
HAL Id: hal-01915757
https://hal.univ-reunion.fr/hal-01915757v1

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An improved non-termination criterion for binary
constraint logic programs
Frédéric Mesnard, Etienne Payet

To cite this version:
Frédéric Mesnard, Etienne Payet. An improved non-termination criterion for binary constraint logic
programs. 15th International Workshop on Logic Programming Environments (WLPE’05), Universi-
dad Politécnica de Madrid; Technische Universiteit Eindhoven, Oct 2005, Barcelone, Spain. pp.46-60.
�hal-01915757�

https://hal.univ-reunion.fr/hal-01915757v1
https://hal.archives-ouvertes.fr

An Improved Non-Termination Criterion for
Binary Constraint Logic Programs

Etienne Payet and Fred Mesnard

IREMIA - Université de La Réunion, France
email: epayet@univ-reunion.fr

Abstract. On one hand, termination analysis of logic programs is now
a fairly established research topic within the logic programming com-
munity. On the other hand, non-termination analysis seems to remain a
much less attractive subject. If we divide this line of research into two
kinds of approaches: dynamic versus static analysis, this paper belongs
to the latter. It proposes a criterion for detecting non-terminating atomic
queries with respect to binary CLP clauses, which strictly generalizes our
previous works on this subject. We give a generic operational definition
and a logical form of this criterion. Then we show that the logical form
is correct and complete with respect to the operational definition.

1 Introduction

On one hand, termination analysis of logic programs is a fairly established re-
search topic within the logic programming community, see the surveys [5, 12]. For
Prolog, various tools are now available via web interfaces and we note that the
Mercury compiler, designed with industrial goals in mind by its implementors,
has included two termination analyzers (see [18] and [7]) for a few years.

On the other hand, non-termination analysis seems to remain a much less at-
tractive subject. We can divide this line of research into two kinds of approaches:
dynamic versus static analysis. In the former one, [1] sets up some solid founda-
tions for loop checking, while some recent work is presented in [16]. The main
idea is to prune at runtime at least all infinite derivations, and possibly some
finite ones. In the latter approach, which includes the work we present in this
article, [4, 6] present an algorithm for detecting non-terminating atomic queries
with respect to a binary clause of the type p(s̃) ← p(t̃). The condition is de-
scribed in terms of rational trees, while we aim at generalizing non-termination
analysis for the generic CLP(X) framework.

Our analysis shares with some work on termination analysis [3] a key compo-
nent: the binary unfoldings of a logic program [8], which transforms a finite set
of definite clauses into a possibly infinite set of facts and binary definite clauses.
While some termination analyses begin with the analysis of the recursive bi-
nary clauses of an upper approximation of the binary unfoldings of an abstract
CLP(N) version of the original program, we start from a finite subset of the
binary unfoldings of the concrete program P (a larger subset may increase the

precision of the analysis, see [13] for some experimental evidence). First we de-
tect patterns of non-terminating atomic queries for binary recursive clauses and
then propagate this non-termination information to compute classes of atomic
queries for which we have a finite proof that there exists at least one infinite
derivation with respect to the subset of the binary unfoldings of P .

The equivalence of termination for a program or its binary unfoldings given
in [3] is a corner stone of both analyses. It allows us to conclude that any atomic
query belonging to the identified above classes of queries admits an infinite left
derivation with respect to P . So in this paper, we deliberately choose to restrict
the analysis to binary CLP clauses and atomic CLP queries as the result we
obtain can be directly lifted to full CLP.

Our initial motivation, see [11], is to complement termination analysis with
non-termination inside the logic programming paradigm in order to detect opti-
mal termination conditions expressed in a language describing classes of queries.
We started from a generalization of the lifting lemma where we may ignore
some arguments. For instance, from the clause p(f(X), Y) ← p(X, g(Y)), we
can conclude that the atomic query p(X, t) loops for any term t, thus ignoring
the second argument. Then we have extended the approach, see [13] which gives
the full picture of the non-termination analysis, an extensive experimental eval-
uation, and a detailed comparison with related works. For instance, from the
clause p(f(X), g(Y)) ← p(X, g(b)), and with the help of the criterion designed
in [13] we can now conclude that p(X, t) loops for any term t which is an instance
of g(X).

Although we obtained interesting experimental results from such a criterion,
the overall approach remains quite syntactic, with an ad hoc flavor and tight links
to some basic logic programming machinery such as the unification algorithm. So
we moved to the constraint logic programming scheme: in [14], we started from
a generic definition of the generalization of the lifting lemma we were looking
for. Such a definition was practically useless but we were able to give a sufficient
condition expressed as a logical formula related to the constraint binary clause
p(x̃) ← c � p(ỹ) under consideration. For some constraint domains, we showed
that the condition is also necessary. Depending on the constraint theory, the
validity of such a condition can be automatically decided. Moreover, we showed
that the syntactic criterion we used in [11] was actually equivalent to the logical
criterion and could be considered as a correct and complete implementation
specialized for the algebra of finite trees Term.

The main contribution of this article consists in a strict generalization of the
logical criterion defined in [14] which allows us to reconstruct the syntactic ap-
proaches described in [11] and [13]. We emphasize the improvement with respect
to [14] in Sect. 5 (see Example 21).

The paper is organized as follows. First, in Sect. 2, we introduce some prelim-
inary definitions. Then, in Sect. 3, we recall, using CLP terms, the subsumption
test to detect looping queries. In Sect. 4, we present our generalized criterion for
detecting looping queries, whilst in Sect. 5 we consider the connections with the
results of [14].

2

2 Preliminaries

For any non-negative integer n, [1, n] denotes the set {1, . . . , n}. If n = 0, then
[1, n] = ∅.

2.1 First Order Formulas

Throughout this paper, we consider a fixed, infinite and denumerable set of
variables V.

A signature defines a set of function and predicate symbols and associates
an arity with each symbol. If φ is a first order formula on a signature Σ and
W := {X1, . . . , Xn} is a set of variables, then ∃W φ (resp. ∀W φ) denotes the
formula ∃X1 . . .∃Xnφ (resp. ∀X1 . . .∀Xnφ). We let ∃φ (resp. ∀φ) denote the
existential (resp. universal) closure of φ. A Σ-structure D is an interpretation of
the symbols in the signature Σ. It is a pair (D, [·]) where D is a set called the
domain of D and [·] maps:

– each function symbol f of arity n in Σ to a function [f] : Dn → D,
– each predicate symbol p of arity n in Σ to a boolean function [p] : Dn →
{0, 1}.

A D-valuation (or simply a valuation if the Σ-structure D is understood) is a
mapping v : V → D. Every D-valuation v extends (by morphism) to terms:

– v(f(t1, . . . , tn)) := [f](v(t1), . . . , v(tn)) if f(t1, . . . , tn) is a term.

A D-valuation v induces a valuation [·]v of formulas to {0, 1}:

– [p(t1, . . . , tn)]v := [p](v(t1), . . . , v(tn)) if p(t1, . . . , tn) is an atomic proposi-
tion,

– if φ1 and φ2 are formulas and ◦ ∈ {∧,∨,→,↔}, [¬φ1]v and [φ1 ◦φ2]v are
deduced from [φ1]v, [φ2]v and the truth table of ¬ and ◦,

– if X is a variable and φ is a formula, [∃Xφ]v = 1 if and only if there exists
a valuation v′ such that [φ]v′ = 1 and for each variable Y distinct from X,
v′(Y) = v(Y),

– if X is a variable and φ is a formula, [∀Xφ]v = 1 if and only if [φ]v′ = 1 for
every valuation v′ such that for each variable Y distinct from X, v′(Y) =
v(Y).

Given a formula φ, we write D |=v φ if [φ]v = 1 and D 6|=v φ if [φ]v = 0. We
write D |= φ if and only if for every D-valuation v, we have D |=v φ. Notice
that D |= ∀φ if and only if D |= φ, that D |= ∃φ if and only if there exists a
D-valuation v such that D |=v φ, and that D |= ¬∃φ if and only if D |= ¬φ.

Given a Σ-structure D, we say that a Σ-formula φ is satisfiable (resp. un-
satisfiable) in D if D |= ∃φ (resp. D |= ¬φ). We say that D is a model of a set S
of Σ-formulas if for each element φ of S we have D |= φ. Given two sets S and
T of Σ-formulas, we say that S semantically implies T , written S |= T , if every
model of S is also a model of T .

3

2.2 Sequences

Sequences of distinct variables are denoted by X̃, Ỹ , Z̃, Ũ , . . . and sequences
of (not necessarily distinct) terms are denoted by s̃, t̃, . . . Given two sequences
of n terms s̃ := (s1, . . . , sn) and t̃ := (t1, . . . , tn), we write s̃ = t̃ either to
denote the formula s1 = t1 ∧ · · · ∧ sn = tn or as a shorthand for “s1 = t1
and . . . and sn = tn”. Moreover, given a valuation v, we write v(s̃) to denote
the sequence (v(s1), . . . , v(sn)). Finally, given a sequence X̃ := (X1, . . . , Xn) of
distinct variables and given a formula φ, we write ∃X̃φ (resp. ∀X̃φ) to denote
the formula ∃X1 . . .∃Xnφ (resp ∀X1 . . .∀Xnφ).

2.3 Constraint Domains

We recall some basic definitions about CLP, see [10] for more details. In this pa-
per, we consider a constraint logic programming language CLP(C) based on the
constraint domain C := 〈ΣC ,LC ,DC , TC , solvC〉. The constraint domain signature
ΣC is a pair 〈FC ,ΠC〉 where FC is a set of function symbols and ΠC is a set of
predicate symbols. The domain of computation DC is a ΣC-structure (DC , [·]C)
that is the intended interpretation of the constraints. We assume the following:

– C is ideal,
– the predicate symbol = is in ΣC and is interpreted as identity in DC ,
– DC and TC correspond on LC ,
– TC is satisfaction complete with respect to LC ,
– the theory and the solver agree in the sense that for every c ∈ LC , solvC(c) =

true if and only if TC |= ∃c. Consequently, as DC and TC correspond on LC ,
we have, for every c ∈ LC , solvC(c) = true if and only if DC |= ∃c.

Example 1 (Rlin). The constraint domain Rlin has <, ≤, =, ≥ and > as pred-
icate symbols, +, −, ∗, / as function symbols and sequences of digits (possibly
with a decimal point) as constant symbols. Only linear constraints are admitted.
The domain of computation is the structure with reals as domain and where the
predicate symbols and the function symbols are interpreted as the usual relations
and functions over reals. The theory TRlin

is the theory of real closed fields [17].
A constraint solver for Rlin always returning either true or false is described
in [15].

Example 2 (Logic Programming). The constraint domain Term has = as pred-
icate symbol and strings of alphanumeric characters as function symbols. The
domain of computation of Term is the set of finite trees (or, equivalently, of finite
terms), Tree, while the theory TTerm is Clark’s equality theory [2]. The interpre-
tation of a constant is a tree with a single node labeled with the constant. The
interpretation of an n-ary function symbol f is the function fTree : Treen → Tree
mapping the trees T1, . . . , Tn to a new tree with root labeled with f and with
T1, . . . , Tn as child nodes. A constraint solver always returning either true or
false is provided by the unification algorithm. CLP(Term) coincides then with
logic programming.

4

2.4 Operational Semantics

The signature in which all programs and queries under consideration are in-
cluded is ΣL := 〈FL,ΠL〉 with FL := FC and ΠL := ΠC ∪ Π ′

L where Π ′
L, the

set of predicate symbols that can be defined in programs, is disjoint from ΠC .
We assume that each predicate symbol p in ΠL has a unique arity denoted by
arity(p).

An atom has the form p(t̃) where p ∈ Π ′
L and t̃ is a sequence of arity(p) ΣL-

terms. Throughout this paper, when we write p(t̃), we implicitly assume that t̃
contains arity(p) terms. A CLP(C) program is a finite set of rules. A rule has the
form H ← c�B where H and B are atoms and c is a finite conjunction of primitive
constraints such that DC |= ∃c. A query has the form 〈A | d〉 where A is an atom
and d is a finite conjunction of primitive constraints. Given an atom A := p(t̃),
we write rel(A) to denote the predicate symbol p. Given a query S := 〈A | d〉, we
write rel(S) to denote the predicate symbol rel(A). The set of variables occurring
in some syntactic objects O1, . . . , On is denoted Var(O1, . . . , On).

The examples of this paper make use of the language CLP(Rlin) and the
language CLP(Term). In program and query examples, variables begin with an
upper-case letter, [Head |Tail] denotes a list with head Head and tail Tail , and
[] denotes an empty list.

We consider the following operational semantics given in terms of derivations
from queries to queries. Let 〈p(ũ) | d〉 be a query and r := p(s̃) ← c � q(t̃) be a
rule. Let r′ := p(s̃′)← c′ � q(t̃′) be a variant of r variable disjoint with 〈p(ũ) | d〉
such that solvC(s̃′ = ũ∧c′∧d) = true. Then, 〈p(ũ) | d〉=⇒

r
〈q(t̃′) | s̃′ = ũ ∧ c′ ∧ d〉

is a derivation step of 〈p(ũ) | d〉 with respect to r with r′ as its input rule. We
write S

+=⇒
P

S′ to summarize a finite number (> 0) of derivation steps from S to

S′ where each input rule is a variant of a rule from program P . Let S0 be a query.
A sequence of derivation steps S0 =⇒

r1
S1 =⇒

r2
· · · of maximal length is called a

derivation of P ∪ {S0} if r1, r2, . . . are rules from P and if the standardization
apart condition holds, i.e. each input rule used is variable disjoint from the initial
query S0 and from the input rules used at earlier steps. We say S0 loops with
respect to P if there exists an infinite derivation of P ∪ {S0}.

3 Loop Inference with Constraints

In the logic programming framework, the subsumption test provides a simple
way to infer looping queries: if, in a logic program P , there is a rule p(s̃)← p(t̃)
such that p(t̃) is more general than p(s̃), then the query p(s̃) loops with respect
to P . In this section, we extend this result to the constraint logic programming
framework.

3.1 A “More General Than” Relation

A query can be viewed as a finite description of a possibly infinite set of atoms,
the arguments of which are values from DC .

5

Example 3. Suppose that C = Rlin .

– The query 〈p(2 ∗X) |X ≥ −1〉 describes those atoms p(x) where x is a real
and the term 2 ∗X can be made equal to x while the constraint X ≥ −1 is
satisfied.

– The query 〈q(X, Y) |Y ≤ X + 2〉 describes those atoms q(x, y) where x and
y are reals and X and Y can be made equal to x and y respectively while
the constraint Y ≤ X + 2 is satisfied.

In order to capture this intuition, we introduce the following definition.

Definition 1 (Set Described by a Query). The set of atoms that is described
by a query S := 〈p(t̃) | d〉 is denoted by Set(S) and is defined as: Set(S) =
{p(v(t̃)) | DC |=v d}.

Clearly, Set(〈p(t̃) | d〉) = ∅ if and only if d is unsatisfiable in DC . Moreover,
two variants describe the same set. Notice that the operational semantics we
introduced above can be expressed using sets described by queries:

Lemma 1. Let S be a query and r := H ← c � B be a rule. There exists a
derivation step of S with respect to r if and only if Set(S) ∩ Set(〈H | c〉) 6= ∅.

The “more general than” relation we consider is defined as follows:

Definition 2 (More General). We say that a query S′ is more general than
a query S if Set(S) ⊆ Set(S′).

Example 4.

– In any constraint domain, 〈p(X) | true〉 is more general than any query S
verifying rel(S) = p;

– In the constraint domain Term, the query 〈p(Y) |Y = f(X)〉 is more general
than the query 〈p(Y) |Y = f(f(X))〉;

– In the constraint domain Rlin , the query 〈q(X, Y) |Y ≤ X + 2〉 is more gen-
eral than the query 〈q(X, Y) |Y ≤ X + 1〉.

3.2 Loop Inference

Suppose we have a derivation step S =⇒
r

T where r := H ← c � B. Then, by

Lemma 1, Set(S)∩Set(〈H | c〉) 6= ∅. Hence, if S′ is a query that is more general
than S, as Set(S) ⊆ Set(S′), we have Set(S′)∩Set(〈H | c〉) 6= ∅. So, by Lemma 1,
there exists a query T ′ such that S′ =⇒

r
T ′. The following lifting result says that,

moreover, T ′ is more general than T :

Theorem 1 (Lifting). Consider a derivation step S =⇒
r

T and a query S′ that

is more general than S. Then, there exists a derivation step S′ =⇒
r

T ′ where T ′

is more general than T .

From this theorem, we derive two corollaries that can be used to infer looping
queries just from the text of a CLP(C) program:

6

Corollary 1. Let r := H ← c � B be a rule. If 〈B | c〉 is more general than
〈H | c〉 then 〈H | c〉 loops with respect to {r}.

Corollary 2. Let r := H ← c � B be a rule from a program P . If 〈B | c〉 loops
with respect to P then 〈H | c〉 loops with respect to P .

Example 5. Consider the CLP(Term) rule r:

append([X|Xs],Ys, [X|Zs])← true � append(Xs,Ys,Zs)

We note that the query 〈append(Xs,Ys,Zs) | true〉 is more general than the
query S := 〈append([X|Xs],Ys, [X|Zs]) | true〉. So, by Corollary 1, S loops with
respect to {r}. Therefore, there exists an infinite derivation ξ of {r}∪{S}. Then,
if S′ is a query that is more general than S, by successively applying the Lifting
Theorem 1 to each step of ξ, one can construct an infinite derivation of {r}∪{S′}.
So, S′ also loops with respect to {r}.

4 Loop Inference Using Filters

The condition provided by Corollary 1 is rather weak because it fails at inferring
looping queries in some simple cases. This is illustrated by the following example.

Example 6. Assume C = Rlin . Let

r := p(X, Y)← X ≥ 0 ∧ Y ≤ 10 � p(X + 1, Y + 1) .

We have the infinite derivation:

〈p(X, Y) | c〉 =⇒
r
〈p(X1 + 1, Y1 + 1) | c ∧ c1〉

=⇒
r
〈p(X2 + 1, Y2 + 1) | c ∧ c1 ∧ c2〉

...

where:

c is the constraint X ≥ 0 ∧ Y ≤ 10,
c1 is the constraint X1 = X ∧ Y1 = Y ∧X1 ≥ 0 ∧ Y1 ≤ 10 and
c2 is the constraint X2 = X1 + 1 ∧ Y2 = Y1 + 1 ∧X2 ≥ 0 ∧ Y2 ≤ 10.

But as in r, 〈p(X + 1, Y + 1) | c〉 is not more general than 〈p(X, Y) | c〉, Corol-
lary 1 does not allow to infer that 〈p(X, Y) | c〉 loops with respect to {r}.

In this section, we extend the relation “is more general”. Instead of comparing
atoms in all positions using the “more general” relation, we distinguish some
predicate argument positions for which we just require that a certain property
must hold, while for the other positions we use the “more general” relation as
before. Doing so, we aim at inferring more looping queries.

7

Example 7 (Example 6 continued). Let us consider argument position 1 of pred-
icate symbol p. In the rule r, the argument of p(X, Y) in position 1 is X and the
argument of p(X + 1, Y + 1) in position 1 is X + 1. Notice that the condition
on X in c is X ≥ 0 and that if X ≥ 0 then X + 1 ≥ 0. Hence, let us define the
condition δ as: a query satisfies δ if it has the form 〈p(t1, t2) | d〉 where t1 and
t2 are some terms and {v(t1) | DC |=v d} is included in the set of positive real
numbers. Then, both S := 〈p(X, Y) | c〉 and T := 〈p(X + 1, Y + 1) | c〉 satisfy δ.

So, if we consider a “more general than” relation where we “filter” queries
using δ, as S and T both satisfy δ and as the “piece” 〈p(Y + 1) | c〉 of T is more
general than the “piece” 〈p(Y) | c〉 of S, by an extended version of Corollary 1
we could infer that S loops with respect to {r}.

4.1 Sets of Positions

A basic idea in Example 7 lies in identifying argument positions of predicate
symbols. Below, we introduce a formalism to do so.

Definition 3 (Set of Positions). A set of positions, denoted by τ , is a function
that maps each predicate symbol p ∈ Π ′

L to a subset of [1, arity(p)].

Example 8. If we want to distinguish the first argument position of the predicate
symbol p defined in Example 6, we set τ := 〈p 7→ {1}〉.

Definition 4. Let τ be a set of positions. Then, τ is the set of positions defined
as: for each predicate symbol p ∈ Π ′

L, τ(p) = [1, arity(p)] \ τ(p).

Example 9 (Example 8 continued). We have τ = 〈p 7→ {2}〉.

Using a set of positions τ , one can project syntactic objects:

Definition 5 (Projection). Let τ be a set of positions.

– Let p ∈ Π ′
L be a predicate symbol. The projection of p on τ is the predicate

symbol denoted by pτ . Its arity equals the number of elements of τ(p).
– Let p ∈ Π ′

L be a predicate symbol of arity n and t̃ := (t1, . . . , tn) be a se-
quence of n terms. The projection of t̃ on τ , denoted by t̃τ is the sequence
(ti1 , . . . , tim) where {i1, . . . , im} = τ(p) and i1 ≤ · · · ≤ im.

– Let A := p(t̃) be an atom. The projection of A on τ , denoted by Aτ , is the
atom pτ (t̃τ).

– The projection of a query 〈A | d〉 on τ , denoted by 〈A | d〉τ , is the query
〈Aτ | d〉.

Example 10 (Example 6 and Example 8 continued). The projection of the query
〈p(X, Y) | c〉 on τ is the query 〈pτ (X) | c〉.

8

4.2 Filters

According to the intuitions described in Example 7 above, we define a filter as
follows.

Definition 6 (Filter). A filter, denoted by ∆, is a pair (τ, δ) where τ is a set
of positions and δ is a function that maps each predicate symbol p ∈ Π ′

L to a
query of the form 〈pτ (ũ) | d〉 where DC |= ∃d and ũ is a sequence of arity(pτ)
terms.

Example 11 (Example 6 and Example 7 continued). Let δ be the function defined
as δ := 〈 p 7→ 〈pτ (X) |X ≥ 0〉 〉. Then, ∆ := (τ, δ) is a filter.

Example 12. Suppose that C = Term. Let p ∈ Π ′
L be a predicate symbol whose

arity is 1. Let τ := 〈p 7→ {1}〉 and δ := 〈 p 7→ 〈pτ (f(X)) | true〉 〉. Then,
∆ := (τ, δ) is a filter.

The function δ is used to “filter” queries as indicated by the next definition.

Definition 7 (Satisfies). Let ∆ := (τ, δ) be a filter and S be a query. Let
p := rel(S). We say that S satisfies ∆ if Set(Sτ) ⊆ Set(δ(p)).

Now we come to the extension of the relation “more general than”. Intuitively,
〈p(t̃′) | d′〉 is ∆-more general than 〈p(t̃) | d〉 if the “more general than” relation
holds for the elements of t̃ and t̃′ whose position is not in τ while the elements
of t̃′ whose position is in τ satisfy δ. More formally:

Definition 8 (∆-More General). Let ∆ := (τ, δ) be a filter and S and S′ be
two queries. We say that S′ is ∆-more general than S if S′

τ is more general than
Sτ and S′ satisfies ∆.

Example 13.

– In the context of Example 11, 〈p(X + 1, Y + 1) |X ≥ 0 ∧ Y ≤ 10〉 is ∆-more
general than 〈p(X, Y) |X ≥ 0 ∧ Y ≤ 10〉.

– In the context of Example 12, 〈p(f(f(X))) | true〉 is ∆-more general than
〈p(f(X)) | true〉.

Notice that for any filter ∆ := (τ, δ) and any query S, we have that Sτ is more
general than itself (because the “more general than” relation is reflexive), but
S may not satisfy ∆. Hence, the “∆-more general than” relation is not always
reflexive.

Example 14 (Example 12 continued). S := 〈p(g(X)) | true〉 is not ∆-more gen-
eral than itself because, as Set(Sτ) = {pτ (g(t)) | t is a term} and Set(δ(p)) =
{pτ (f(t)) | t is a term}, we have Set(Sτ) ∩ Set(δ(p)) = ∅. Hence, S does not
satisfy ∆.

9

The fact that reflexivity does not always hold is an expected property. Indeed,
suppose that a filter ∆ := (τ, δ) induces a “∆-more general than” relation that
is reflexive. Then for any queries S and S′, we have that S′ is ∆-more general
than S if and only if S′

τ is more general than Sτ (because, as S′ is ∆-more
general than itself, S′ necessarily satisfies ∆). Hence, δ is useless in the sense
that it “does not filter anything”. Filters equipped with such a δ are studied in
Sect. 5 and were introduced in [14] where for any predicate symbol p, δ(p) is
〈pτ (X̃) | true〉. In this paper, we aim at generalizing the approach of [14]. Hence,
we also consider functions δ that really filter queries.

4.3 Derivation Neutral Filters: an Operational Definition

In the sequel of this paper, we focus on “derivation neutral” filters. The name
“derivation neutral” stems from the fact that if, in a derivation of a query S, we
replace S by S′ that satisfies the filter, then we get a “similar” derivation.

Definition 9 (Derivation Neutral). Let r be a rule and ∆ be a filter. We say
that ∆ is DN for r if for each derivation step S =⇒

r
T and each query S′ that

is ∆-more general than S, there exists a derivation step S′ =⇒
r

T ′ where T ′ is
∆-more general than T . This definition is extended to programs: ∆ is DN for P
if it is DN for each rule of P .

Derivation neutral filters lead to the following extended version of Corollary 1
(to get Corollary 1, take ∆ := (τ, δ) such that τ(p) = ∅ for any p).

Proposition 1. Let r := H ← c � B be a rule. Let ∆ be a filter that is DN for
r. If 〈B | c〉 is ∆-more general than 〈H | c〉 then 〈H | c〉 loops with respect to {r}.

Example 15 (Example 7 continued). Suppose that ∆ is DN for r. Now we can
deduce that the query 〈p(X, Y) |X ≥ 0 ∧ Y ≤ 10〉 loops with respect to r because
the query 〈p(X + 1, Y + 1) |X ≥ 0 ∧ Y ≤ 10〉 is ∆-more general than the query
〈p(X, Y) |X ≥ 0 ∧ Y ≤ 10〉.

Computing a neutral filter from the text of a program is not that easy if we
use the definition above. The next subsections present a logical and a syntactic
characterization that can be used to compute a filter that is DN for a given
program.

4.4 A Logical Characterization of Derivation Neutral Filters

From now on, we suppose that, without loss of generality, a rule has the form
p(X̃) ← c � q(Ỹ) where X̃ and Ỹ are disjoint sequences of distinct variables.
Hence, c is the conjunction of all the constraints, including unifications. We
distinguish the following set of variables that appear inside such a rule.

Definition 10 (Local Variables). Let r := p(X̃)← c�q(Ỹ) be a rule. The set
of local variables of r is denoted by local var(r) and is defined as: local var(r) :=
Var(c) \ (Var(X̃) ∪Var(Ỹ)).

10

In this section, we aim at characterizing DN filters in a logical way. To this
end, we define:

Definition 11 (sat). Let S := 〈p(ũ) | d〉 be a query and s̃ be a sequence of
arity(p) terms. Then, sat(s̃, S) denotes a formula of the form ∃Var(S′)(s̃ = ũ′∧d′)
where S′ := 〈p(ũ′) | d′〉 is any variant of S variable disjoint with s̃.

Clearly, the satisfiability of sat(s̃, S) does not depend on the choice of the variant
of S. Now we give a logical definition of derivation neutrality. As we will see be-
low, under certain circumstances, this definition is equivalent to the operational
one we gave above.

Definition 12 (Logical Derivation Neutral). We say that a filter ∆ :=
(τ, δ) is DNlog for a rule r := p(X̃)← c � q(Ỹ) if

DC |= c→ ∀X̃τ

[
sat(X̃τ , δ(p))→ ∃Y [sat(Ỹτ , δ(q)) ∧ c]

]
where Y := Var(Ỹτ) ∪ local var(r).

Intuitively, the formula in Definition 12 has the following meaning. If one holds
a solution v for constraint c, then, changing the value given to the variables of X̃
distinguished by τ to some value satisfying δ(p), there exists a value for the local
variables and the variables of Ỹ distinguished by τ such that c is still satisfied.

Example 16. Suppose that C = Rlin . Consider the rule r := p(X1, X2) ← c �
p(Y1, Y2) where c is the constraint X1 = A+B∧A ≥ 0∧B ≥ 0∧X2 ≤ 10∧Y1 =
X1 + 1 ∧ Y2 = X2 + 1. Then, the local variables of r are A and B. Any filter
∆ := (τ, δ) where τ(p) = {1} and δ(p) = 〈pτ (X) |X ≥ 0〉 is DNlog for r. Indeed,
X̃τ = X1, Y = {Y1, A, B} and sat(t, δ(p)) is true if and only if t ≥ 0. So the
formula of Definition 12 turns into DC |= c → ∀X1

[
X1 ≥ 0 → ∃{Y1,A,B}[Y1 ≥

0 ∧ c]
]
, which is true.

Example 17. Suppose that C = Term. Consider the rule r := p(X) ← c � p(Y)
where c is the constraint X = f(A)∧Y = f(f(A)). Then, the only local variable
of r is A. Any filter ∆ := (τ, δ) where τ(p) = {1} and δ(p) = 〈pτ (X) |X = f(A)〉
is DNlog for r. Indeed, X̃τ = X, Y = {Y, A} and sat(t, δ(p)) is true if and only
if t has the form f(· · ·). So the formula of Definition 12 turns into

DC |= c→ ∀X
[

X has the form f(· · ·)
→ ∃{Y,A}[Y has the form f(· · ·) ∧ c]

]
,

which is true.

The logical definition of derivation neutrality implies the operational one:

Proposition 2. Let r be a rule and ∆ be a filter. If ∆ is DNlog for r then ∆ is
DN for r.

The reverse implication does not always hold. But when considering a special
case of the (SC1) condition of solution compactness given in [9], we get:

11

Theorem 2. Let r be a rule and ∆ be a filter. Assume C enjoys the following
property: for each α ∈ DC, there exists a ground ΣC-term a such that [a] = α.
Then, ∆ is DN for r if and only if ∆ is DNlog for r.

Proof (Sketch). We show how the (SC1) condition is used to get this result.
By Proposition 2, we just have to establish that DN⇒ DNlog. Let (τ, δ) := ∆

and p(X̃) ← c � q(Ỹ) := r. Suppose that ∆ is DN for r. We have to prove that
then, the formula of Definition 12 holds. Assume that v is a valuation such that

DC |=v c . (1)

By property of C, we can consider the query S := 〈p(ã) | true〉 where ã is a
sequence of ground terms such that [ã] = v(X̃). As r and S are variable disjoint,
we have S =⇒

r
T where T is the query 〈q(Ỹ) | c ∧ X̃ = ã〉.

As we assumed (1), we have to establish that DC |=v ∀X̃τ

[
sat(X̃τ , δ(p)) →

∃Y [sat(Ỹτ , δ(q)) ∧ c]
]

holds. Assume v1 is a valuation such that

DC |=v1 sat(X̃τ , δ(p)) (2)

and for each variable X 6∈ X̃τ , v(X) = v1(X). By property of C, we can consider
the query S′ := 〈p(b̃) | true〉 where b̃τ = ãτ and b̃τ is a sequence of ground terms
such that [b̃τ] = v1(X̃τ).

It can be noticed that S′ is ∆-more general than S. As ∆ is DN for r,
there exists a query T ′ that is ∆-more general than T and such that S′ =⇒

r
T ′.

Necessarily, T ′ = 〈q(Ỹ ′) | c′ ∧ X̃ ′ = b̃〉 where p(X̃ ′) ← c � q(Ỹ ′) is a variant of r
variable disjoint with S′.

As we assumed (2), we now have to establish that DC |=v1 ∃Y [sat(Ỹτ , δ(q))∧c]
holds. This is done using the fact that T ′ is ∆-more general than T and that
Set(T ′) = Set(〈q(Ỹ) | c ∧ X̃ = b̃〉). ut

Example 18. In the constraint domain Term, DN is equivalent to DNlog.

4.5 A Syntactic Characterization of Derivation Neutral Filters

In [11], we gave, in the scope of logic programming, a syntactic definition of
neutral arguments. Now we extend this syntactic criterion to the more general
framework of constraint logic programming. First, we need rules in flat form:

Definition 13 (Flat Rule). A rule r := p(X̃) ← c � q(Ỹ) is said to be flat if
c has the form (X̃ = s̃ ∧ Ỹ = t̃) where s̃ is a sequence of arity(p) terms and t̃ is
a sequence of arity(q) terms such that Var(s̃, t̃) ⊆ local var(r).

Notice that there are some rules r := p(X̃)← c � q(Ỹ) for which there exists no
“equivalent” rule in flat form. More precisely, there exists no rule r′ := p(X̃)←
c′ � q(Ỹ) verifying DC |= ∃local var(r)c ↔ ∃local var(r′)c

′ (take for instance r :=
p(X)← X > 0 � p(Y) in Rlin .)

Syntactic derivation neutrality is defined that way:

12

Definition 14 (Syntactic Derivation Neutral). Let ∆ := (τ, δ) be a filter
and r := p(X̃)← (X̃ = s̃∧ Ỹ = t̃)� q(Ỹ) be a flat rule. We say that ∆ is DNsyn
for r if

– (DNsyn1) 〈p(s̃) | true〉τ is more general than δ(p),
– (DNsyn2) δ(q) is more general than 〈q(t̃) | true〉τ ,
– (DNsyn3) Var(s̃τ) ∩Var(s̃τ) = ∅,
– (DNsyn4) Var(s̃τ) ∩Var(t̃τ) = ∅.

Example 19. In Example 17, the rule r is flat. Moreover, the filter ∆ is DNsyn
for r.

A connection between DN, DNsyn and DNlog is as follows:

Proposition 3. Let r be a flat rule and ∆ be a filter. If ∆ is DNsyn for r then
∆ is DNlog for r hence (by Proposition 2) ∆ is DN for r. If ∆ is DNlog for r
then (DNsyn1) holds.

Notice that a DNlog filter is not necessarily DNsyn because one of (DNsyn2–
4) may not hold:

Example 20. In Rlin , consider the flat rule r:

p(X1, X2)← X1 = A ∧ Y1 = A ∧X2 = A−A ∧ Y2 = A−A � p(Y1, Y2) .

Let ∆ := (τ, δ) where τ(p) = {1} and δ(p) = 〈pτ (X) |X ≥ 0〉. Then, ∆ is DNlog
for r, but none of (DNsyn2–4) hold.

However, in the special case of logic programming, we have:

Proposition 4 (Logic Programming). Suppose that C = Term. Let r be a
flat rule and ∆ be filter. If ∆ is DNlog for r then (DNsyn3) and (DNsyn4)
hold.

5 Connections with Earlier Results

The results of [14] can be easily obtained within the framework presented above.
It suffices to consider the following special kind of filter:

Definition 15 (Open Filter). We say that ∆ := (τ, δ) is an open filter if for
all p ∈ Π ′

L, δ(p) has the form 〈pτ (Z̃) | true〉 where Z̃ is a sequence of distinct
variables.

In an open filter, the function δ “does not filter anything”:

Lemma 2. Let ∆ := (τ, δ) be an open filter. Then, a query S′ is ∆-more general
than a query S if and only if S′

τ is more general than Sτ .

Consequently, an open filter is uniquely determined by its set of positions. When
reconsidering the definitions and results of the preceding section within such a
context, we exactly get what we presented in [14]. In particular, Definition 12
can be rephrased as:

13

Definition 16 (Logical Derivation Neutral). A set of positions τ is DNlog
for a rule r := p(X̃) ← c � q(Ỹ) if DC |= c → ∀X̃τ

∃Yc where Y := Var(Ỹτ) ∪
local var(r).

As stated in Sect 1, the framework presented in this paper is a strict gener-
alization of that of [14]. This is illustrated by the following example.

Example 21 (Example 17 continued). First, notice that, as 〈p(Y) | c〉 is not more
general than 〈p(X) | c〉, Corollary 1 does not allow to infer that 〈p(X) | c〉 loops
with respect to {r}.

Let us try to use Definition 16 to prove that the argument of p is “irrelevant”.
We let τ(p) = {1}. Hence, X̃τ = X, Ỹτ = Y and local var(r) = {A}. Let us
consider a valuation v such that v(X) = f(a), v(Y) = f(f(a)) and v(A) = a.
So, we have DC |=v c. But we do not have DC |=v ∀X̃τ

∃Yc. For instance, if
we consider v1 such that v1(X) = a and v1(Z) = v(Z) for each variable Z
distinct from X, we do not have DC |=v1 ∃Yc as the subformula X = f(A)
of c cannot hold, whatever value is assign to A. Consequently, we do not have
DC |=v c → ∀X̃τ

∃Yc, so τ is not DNlog for r. As C = Term, by Theorem 2 τ is
not DN for r. Therefore, using open filters with Proposition 1 we are not able
to prove that 〈p(X) | c〉 loops with respect to {r}.

However, in Example 17, we noticed that any filter ∆ := (τ, δ) where τ(p) =
{1} and δ(p) = 〈pτ (X) |X = f(A)〉 is DNlog, hence DN, for r. Moreover, for such
a filter, 〈p(Y) | c〉 is ∆-more general than 〈p(X) | c〉. Consequently, by Proposi-
tion 1, 〈p(X) | c〉 loops with respect to {r}.

6 Conclusion

We have presented a criterion to detect non-terminating atomic queries with
respect to a binary CLP clause. This criterion generalizes our previous papers
in the CLP settings and allows us to reconstruct the work we did in the LP
framework. However, when switching from LP to CLP, we lose the ability to
compute, given a binary clause, a useful filter. We plan to work on this and try to
define some conditions on the constraint domain which enable the computation
of such filters. Moreover, as pointed out by an anonymous referee, DNsyn and
DNlog seem to be independent notions which we proved to coincide only for open
filters with the specific constraint domain Term. In Theorem 2 we investigate
the relationship between DNlog and DN while Proposition 3 and Proposition 4
essentially establish some connections between DNsyn and DNlog. The study of
relationship between DNsyn and DN is still missing and we intend to work on
this shortly.

References

1. R. N. Bol, K. R. Apt, and J. W. Klop. An analysis of loop checking mechanisms
for logic programs. Theoretical Computer Science, 86:35–79, 1991.

14

2. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293–322. Plenum Press, New York, 1978.

3. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

4. D. De Schreye, M. Bruynooghe, and K. Verschaetse. On the existence of non-
terminating queries for a restricted class of Prolog-clauses. Artificial Intelligence,
41:237–248, 1989.

5. D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

6. D. De Schreye, K. Verschaetse, and M. Bruynooghe. A practical technique for
detecting non-terminating queries for a restricted class of Horn clauses, using di-
rected, weighted graphs. In Proc. of ICLP’90, pages 649–663. The MIT Press,
1990.

7. J. Fischer. Termination analysis for Mercury using convex constraints. Master’s
thesis, The University of Melbourne, Department of Computer Science and Soft-
ware Engineering, 2002.

8. M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the
analysis of logic programs. In Proceedings of the ACM Symposium on applied
computing, pages 394–399. ACM Press, 1994.

9. J. Jaffar and J. L. Lassez. Constraint logic programming. In Proc. of the ACM
Symposium on Principles of Programming Languages, pages 111–119. ACM Press,
1987.

10. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint
logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

11. F. Mesnard, E. Payet, and U. Neumerkel. Detecting optimal termination condi-
tions of logic programs. In M. Hermenegildo and G. Puebla, editors, Proc. of the
9th International Symposium on Static Analysis, volume 2477 of Lecture Notes in
Computer Science, pages 509–525. Springer-Verlag, Berlin, 2002.

12. F. Mesnard and S. Ruggieri. On proving left termination of constraint logic pro-
grams. ACM Transactions on Computational Logic, pages 207–259, 2003.

13. E. Payet and F. Mesnard. Non-termination inference of logic pro-
grams. ACM Transactions on Programming Languages and Sys-
tems. Accepted for publication. Preliminary version available at
http://www2.univ-reunion.fr/~gcc/papers.htm.

14. E. Payet and F. Mesnard. Non-termination inference for constraint logic pro-
grams. In Roberto Giacobazzi, editor, Proc. of the 11th International Symposium
on Static Analysis, volume 3148 of Lecture Notes in Computer Science, pages 377–
392. Springer-Verlag, Berlin, 2004.

15. P. Refalo and P. Van Hentenryck. CLP (Rlin) revised. In M. Maher, editor, Proc. of
the Joint International Conf. and Symposium on Logic Programming, pages 22–36.
The MIT Press, 1996.

16. Y-D. Shen, L-Y. Yuan, and J-H. You. Loops checks for logic programs with func-
tions. Theoretical Computer Science, 266(1-2):441–461, 2001.

17. J. Shoenfield. Mathematical Logic. Addison Wesley, Reading, 1967.
18. C. Speirs, Z. Somogyi, and H. Søndergaard. Termination analysis for Mercury. In

P. van Hentenrick, editor, Proc. of the 1997 Intl. Symp. on Static Analysis, volume
1302 of LNCS. Springer-Verlag, 1997.

15

