider the state φ?µ in Figure 2 and let V = {temp, this, out}.
We have L0(µ)(l1) = {l2} and, for every i ≥ 0, Li+1(µ)(l1) = ∅, Li(µ)(l2) = ∅

and Li(µ)(l3) = ∅. Hence LV (φ ? µ)(temp) = ∅, LV (φ ? µ)(this) = {l1, l2}
and LV (φ ? µ)(out) = {l3}.

Definition 4.14 Two variables v1, v2 ∈ V share in φ ? µ ∈ ΣV if there is a
location which is reachable from both i.e., if LV (φ ? µ)(v1) ∩ LV (φ ? µ)(v2) 6=
∅ [17]. A variable v ∈ V is cyclical in φ ? µ if φ(v) 6= null and there exists
l ∈ L(µ)(φ(v)) such that l ∈ L(µ)(l) [16].

Example 4.15 From Example 4.13, we conclude that, in the state φ ? µ in
Figure 2, variable this shares with this itself and out with out itself. No
variable shares with temp. No variable is cyclical.

Sharing and cyclicity of program variables can be computed through shape
analysis [20] or through some lighter, more specialised static analyses such
as [17,16].

We use reachability (Definition 4.12) to refine Definition 4.10. We require
that a method does not write into the locations L of the input state which
are not reachable from the formal parameters. Programming languages such
as Java and that of Section 4 satisfy this constraint. It is needed to prove the
correctness of the abstract counterpart of method call (Figure 3).

Definition 4.16 We refine Definition 4.10 of interpretations I by requiring
that, if I(κ.m)(φ ? µ) = φ′ ? µ′ and L = dom(µ) \ ∪{Linput(κ.m)(φ ? µ)(v) | v ∈
input(κ.m)}, then µ|L = µ′|L (unreachable locations are not modified).

10

5 Path-Length Analysis

The path-length of a variable v in a state σ is the length of the longest chain
of pointers you can follow from v in σ.

Definition 5.1 Let φ ? µ ∈ ΣV and v ∈ V . We define

len0(φ ? µ)(v) = 0

leni+1(φ ? µ)(v) =







0 if φ(v) = null

1 + max

{

leni(o.φ ? µ)(f)

∣
∣
∣
∣
∣

o = µφ(v) and

f ∈ dom(o.φ)

}

otherwise.

The path-length of v in φ ? µ is defined as len(φ ? µ)(v) = lim
i→∞

leni(φ ? µ)(v).

Note that len(φ ? µ)(v) ∈ {0, 1, 2, . . . ,∞}.

Example 5.2 In Figure 2 we have len(φ?µ) = [temp 7→ 0, this 7→ 2, out 7→ 1].

Definition 5.3 A path-length relational constraint from V to V ′ is an integer
linear constraint over the input variables {v̌ | v ∈ V } and the output variables
{v̂ | v ∈ V ′}, which uses the predicates ≤ and <. The set of such constraints
is PLV,V ′, with a least upper bound operation t defined as the convex hull.
The path length relational constraint U(V) = ∧{v̌ = v̂ | v ∈ V } ∈ PLV,V is
called the frame condition for V .

Example 5.4 Consider V = {temp, this, out}. A path-length relational con-
straint in PLV,V is ˆtemp < ˇtemp∧ ˆthis ≤ ˇthis∧ ˇthis ≤ ˆthis∧ ˆout ≤ ˇthis+ ˇout+1.

In the following, we also use v = w in the constraints, which is syntactical
sugar for v ≤ w and w ≥ v.

Definition 5.5 Let σ ∈ ΣV . We define ˇlen(σ) = [v̌ 7→ len(σ)(v) | v ∈ V] and
ˆlen(σ) = [v̂ 7→ len(σ)(v) | v ∈ V].

The concretisation of a path-length relational constraint is the set of deno-
tations which satisfy the path-length relationship expressed by the constraint.

Definition 5.6 The concretisation of a constraint pl ∈ PLV,V ′ is

γ(pl) =






δ ∈ ∆V,V ′

∣
∣
∣
∣
∣
∣

for all σ ∈ ΣV if δ(σ) is defined

then ˇlen(σ) ∪ ˆlen(δ(σ)) |= pl






.

Example 5.7 Consider V = {temp, this, out} as in Figure 2 and the denota-
tion δ ∈ ∆V,V such that

δ(φ ? µ) =

{

φ[temp 7→ null] ? µ if φ(temp) 6= null

undefined if φ(temp) = null .

11

We have δ ∈ γ(pl) where pl is the constraint in Example 5.4.

The map γ of Definition 5.6 maps the elements of PLV,V ′ into elements of
the concrete domain ℘(∆V,V ′). The abstract domain PLV,V ′ is closed w.r.t. ∧
and represents the top of ℘(∆V,V ′) as the empty, tautological constraint true.
Hence it is an abstract domain having γ as its concretisation map (Section 3).

Two path-length relational constraints pl 1 and pl2 are composed by match-
ing the output variables of pl 1 with the input variables of pl 2 and then pro-
jecting away such variables.

Definition 5.8 Let pl 1 ∈ PLV ′,V and pl2 ∈ PLV,V ′′ . We define their composi-
tion pl1 ◦ pl2 ∈ PLV ′,V ′′ as ∃{v|v∈V }(pl1[v̂ 7→ v | v ∈ V] ∧ pl 2[v̌ 7→ v | v ∈ V]).

Definition 5.9 A path-length interpretation J maps each method κ.m to a
path-length relational constraint J(κ.m) ∈ PLinput(κ.m),output(κ.m).

We can now define an abstract semantics as a compilation of the source
program into a program over path-length relational constraints [9].

Definition 5.10 Let V be a set of variables in scope with res /∈ V . Figure 3
provides an abstract semantics over path-length relational constraints, which
corresponds to the concrete semantics of [19].

Let us consider the constraints in Figure 3. The evaluation of the expres-
sions null, new κ, v and v .f does not modify the path-length of the variables.
This is expressed by the use of the frame condition U(V). The path-length of
the value of those expressions is 0 for null, 1 for new κ (since the fields of the
newly-created objects are all bound to null) and the path-length of variable
v for the expression v . The path-length of the value of v .f is no longer than
that of v , but the strict inequality can be assumed only when v is non-cyclical.
The constraint for method call says that the variables which do not share with
the parameters are not affected by the call. Moreover, the path-length of the
result is computed by using the current approximation J(κ.m) for all the meth-
ods κ.m which might be called. The constraints for the assignments are the
composition of the constraint for their right-hand side with a constraint which
modifies a variable or field, respectively. The constraints for the conditionals
are the convex hull of the constraints for the two branches of the condition-
als. Precision is improved by taking into account the fact that if the guard
v = w holds then variables v and w have the same path-length. Similarly, if
the guard v = null holds then v has a path-length equal to 0; if it does not
hold, v has a positive path-length. The sequential composition of denotations
becomes composition of constraints in Figure 3.

The abstract immediate consequence operator reflects the fact that initially
all local variables are bound to null , and that only out is observable at the
end of a method (Definition 4.11).

Definition 5.11 The abstract transformer on path-length interpretations trans-

12

PLEJ [[null]] = U(V) ∧ ˆres = 0

PLEJ [[new κ]] = U(V) ∧ ˆres = 1

PLEJ [[v]] = U(V) ∧ ˆres = v̌

PLEJ [[v.f]] =

{

U(V) ∧ ˆres < v̌ if v is not cyclical

U(V) ∧ ˆres ≤ v̌ otherwise

PLEJ [[v.m(v1, . . . , vn)]] = U(NS) ∧ t






J(κ.m)





ˇthis 7→ v̌, ˆout 7→ ˆres

w̌1 7→ v̌1, . . . , w̌n 7→ v̌n





∣
∣
∣
∣
∣
∣

κ.m can be

called here







where NS ={x ∈ V | x does not share with any of v, v1, . . . , vn}

PLCJ [[v:=exp]] = PLEJ [[exp]] ◦ (U(V \ v) ∧ v̂ = ˇres)

PLCJ [[v.f :=exp]] = PLEJ [[exp]] ◦ setFieldv.f

where setField v.f =







∧{x̂ ≤ x̌ + ˇres | x ∈ S} ∧ U(V \ S)

if v and res do not share

U(V \ S)

otherwise

and S ={x ∈ V | x shares with v}

PLCJ
[[if v = w then com1

else com2

]]

= (v̌ = w̌ ∧ PLCJ [[com1]]) t PLCJ [[com2]]

PLCJ
[[if v = null then com1

else com2

]]

= (v̌ = 0 ∧ PLCJ [[com1]]) t (0 < v̌ ∧ PLCJ [[com2]])

PLCJ [[{}]] = U(V)

PLCJ [[{com1; . . . ; comp}]] = PLCJ [[com1]] ◦ · · · ◦ PLCJ [[comp]].

Fig. 3. The abstract path-length semantics of our language, assuming that V is the
set of variables in scope in the method under analysis.

forms each J into a new path-length interpretation J ′ such that J ′(κ.m) is

[
U(input(κ.m))∧{ŵn+i = 0 | 1 ≤ i ≤ m}∧ ˆout = 0

]
◦PLCJ [[body(κ.m)]]◦[ˇout = ˆout].

Theorem 5.12 The abstract semantics of Figure 3 is correct w.r.t. the con-
crete semantics in [19]. Namely, if F C is the least fixpoint of the transformer
of Definition 4.11 and F A is the least fixpoint of the transformer of Defini-
tion 5.11, we have F C ∈ γ(F A).

13

6 Conclusion

We have defined a static analysis for path-length analysis of imperative, object-
oriented programs. We think that this is the first definition of a static analysis
meant to support automatic termination analysis of imperative programs deal-
ing with dynamically allocated data-structures.

An implementation is still missing. It is important in order to show how
precise our analysis is, and how well it scales to real programs.

References

[1] K. R. Apt and D. Pedreschi. Reasoning about Termination of Pure Prolog
Programs. Information and Computation, 106(1):109–157, September 1993.

[2] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-Semantics Approach:
Theory and Applications. Journal of Logic Programming, 19/20:149–197, 1994.

[3] A. R. Bradley, Z. Manna, and H. B. Sipma. Termination Analysis of Integer
Linear Loops. In M. Abadi and L. de Alfaro, editors, Proc. of the 16th
International Conference on Concurrency Theory (CONCUR’05), volume 3653
of Lecture Notes in Computer Science, pages 488–502, San Francisco, CA, USA,
August 2005. Springer-Verlag.

[4] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction Refinement for
Termination. In C. Hankin and I. Siveroni, editors, Static Analysis Symposium
(SAS’05), volume 3672 of Lecture Notes in Computer Science, pages 87–101,
London, United Kingdom, September 2005. Springer-Verlag.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. of the 4th ACM Symposium on Principles of Programming Languages
(POPL), pages 238–252, 1977.

[6] P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic
Programs. Journal of Logic Programming, 13(2 & 3):103–179, 1992.

[7] D. De Schreye and S. Decorte. Termination of Logic Programs: The Never-
Ending Story. Journal of Logic Programming, 19/20:199–260, 1994.

[8] S. Genaim and M. Codish. Inferring Termination Conditions for Logic
Programs using Backwards Analysis. Theory and Practice of Logic
Programming (TPLP), 5(1-2):75–91, January/March 2005.

[9] M. Hermenegildo, W. Warren, and S. K. Debray. Global Flow Analysis as a
Practical Compilation Tool. Journal of Logic Programming, 13(2 & 3):349–366,
1992.

[10] M. Kühnrich and N. D. Jones. Size Change Analysis of a Small C-like Language.
Technical report, Copenhagen University, DIKU, 2004. Available at the address
http://www.cs.aau.dk/∼mokyhn/publications/kuhnsct03.pdf.

14

[11] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The Size-Change Principle
for Program Termination. In Proc. of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’01), volume 36(3)
of ACM SIGPLAN Notices, pages 81–92, London, UK, March 2001. ACM.

[12] N. Lindenstrauss and Y. Sagiv. Automatic Termination Analysis of Logic
Programs. In L. Naish, editor, Proc. of the 14th International Conference on
Logic Programming (ICLP), pages 63–77, Leuven, Belgium, July 1997. MIT
Press.

[13] F. Mesnard and U. Neumerkel. Applying Static Analysis Techniques for
Inferring Termination Conditions of Logic Programs. In P. Cousot, editor, Proc.
of the 8th Static Analysis Symposium (SAS), volume 2126 of Lecture Notes in
Computer Science, pages 93–110, Paris, France, July 2001. Springer-Verlag.

[14] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Bernhard Steffen and Giorgio Levi, editors, Verification,
Model Checking, and Abstract Interpretation, 5th International Conference
(VMCAI’04), volume 2937 of Lecture Notes in Computer Science, pages 239–
251, Venice, Italy, 2004. Springer-Verlag.

[15] A. Podelski and A. Rybalchenko. Transition Predicate Abstraction and Fair
Termination. In M. Abadi and J. Palsberg, editors, Proc. of the 32nd ACM
Symposium on Principles of Programming Languages (POPL’05), pages 132–
144, Long Beach, CA, USA, January 2005. ACM.

[16] S. Rossignoli and F. Spoto. Detecting Non-Cyclicity by Abstract Compilation
into Boolean Functions. In Proc. of the 6th international conference on
Verification, Model Checking and Abstract Interpretation (VMCAI’06), Lecture
Notes in Computer Science, Charleston, South Carolina, USA, January 2006.
Springer-Verlag. To appear.

[17] S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs.
In C. Hankin and I. Siveroni, editors, Static Analysis Symposium (SAS’05),
volume 3672 of Lecture Notes in Computer Science, pages 320–335, London,
UK, September 2005. Springer-Verlag.

[18] A. Serebrenik and D. De Schreye. Inference of Termination Conditions for
Numerical Loops. Theory and Pratice of Logic Programming, 4(5–6):719–751,
September/November 2004.

[19] F. Spoto, M. P. Hill, and E. Payet. Path-Length Analysis for
Object-Oriented Programs. Extended version with proofs. Available at
www.sci.univr.it/∼spoto/papers.html, 2006.

[20] R. Wilhelm, T. W. Reps, and S. Sagiv. Shape Analysis and Applications. In
Y. N. Srikant and P. Shankar, editors, The Compiler Design Handbook, pages
175–218. CRC Press, 2002.

[21] G. Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.

15

	Introduction
	A Detailed Example of Analysis
	Preliminaries
	Our Simple Object-Oriented Language
	Path-Length Analysis
	Conclusion
	References

