
HAL Id: hal-01915746
https://hal.univ-reunion.fr/hal-01915746

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting Optimal Termination Conditions of Logic
Programs

Frédéric Mesnard, Etienne Payet, Ulrich Neumerkel

To cite this version:
Frédéric Mesnard, Etienne Payet, Ulrich Neumerkel. Detecting Optimal Termination Conditions of
Logic Programs. 9th International Static Analysis Symposium (SAS 2002), Sep 2002, Madrid, Spain.
pp.509-525. �hal-01915746�

https://hal.univ-reunion.fr/hal-01915746
https://hal.archives-ouvertes.fr

Detecting Optimal Termination Conditions of
Logic Programs

Fred Mesnard1, Etienne Payet1, and Ulrich Neumerkel2

1 Iremia - Université de La Réunion, France
{fred,epayet}@univ-reunion.fr

2 Institut für Computersprachen - T. U. Wien, Austria
ulrich@mips.complang.tuwien.ac.at

Abstract. In this paper, we begin with an approach to non-termination
inference of logic programs. Our framework relies on an extension of the
Lifting Theorem, where some specific argument positions can be instan-
tiated while others are generalized. Atomic left looping queries are gen-
erated bottom-up from selected subsets of the binary unfoldings of the
program of interest. Then non-termination inference is tailored to at-
tempt proofs of optimality of left termination conditions computed by a
termination inference tool. For each class of atomic queries not covered
by a termination condition, the aim is to ensure the existence of one query
from this class which leads to an infinite search tree. An experimental
evaluation is reported. When termination and non-termination analy-
sis produce complementary results for a logic procedure, they induce a
characterization of the operational behavior of the logic procedure with
respect to the left most selection rule and the language used to describe
sets of atomic queries.

1 Introduction

Since the work of N. Lindenstrauss on TermiLog [16, 10], several auto-
matic tools for termination checking (e.g. TALP [4]) or termination infer-
ence (e.g. cTI [18, 19] or TerminWeb [13]) are now available to the logic
programmer. One of them is even included in the Mercury compiler [24].
As the halting problem is undecidable for logic programs, such analyzers
compute sufficient termination conditions implying left termination. In
most works, only universal left termination is considered and termination
conditions rely on a language for describing classes of atomic queries. The
search tree associated to any (concrete) query satisfying a termination
condition is guaranteed to be finite. When terms are abstracted using
the term-size norm, then termination conditions are (disjunctions of)
conjunctions of conditions of the form “the i-th argument is ground”.
Let us call this language Lterm.
In this report, we present the first approach to non-termination inference
tailored to attempt proofs of optimality of termination conditions. The
aim is to ensure the existence, for each class of atomic queries not covered
by a termination condition, of one query from this class which leads to
an infinite search tree. The main contributions of this work are:

– A generalization of the Lifting Theorem from the Logic Program-
ming theory. The Lifting Theorem, at the heart of the completeness
proof of SLD-resolution (see e.g. [3]), states that a SLD-derivation
of Qθ can be lifted to a SLD-derivation ξ of Q. We prove that some
specific arguments of Q, called “derivation neutral”, can be instan-
tiated as well, while retaining the existence of a lifted derivation ξ′,
where the length of ξ and ξ′ are identical.

– A new application of binary unfoldings to left loop inference. [12]
introduced the binary unfoldings of a logic program P as a goal in-
dependent technique to transform P into a possibly infinite set of
binary clauses, which preserves the termination property [7] while
abstracting the standard operational semantics associated to SLD-
resolution. We present an algorithm to infer left looping classes of
atomic goals, where such classes are computed bottom-up from se-
lected subsets of the binary unfoldings of the analyzed program.

– An algorithm which, when combined with termination inference [17],
may detect optimal left termination conditions expressed in Lterm

for logic programs.

We organize the paper as follows: Section 2 presents the notations. Then
we define in Section 3 what we call an optimal termination condition. In
Section 4 we propose an extension of the Lifting Theorem. We concen-
trate on non-termination inference in Section 5 and optimality proofs of
termination conditions in Section 6.

2 Preliminaries

2.1 Logic Programming

We try to strictly adhere to the notations, definitions, and results pre-
sented in [1].
N denotes the set of non-negative integers and for any n ∈ N , [1, n]
denotes the set {1, . . . , n}. If n = 0 then [1, n] = ∅.
Let L be a language of programs. We assume that L contains an infinite
number of constant symbols including void. The set of relation symbols
of L is Π, and we assume that each relation symbol p has an unique
arity, denoted arity(p). TUL (resp. TBL) denotes the set of all (ground
and non ground) terms of L (resp. atoms of L). A query (or goal) A is
a finite sequence of atoms A1, . . . , An (where n ≥ 0). Let t be a term.
Then V ar(t) denotes the set of variables occurring in t.
A logic program is a finite set of definite clauses. In program examples, we
use the ISO-Prolog syntax. Let P be a logic program. Then ΠP denotes
the set of relation symbols appearing in P . In this paper, we only focus on
universal left termination. Consider a non-empty query A1, A2, . . . , An

and a clause c. Let H ← B be a variant of c variable disjoint3 with
A1, A2, . . . , An and assume that A1 and H unify. Let θ be an mgu of A1

3 More generally, a variant c′ of c satisfying the standardization apart condition: c′

has to be variable disjoint from the initial query, the substitutions and the clauses
used so far in the computation.

and H. Then A1, A2, . . . , An
θ

=⇒
c

(B, A2, . . . , An)θ is a left derivation step

with H ← B as its input clause. If the substitution θ or the clause c is

irrelevant, we drop a reference to it. We write Q
+

=⇒
P

Q′ (resp. Q
∗

=⇒
P

Q′)

to summarize a finite number (> 0) (resp. ≥ 0) of left derivation steps
from Q to Q′, where each input clause is a variant of a clause of P .

Let Q be a query. A left derivation of {Q} ∪P is a maximal sequence of
left derivation steps starting from the query Q, where each input clause
is a variant of a clause of P . A finite left derivation may end up either
with the empty query (then it is a successful left derivation) or with
a non-empty query (then it is a failed left derivation). We say Q left
terminates (resp. left loops) with respect to P if every left derivation of
{Q}∪P is finite (resp. there exists an infinite left derivation of {Q}∪P).

We recall that for logic programs, left termination is instantiation-closed:
if Q left terminates with respect to P , then Qθ left terminates with
respect to P ′ for any substitution θ and any P ′ ⊆ P . Similarly, left
looping is generalization-closed: if there exists θ such that Qθ left loops
with respect to P ′, then Q left loops with respect to any P ⊇ P ′.

2.2 The binary unfoldings of a logic program

Let us present the main ideas about the binary unfoldings [12] of a logic
program, borrowed from [7]. This technique transforms a logic program
P (without any query of interest) into a possibly infinite set of binary
clauses. Intuitively, each generated binary clause H ← B (where B is
either an atom or the atom true which denotes the empty query) specifies
that, with respect to the original program P , a call to H (or any of its
instances) necessary leads to a call to B (or its corresponding instance).

More precisely, let G be an atomic query. Then A is a call in a left deriva-

tion of {G} ∪ P if G
+

=⇒
P

A,B. We denote by callsP (G) the set of calls

which occur in the left derivations of {G} ∪ P . The specialization of the
goal independent semantics for call patterns for the left-to-right selection
rule is given as the fixpoint of an operator T β

P over the domain of binary
clauses, viewed modulo renaming. In the definition below, id denotes the
set of all binary clauses of the form p(x1, . . . , xn) ← p(x1, . . . , xn) for
any p ∈ ΠP , where arity(p) = n.

T β
P (X) = {(H ← B)θ | c := H ← B1, . . . , Bm ∈ P, i ∈ [1, m],

〈Hj ← true〉i−1
j=1 ∈ X renamed apart from c,

Hi ← B ∈ X ∪ id renamed apart from c,

i < m⇒ B 6= true

θ = mgu(〈B1, . . . , Bi〉, 〈H1, . . . , Hi〉)}

We define its powers as usual. It can be shown that the least fixpoint of
this monotonic operator always exists and we set bin unf (P) := lfp(T β

P).
Then the calls that occur in the left derivations of {G} ∪ P can be
characterized as follows: callsP (G) = {Bθ|H ← B ∈ bin unf (P), θ =
mgu(G, H)}. This last property was one of the main initial motivations

of the proposed abstract semantics, enabling logic programs optimiza-
tions. Similarly, bin unf (P) gives a goal independent representation of
the success patterns of P .
But we can extract more information from the binary unfoldings of a pro-
gram P : universal left termination of an atomic goal G with respect to
P is identical to universal termination of G with respect to bin unf (P).
Note that the selection rule is irrelevant for a binary program and an
atomic query, as each subsequent query has at most one atom. The fol-
lowing result lies at the heart of Codish’s approach to termination [7]:

Theorem 1 (Codish and Taboch, 99). Let P be a program and G an
atomic goal. Then G left loops with respect to P iff G loops with respect
to bin unf (P).

Notice that bin unf(P) is a possibly infinite set of binary clauses. For
this reason, in the algorithms of sections 5 and 6, we compute only the
first max iterations of T β

P where max is a parameter of the analysis. As
an immediate consequence of Theorem 1 frequently used in our proofs,
assume that we detect that G loops with respect to a subset of the binary
clauses of T β

P ↑ i, with i ∈ N . Then G loops with respect to bin unf(P)
hence G left loops with respect to P .

Example 1. Consider the following program P :

p(X,Z) :- p(Y,Z),q(X,Y). p(X,X). q(a,b).

The binary unfoldings of P are:

T β
P ′ ↑ 0 = ∅

T β
P ′ ↑ 1 = {p(x, z)← p(y, z), p(x, x)← true, q(a, b)← true} ∪ T β

P ′ ↑ 0

T β
P ′ ↑ 2 = {p(a, b)← true, p(x, y)← q(x, y), p(x, y)← q(z, y)} ∪ T β

P ′ ↑ 1

T β
P ′ ↑ 3 = {p(x, b)← q(x, a), p(x, b)← q(y, a)} ∪ T β

P ′ ↑ 2

T β
P ′ ↑ 4 = T β

P ′ ↑ 3 = bin unf (P ′)

The mere existence of the clause p(x, z)← p(y, z) ∈ T β
P ↑ 1 implies that

{p(x, b)} ∪ {p(x, z)← p(y, z)} loops. Hence {p(x, b)} ∪ P left loops.

3 Optimal termination conditions

Let P be a logic program and p be a relation symbol ∈ ΠP , with
arity(p) = n. First, we describe the language Lterm presented in Sec-
tion 1 for abstracting sets of atomic queries:

Definition 1 (Mode). A mode mp for p is a subset of [1, n], and de-
notes the following set of atomic goals: [mp] = {p(t1, . . . , tn) ∈ TBL| ∀i ∈
mp V ar(ti) = ∅}. The set of all modes for p, i.e. 2[1,n], is denoted
modes(p).

Note that if mp = ∅ then [mp] = {p(t1, . . . , tn) ∈ TBL}. Since a logic
procedure may have multiple uses, we generalize:

Definition 2 (Multi-mode). A multi-mode for p is a set of modes for
p, and denotes the following set of atomic queries: [Mp] = ∪m∈Mp [m].

Note that if Mp = ∅, then [Mp] = ∅. Now we can define what we mean
by termination and looping condition:

Definition 3 (Terminating mode, termination condition). A ter-
minating mode mp for p is a mode for p such that any query ∈ [mp] left
terminates with respect to P . A termination condition TCp for p is a set
of terminating modes for p.

Definition 4 (Looping mode, looping condition). A looping mode
mp for p is a mode for p such that there exists a query ∈ [mp] which left
loops with respect to P . A looping condition Lp for p is a set of looping
modes for p.

As left termination is instantiation-closed, any mode that is “below”
(less general than) a terminating mode is also a terminating mode for
p. Similarly, as left looping is generalization-closed, any mode that is
“above” (more general than) a looping mode is also a looping mode for
p. Let us be more precise:

Definition 5 (Less general, more general). Let Mp be a multi-mode
for the relation symbol p. We set:

less general(Mp) = {m ∈ modes(p) | ∃m′ ∈Mp [m] ⊆ [m′]}
more general(Mp) = {m ∈ modes(p) | ∃m′ ∈Mp [m′] ⊆ [m]}

We are now equipped to present a definition of optimality for termination
conditions:

Definition 6 (Optimal termination condition). An optimal ter-
mination condition TCp for p is a termination condition for p such that
there exists a looping condition Lp verifying:

modes(p) = less general(TCp) ∪more general(Lp)

Otherwise stated, given a termination condition TCp, if each mode which
is not less general than a mode of TCp is a looping mode, then TCp

characterizes the operational behavior of p w.r.t. left termination and
our language for defining sets of queries.

Example 2. Consider the program APPEND:

append([],Ys,Ys). % C1

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs). % C2

A well-known termination condition is TCappend = {{1}, {3}}. Indeed,
any query of the form append(t,Ys,Zs) or append(Xs,Ys,t), where t is
a ground term (i.e. such that V ar(t) = ∅), left terminates. We have:

less general(TCappend) = {{1}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

On the other hand, append(Xs,[],Zs) left loops. Hence Lappend = {{2}}
is a looping condition and more general(Lappend) = {∅, {2}}. Since
modes(append) = less general(TCappend) ∪more general(Lappend), we
conclude that the termination condition TCappend is optimal.

We have already presented a tool for inferring termination conditions in
[19]. We now describe the concepts underlying the inference of looping
modes.

4 Neutral arguments for left derivation

A basic idea in the work we present lies in identifying arguments in
clauses which we can disregard when unfolding a query. For instance,
the second argument of the non-unit clause of append in Example 2
is such a candidate. Moreover, a very common programming technique
called accumulator passing (see for instance e.g. [20], p. 21–25), always
produces such patterns.
We first give a technical tool to describe specific arguments inside a pro-
gram and present a generalization of the relation “is an instance of”. In
Subsection 4.2, we formalize the concept of derivation neutrality. Sub-
section 4.3 gives the main result, in the form of a generalized Lifting
Theorem, with an application to loop checking.

4.1 Sets of positions

Definition 7 (Set of positions). A set of positions is a mapping τ
that maps each predicate symbol p ∈ Π to a subset of [1, arity(p)].

Example 3 (Example 2 continued). If we want to disregard the second
argument of the relation symbol append, we set τ := 〈append 7−→ {2}〉.

Definition 8 (τ-instance and τ-generalization). Let τ be a set of
positions. We make use of the following relations:
– The relation =τ :

A =τ B iff

8<:
A = p(s1, . . . , sn)
B = p(t1, . . . , tn)
∀i ∈ [1, n] \ τ(p), ti = si

A1, . . . , An =τ B1, . . . , Bm iff


n = m
∀i ∈ [1, n], Ai =τ Bi

– The relation “is a τ -instance of”: Q is a τ -instance of Q′ iff there
exists a substitution η such that Q =τ Q′η.

– The relation “is a τ -generalization”: Q is a τ -generalization of Q′ iff
Q′ is a τ -instance of Q.

Example 4 (Example 3 continued). Since τ = 〈append 7−→ {2}〉, we do
not care of what happens to the second argument: append([1], 2, [3, 4])
is a τ -instance of append([1|x], f(x), [3|z]), with η = {x/[], z/[4]}. Oth-
erwise stated, append([1|x], f(x), [3|z]) is a τ -generalization of the atom
append([1], 2, [3, 4]).

Finally we give a bunch of obvious definitions:

Definition 9 (Ordering sets of positions).
– τ ⊆ τ ′ if for each relation symbol p in Π, τ(p) ⊆ τ ′(p).
– τ ⊂ τ ′ if τ ⊆ τ ′ and τ 6= τ ′.
– τmin is the set of positions verifying: for each p in Π, τmin(p) = ∅

and τmax is the set of positions verifying: for each p in Π, τmax(p) =
[1, arity(p)].

4.2 DN sets of positions

We give here a precise definition of the kind of arguments we are in-
terested in. The name “derivation neutral” stems from the fact that
τ -arguments do not play any rôle in the derivation process. The next
subsection formalizes this intuition.

Definition 10 (Derivation Neutral). A set of positions τ is DN for
a clause p(s1, . . . , sn) ← Body if:

∀i ∈ τ(p),

8<:
si is a variable
si occurs only once in p(s1, . . . , sn)
for each q(t1, . . . , tm) ∈ Body, [si ∈ V ar(tj)⇒ j ∈ τ(q)] .

A set of positions is DN for a logic program P if it is DN for each clause
of P .

Example 5 (Example 4 continued). The set of positions τ = 〈append 7−→
{2}〉 is DN for C2, the recursive clause defining append, but is not DN
for the program APPEND since Ys appears twice in the unit clause C1.

The preceding notion is closed under renaming:

Proposition 1. Let τ be a set of positions, c be a clause, and c′ be a
variant of c. If τ is DN for c then τ is DN for c′.

4.3 Left derivation and DN sets of positions

Our goal here is to generalize the Lifting Theorem of Logic Programming
(see Sections 3.4 and 3.5 of [1], p. 56–60) in the following sense: while lift-
ing a left derivation, we may safely ignore derivation neutral arguments
which can be instantiated to any terms. As a consequence, loop detection
with DN sets of positions generalizes loop detection with the subsump-
tion test (take τ := 〈p 7−→ ∅〉 for any p). Proofs can be found in the long
version of this paper available at www.univ-reunion.fr/˜gcc/papers.

Theorem 2 (τ-Lifting). Let ξ := Q =⇒
c1

Q1 =⇒
c2

Q2 =⇒
c3
· · · be a left

derivation and Q′ be a τ -generalization of Q. Then there exists a left
derivation

ξ′ : Q′ =⇒
c1

Q′
1 =⇒

c2
Q′

2 =⇒
c3
· · ·

where for each Qi ∈ ξ, the corresponding Q′
i is a τ -generalization of Qi.

Example 6. Let P be a logic program. Let τ be a DN set of positions for
P , with τ(p) = {2}. Assume that there exists a successful left derivation
of {p(s, t)}∪P . Then we hold a similar left derivation when generalizing
s, whatever the second argument is: for any term s′ (including s) which
generalizes s, for any term u ∈ TUL, there exists a left derivation of
{p(s′, u)} ∪ P .

As a consequence of Theorem 2, we get the following result that we use
in the correctness proofs of the algorithms of Section 5.

Corollary 1. If (A
∗

=⇒
P

B1,B1 ; B1
+

=⇒
P

B2,B2) with B1 a τ -instance of

B2, then P ∪ {A} left loops.

Example 7. Let c := p(f(X), Y)← p(X, g(Y)) be a binary clause. Then
τ := 〈p 7→ {2}〉 is a DN set of positions for c. Notice that we have

p(f(X), Y)
θ

=⇒
c

p(X ′, g(Y ′)) where p(f(X ′), Y ′) ← p(X ′, g(Y ′)) is the

input clause and θ = {X/X ′, Y/Y ′}. Applying Corollary 1, as p(f(X), Y)
is a τ -instance of p(X ′, g(Y ′)), we get that p(f(X), Y) left loops w.r.t.
{c}. We point out that we do not get this result from the classical Lifting
Theorem as p(f(X), Y) is not an instance of p(X ′, g(Y ′)).

4.4 DN sets of positions for binary programs

We present below an algorithm for computing DN sets of positions. Its
correctness is discussed in the long version of this paper. We shall show
in the next section that we can incrementally build selected sets of bi-
nary clauses, together with their corresponding DN sets of positions.
So, although the algorithm below can be generalized to arbitrary logic
programs, we only consider binary programs, i.e. finite sets of binary
clauses. Moreover, our interest lies in defining an incremental algorithm
for computing DN sets of positions.

dna
`
BinProg, τ

´
:

in: BinProg: a finite set of binary clauses
τ : a set of positions

out: a DN set of positions τ ′ ⊆ τ

1: τ ′ := τ

2: while dna one step(BinProg,τ ′)6= τ ′ do

3: τ ′ :=dna one step(BinProg,τ ′)

4: return τ ′

dna one step
`
BinProg, τ

´
:

1: τ ′ := τ

2: for each p(s1, . . . , sn)← q(t1, . . . , tn′) ∈ BinProg do

3: E := {i ∈ [1, n] | si is a variable that occurs

only once in p(s1, . . . , sn)}
4: F := ∅
5: for each i ∈ τ ′(p) ∩ E do

6: for each j ∈ [1, n′] \ τ ′(q) do

7: if si ∈ V ar(tj) then F := F ∪ {i}
8: τ ′(p) := (τ ′(p) ∩ E)\F
9: return τ ′

Example 8 (Example 2 continued). dna({C2}, τmax) = 〈append 7→ {2}〉.

5 Inferring looping modes

In this section, we give a set of algorithms that allow to infer looping
modes for the predicate symbols defined in a given logic program.
Let P be a logic program, parametric for the subsections which follow.

5.1 Looping modes from one binary clause

Let p be an n-ary relation symbol and mp be a mode for p. Suppose
that we want to prove that mp is looping. Assume that we hold a binary
clause c := p(s1, . . . , sn)← p(t1, . . . , tn) ∈ bin unf (P) and τ a DN set of
positions for c. Very intuitively, we have p(s1, . . . , sn)=⇒

c
p(t1, . . . , tn).

If p(s1, . . . , sn) is a τ -instance of p(t1, . . . , tn), then, by the τ -Lifting
Theorem 2, there exists a query Q1 such that p(t1, . . . , tn)=⇒

c
Q1 and

p(t1, . . . , tn) is a τ -instance of Q1. So, by Corollary 1, p(t1, . . . , tn) loops
w.r.t. {c}. Now, to show that mp is a looping mode, we can try to in-
stantiate the variables of {si|i ∈ mp} by a grounding substitution σ. If σ
only affects the arguments of p(t1, . . . , tn) that are neutral with respect
to derivation, then, by the τ -Lifting Theorem 2, p(t1, . . . , tn)σ also loops
w.r.t. {c}. But, very intuitively, we have p(s1, . . . , sn)σ =⇒

c
p(t1, . . . , tn)σ.

Therefore, p(s1, . . . , sn)σ loops w.r.t. {c}. Hence, as c ∈ bin unf (P),
p(s1, . . . , sn)σ loops w.r.t. bin unf (P), so, by Theorem 1, p(s1, . . . , sn)σ
left loops w.r.t. P . Hence mp is a looping mode.
The function unit loop below relies on the above remarks. Its termina-
tion relies on that of dna and its partial correctness follows from that of
dna and the result:

Theorem 3. Let p ∈ ΠP , mp be a mode of p, and c ∈ bin unf (P).
If unit loop(mp, c) 6= false, there exists A ∈ [mp] such that A left loops
w.r.t. P .

unit loop(mp, c):

in: mp: a mode of p and c: a binary clause ∈ bin unf (P)
out: a pair (τ, {c}), where τ is a DN set of positions for {c}

if c allows to classify mp as a looping mode or false

1: p(s1, . . . , sn)← q(t1, . . . , tn′) := c

2: τ := dna({c}, τmax)

3: if p(s1, . . . , sn) is a τ -instance of q(t1, . . . , tn′)

and V ar({si | i ∈ mp}) ∩ V ar({ti | i 6∈ τ(p)}) = ∅
4: then return (τ, {c})
5: else return false

5.2 Looping modes from a set of binary clauses

We now introduce a data structure which we call dictionary and that we
use both in the algorithms that follow and in their correctness proofs.
A dictionary is a set of tuples (Atom, τ, BinProg) where Atom ∈ TBL,
BinProg is a set of binary clauses and τ a set of positions. Moreover:

Definition 11 (D). A dictionary Dict enjoys the property D if Dict
is a finite set such that for any

`
Atom, τ, BinProg

´
∈ Dict we have:

BinProg is a finite subset of bin unf (P), τ is DN for BinProg, and
Atom loops w.r.t. BinProg.

Assume we hold: a tuple (q(u1, . . . , un′), τ, BP) of a dictionary satisfying
D; a binary clause p(s1, . . . , sn) ← q(t1, . . . , tn′) ∈ bin unf (P); and we
would like to prove that a given mode mp is looping. If q(t1, . . . , tn′) is
a τ -generalization of q(u1, . . . , un′), then, by the τ -Lifting Theorem 2,
q(t1, . . . , tn′) loops w.r.t. BP . Then, to show that mp is a looping mode,
we can reason as in Subsection 5.1.

The function loop with dict relies on the above remarks. Its termination
relies on that of dna and finiteness of Dict and its partial correctness
follows from that of dna and the result below.

loop with dict(mp, c, Dict):

in: mp: a mode of p, c: a binary clause ∈ bin unf (P) and
Dict: a dictionary satisfying D

out: a pair (τ, BinProg), where τ is a DN set of positions for
Binprog ⊆ bin unf (P), which allows to classify mp as a looping
mode or false

1: p(s1, . . . , sn)← q(t1, . . . , tn′) := c

2: for each
`
q(u1, . . . , un′), τ, BinProg

´
∈ Dict do

3: if

(
q(u1, . . . , un′) is a τ -instance of q(t1, . . . , tn′) and

V ar({si | i ∈ mp}) ∩ V ar({ti | i 6∈ τ(q)}) = ∅
4: then return (dna(BinProg ∪ {c}, τ), BinProg ∪ {c})
5: return false

Theorem 4. Let p ∈ ΠP , mp be a mode of p, and c ∈ bin unf (P).
If Dict satisfies D and loop with dict(mp, c, Dict) 6= false then there
exists A ∈ [mp] such that A left loops w.r.t. P .

5.3 Looping modes for a predicate

The function we use to infer looping modes for a predicate symbol is
given in Figure 1. Our algorithm maintains the following invariant:

Lemma 1. D always holds for Dict′.

Concerning termination, note that calls to modes, unit loop, more gene-

ral and loop with dict fulfill their specifications hence terminate. Since
both Mp and BinProg are finite sets, termination is ensured. Partial
correctness is a consequence of Lemma 1 and partial correctness of the
functions unit loop and loop with dict.

infer looping modes pred (BinProg, p, Dict):

in: BinProg: a finite set of binary clauses ⊆ bin unf (P),
p: a relation symbol ∈ ΠP and Dict: a dictionary satisfying D

out: a pair (Lp, Dict′) where Lp is a looping condition for p and Dict′

is a dictionary satisfying D

1: Mp := modes(p), Lp := ∅ and Dict′ := Dict

2: for each c := p(s1, . . . , sn)← B ∈ BinProg with B 6= true do

3: for each mp ∈Mp do

/* NB: Mp is modified line 6 and line 11 */

4: if unit loop(mp, c) 6= false then

5: (τ, BP) := unit loop(mp, c)

6: Mp := Mp\more general(mp) /* cf. Definition 5 */

7: Lp := Lp ∪ {mp}
8: Dict′ := Dict′ ∪

˘`
p(s1, . . . , sn), τ, BP

´¯
9: elsif loop with dict(mp, c, Dict′) 6= false then

10: (τ, BP) := loop with dict(mp, c, Dict′)

11: Mp := Mp\more general(mp)

12: Lp := Lp ∪ {mp}
13: Dict′ := Dict′ ∪

˘`
p(s1, . . . , sn), τ, BP

´¯
14: return (Lp, Dict′)

Fig. 1. Inference of looping modes for a predicate symbol.

5.4 Looping modes for a logic program

The top-level function we use to infer looping modes for each predi-
cate symbol of any logic program P is given in Figure 2. Notice that
ΠP is finite and, for any non-negative integer max, T β

P ↑ max is a fi-
nite set ⊆ bin unf (P). Line 2, Dict is initialized to ∅ which satisfies
D. Hence all calls to infer looping modes pred fulfill their specifica-
tion. This shows termination and partial correctness of the function
infer looping modes prog. We point out that correctness is indepen-
dent of whether the relation symbols are analyzed according a topolog-
ical sort of the strongly connected components of the call graph of P .
However, Dict is always increasing and, due to the definition of binary
unfoldings, inference of looping modes is much more efficient if relation
symbols are processed bottom-up.

5.5 Running the algorithm

Example 9. We consider the program APPEND3:

append3(X,Y,Z,T):-append(X,Y,W),append(W,Z,T).

augmented by the APPEND program. T β
APPEND3 ↑ 2 includes:

infer looping modes prog(P , max):

in: P : a logic program and max: an non-negative integer
out: a set of pairs (p, Lp) where, for each p ∈ ΠP , Lp is a looping

condition for p

1: BinProg := the binary clauses of T β
P ↑ max

2: Dict := ∅ and Res := ∅
3: for each p ∈ ΠP do

4: (Lp, Dict) := infer looping modes pred(BinProg, p, Dict)

5: Res := Res ∪ {(p, Lp)}
6: return Res

Fig. 2. The top-level function for inferring looping modes.

append([A|B],C,[A|D]):-append(B,C,D). % C3

append3(A,B,C,D):-append(A,B,E). % C4

append3([],A,B,C):-append(A,B,C). % C5

The dictionary Dict, built from C3 while processing append:

{(append([x1|x2], x3, [x1|x4]),
τ1 = 〈append 7−→ {2}〉,
{append([x1|x2], x3, [x1|x4])← append(x2, x3, x4)})}

shows the looping mode {2}, including, with all its τ1-generalizations,
the query: append([A|B],void,[A|C]). For append3, from C4 and C5,
the updated dictionary Dict′ = Dict ∪

{(append3(x1, x2, x3, x4),
τ2 = 〈append3 7−→ {2, 3, 4}, append 7−→ {2}〉,
{append3(x1, x2, x3, x4)← append(x1, x2, x5),
append([x1|x2], x3, [x1|x4])← append(x2, x3, x4)}),

(append3([], x1, x2, x3),
τ3 = 〈append3 7−→ {3}, append 7−→ {2}〉,
{append3([], x1, x2, x3)← append(x1, x2, x3),
append([x1|x2], x3, [x1|x4])← append(x2, x3, x4)})}

allows the elimination of the looping modes {2, 3, 4} and {1, 3} including
the queries:
– append3(A,void,void,void) with all its τ2-generalizations and
– append3([],A,void,B) with all its τ3-generalizations.

Note that we do not have to guess the constant [] for the last query as
it appears naturally in the binary unfoldings of APPEND3.

6 Proving optimality of termination conditions

It turns out that a slight modification of infer looping modes prog

gives a function which may prove the optimality (see Definition 6) of

termination conditions (as computed by a tool for termination inference,
e.g. cTI [19] or TerminWeb [13]). For each pair (p, ∅) in the set the
function returns, we can conclude that the corresponding TCp is the op-
timal termination condition which characterizes the operational behavior
of p with respect to Lterm. Termination and partial correctness rely on
similar arguments than those in Subsections 5.3 and 5.4.

optimal tc(P , max, {TCp}p∈ΠP):

in: P : a logic program, max: an non-negative integer and
{TCp}p∈ΠP : a set of termination conditions

out: a set of pair (p, Mp) where, for each p ∈ ΠP , Mp is a multi-
mode of p with no information with respect to its left behavior

note: If for each p ∈ ΠP , Mp = ∅, then {TCp}p∈ΠP is optimal

1: BinProg := T β
P ↑ max, Dict := ∅ and Res := ∅

2: for each p ∈ ΠP do

3: (Lp, Dict) := infer looping modes pred(BinProg, p, Dict)

4: Mp := modes(p)\(less general(TCp) ∪ more general(Lp))

5: Res := Res ∪ {(p, Mp)}
6: return Res

Example 10. We apply our algorithm to the program APPEND3 of Sub-
section 5.5 (see also Example 2). We get, for append:

Lappend = {{2}}
more general(Lappend) = {∅, {2}}

TCappend = {{1}, {3}}
less general(TCappend) = {{1}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},

Mappend = {}

For append3, we have:

Lappend3 = {{1, 3}, {2, 3, 4}}
more general(Lappend3) = {∅, {1}, {2}, {3}, {4}, {1, 3}, {2, 3}, {2, 4},

{3, 4}, {2, 3, 4}}
TCappend3 = {{1, 2}, {1, 4}}

less general(TCappend3) = {{1, 2}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{1, 2, 3, 4}}

Mappend3 = {}

Hence in both cases, we have characterized the left behavior of the pred-
icates by using two complementary tools.

7 An experimental evaluation

We have implemented4 the algorithms presented in Sections 4, 5 and
6. Then we have applied them on some small programs from standard
benchmarks of the termination analysis literature [21, 2, 9] (predefined
predicates were erased). Here is the configuration we used for this ex-
periment (see Table 1): PowerPC, 333MHz, 192Mb, Linux 2.2, SICStus
Prolog 3.8.5, 3.8 MLips. Timings are average over 10 runs. The column
opt? indicates whether the result of cTI is proved optimal (y) or not
(?). The column max gives the least non-negative integer implying op-
timality (or the least non-negative integer where it seems we get the
most precise information from non-termination inference). Then timings
appear, followed by a pointer to a comment to the notes below.
Notes:
1. The result of cTI is optimal.
2. For this program (and the following), cTI does not compute an opti-

mal termination condition for split. Nevertheless, the termination
condition for mergesort is shown optimal.

3. The result of cTI is not optimal.
4. This is an example where the binary unfoldings reveal its explosive

nature. The analyzed program P (from [21], p. 64), simulates in Pro-
log a Turing machine. The first iteration T β

P ↑ 1 generates more than
one hundred non-unit binary clauses. The second iteration generates
more than two thousands new non-unit binary clauses.

5. mult(s(s(0)),A,B) and mult(s(s(s(0))),A,void) are detected as
left looping, although the queries mult(0,A,B) and mult(s(0),A,B)

do not left loop.

8 Conclusion

To our best knowledge, there is no other automated analysis dealing with
optimality proofs of termination conditions for logic programs.
Some extensions of the Lifting Theorem with respect to infinite deriva-
tions are presented in [14], where the authors study properties of finite
failure.
Loop checking in logic programming is a subject related to non-termina-
tion, where Bol [5] sets up some solid foundations (see also [23]). A loop
check is a device to prune derivations when it seems appropriate. A loop
checker is defined as sound if no solution is lost. It is complete if all infinite
derivations are pruned. A complete loop check may also prune finite
derivations. Bol shows that even for function-free programs (also known
as Datalog programs), sound and complete loop checks are out of reach.
If such a mechanism is to be included into a logic programming system,
then Bol advocates and studies sound loop checkers. Completeness is
shown only for some restricted classes of function-free programs. Loop
checking is also important for partial deduction [15]. In this case, Bol
emphasizes complete loop checkers, which were also studied in [6, 22].

4 Available from http://www.univ-reunion.fr/~gcc

Table 1. Some De Schreye’s, Apt’s, and Plümer’s programs.

cTI Optimal
program top-level predicate term-cond time[s] opt? max time[s] cf.

permute permute(x,y) x 0.24 y 1 0.01
duplicate duplicate(x,y) x ∨ y 0.09 y 1 0.01
sum sum(x,y,z) x ∨ y ∨ z 0.26 y 1 0.01
merge merge(x,y,z) (x ∧ y) ∨ z 0.39 ? 1 0.01 note 1
dis-con dis(x) x 0.35 y 1 0.01
reverse reverse(x,y,z) x 0.14 y 1 0.01

append append(x,y,z) x ∨ z 0.14 y 1 0.01
list list(x) x 0.05 y 1 0.01
fold fold(x,y,z) y 0.15 ? 1 0.01 note 1
lte goal 1 0.19 y 1 0.01
map map(x,y) x ∨ y 0.13 y 2 0.01
member member(x,y) y 0.06 y 1 0.01
mergesort mergesort(x,y) x 0.75 y 2 0.04 note 2
mergesort ap mergesort ap(x,y,z) x ∨ z 1.20 y 2 0.10
naive rev naive rev(x,y) x 0.19 y 1 0.01
ordered ordered(x) x 0.07 y 1 0.01
overlap overlap(x,y) x ∧ y 0.08 y 1 0.01
permutation permutation(x,y) x 0.25 y 1 0.01
quicksort quicksort(x,y) x 0.59 y 1 0.03
select select(x,y,z) y ∨ z 0.12 y 1 0.01
subset subset(x,y) x ∧ y 0.14 ? 1 0.01 note 1
sum peano sum(x,y,z) y ∨ z 0.19 y 1 0.01

pl2.3.1 p(x,y) 0 0.03 ? 1 0.01 note 3
pl3.5.6 p(x) x 0.09 y 2 0.01
pl4.4.6a perm(x,y) x 0.19 y 1 0.01
pl4.5.2 s(x,y) 0 0.25 y 1 0.04
pl4.5.3a p(x) 0 0.02 y 1 0.01
pl5.2.2 turing(x,y,z,t) 0 3.41 ? 1 0.50 note 4
pl7.2.9 mult(x,y,z) x ∧ y 0.33 y 3 0.03 note 5
pl7.6.2a reach(x,y,z) 0 0.22 ? 1 0.01 note 1
pl7.6.2b reach(x,y,z,t) 0 0.35 ? 1 0.01 note 3
pl7.6.2c reach(x,y,z,t) z ∧ t 0.46 y 2 3.00
pl8.3.1a minsort(x,y) x 0.36 y 2 0.04
pl8.4.1 even(x) x 0.19 y 1 0.01
pl8.4.2 e(x,y) x 0.78 y 1 0.02

The main difference with our work is that we want to pinpoint some
infinite derivations that we build bottom-up. We are not interested in
completeness nor in soundness. Moreover, in [11], the undecidability of
the halting problem for programs with one binary clause and one atomic
query is shown. This clearly puts an upper bound on what one can expect
to do.
Nonetheless, we point out that the combination of termination inference
and non-termination inference may give a strong result for the program
being analyzed. Although the two methods are both incomplete, when
their results are complementary, it implies that each analysis is optimal.
Altogether they can sometimes characterize the operational behavior
of logic programs with respect to the left most selection rule and the
language used to describe classes of atomic queries.
More work is needed to refine the implementation into an efficient an-
alyzer. In particular, the binary unfoldings need to be either computed
with care or abstracted, due to the potential exponential number of bi-
nary clauses it may generate. How to take the predefined predicates into
account is another problem to solve. Finally, for rational trees, we note
that [8] provides an undecidable necessary and sufficient condition for
the existence of a query which loops with respect to a binary clause.
Moving to other constraint structures seems a worth-while topic.

References

1. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
2. K. R. Apt and D. Pedreschi. Modular termination proofs for logic

and pure Prolog programs. In G. Levi, editor, Advances in Logic
Programming Theory, pages 183–229. Oxford University Press, 1994.

3. K. R. Apt and M. H. Van Emden. Contributions to the theory of
logic programming. Journal of the ACM, 29(3):841–862, 1982.

4. T. Arts and H. Zantema. Termination of logic programs us-
ing semantic unification. In Logic Program Synthesis and Trans-
formation, volume 1048 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1996. TALP can be used online at
http://bibiserv.techfak.uni.biekefeld.de/talp/.

5. R. Bol. Loop Checking in Logic Programming. PhD thesis, CWI,
Amsterdam, 1991.

6. M. Bruynooghe, D. De Schreye, and B. Martens. A general crite-
rion for avoiding infinite unfolding during partial deduction. New
Generation Computing, 11(1):47–79, 1992.

7. M. Codish and C. Taboch. A semantic basis for the termination anal-
ysis of logic programs. Journal of Logic Programming, 41(1):103–123,
1999.

8. D. De Schreye, M. Bruynooghe, and K. Verschaetse. On the existence
of nonterminating queries for a restricted class of Prolog-clauses.
Artificial Intelligence, 41:237–248, 1989.

9. D. De Schreye and S. Decorte. Termination of logic programs : the
never-ending story. Journal of Logic Programming, 19-20:199–260,
1994.

10. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A gen-
eral framework for automatic termination analysis of logic programs.
Applicable Algebra in Engineering,Communication and Computing,
12(1/2):117–156, 2001.

11. P. Devienne, P.Lebègue, and J-C. Routier. Halting problem of one
binary Horn clause is undecidable. In LNCS, volume 665, pages
48–57. Springer-Verlag, 1993. Proc. of STACS’93.

12. M. Gabbrielli and R. Giacobazzi. Goal independency and call pat-
terns in the analysis of logic programs. In Proceedings of the ACM
Symposium on applied computing, pages 394–399. ACM Press, 1994.

13. S. Genaim and M. Codish. Inferring termination condition for logic
programs using backwards analysis. In Proceedings of Logic for Pro-
gramming, Artificial intelligence and Reasoning, Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 2001. TerminWeb can
be used online from http://www.cs.bgu.ac.il/~codish.

14. R. Gori and G. Levi. Finite failure is and-compositional. Journal of
Logic and Computation, 7(6):753–776, 1997.

15. H. J. Komorowski. Partial evaluation as a means for inferencing data
structures in an applicative language : a theory and implementation
in the case of Prolog. In Proc. of the 9th POPL, pages 255–267,
1982.

16. N. Lindenstrauss. TermiLog: a system for check-
ing termination of queries to logic programs, 1997.
http://www.cs.huji.ac.il/~naomil.

17. F. Mesnard. Inferring left-terminating classes of queries for con-
straint logic programs by means of approximations. In M. J. Maher,
editor, Proc. of the 1996 Joint Intl. Conf. and Symp. on Logic Pro-
gramming, pages 7–21. MIT Press, 1996.

18. F. Mesnard and U. Neumerkel. cTI: a tool for infer-
ring termination conditions of ISO-Prolog, april 2000.
http://www.complang.tuwien.ac.at/cti.

19. F. Mesnard and U. Neumerkel. Applying static analysis techniques
for inferring termination conditions of logic programs. In P. Cousot,
editor, Static Analysis Symposium, volume 2126 of Lecture Notes in
Computer Science, pages 93–110. Springer-Verlag, Berlin, 2001.

20. R. O’Keefe. The Craft Of Prolog. MIT Press, 1990.
21. L. Plümer. Terminations proofs for logic programs. Number 446 in

LNAI. Springer-Verlag, Berlin, 1990.
22. Y-D. Shen, L-Y. Yuan, and J-H. You. Loops checks for logic pro-

grams with functions. Theoretical Computer Science, 266(1-2):441–
461, 2001.

23. D. Skordev. An abstract approach to some loop detection problems.
Fundamenta Informaticae, 31:195–212, 1997.

24. C. Speirs, Z. Somogyi, and H. Søndergaard. Termination analysis for
Mercury. In P. Van Hentenryck, editor, Proc. of the International
Static Analysis Symposium, volume 1302 of LNCS, pages 160–171.
Springer-Verlag, 1997.

