
HAL Id: hal-01915407
https://hal.univ-reunion.fr/hal-01915407

Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Termination Inference for Optimal Ter-mination
Conditions of Logic Programs

Frédéric Mesnard, Etienne Payet, Ulrich Neumerkel

To cite this version:
Frédéric Mesnard, Etienne Payet, Ulrich Neumerkel. Non-Termination Inference for Optimal Ter-
mination Conditions of Logic Programs. 11èmes Journées Francophones de Programmation en Logique
et Programmation par Contraintes (JFPLC’02), Association Française pour la Programmation en
Logique et la programmation par Contraintes (AFPLC), May 2002, Nice, France. pp.84-104. �hal-
01915407�

https://hal.univ-reunion.fr/hal-01915407
https://hal.archives-ouvertes.fr

Non-Termination Inference for Optimal Ter-
mination Conditions of Logic Programs

Fred Mesnard* — Etienne Payet* —Ulrich Neumerkel**

* Iremia - Université de La Réunion, France
{fred,epayet}@univ-reunion.fr
** Institut für Computersprachen - Technische Universität Wien, Austria
ulrich@mips.complang.tuwien.ac.at

ABSTRACT. In this paper, we present an approach to non-termination inference of logic programs.
Our framework relies on an extension of the Lifting Theorem, where some specific argument po-
sitions can be instantiated while others are generalized. Atomic left looping queries are then
generated bottom-up from selected subsets of the binary unfoldings of the program of interest.
Then non-termination inference is tailored to attempt proofs of optimality of left termination
conditions computed by a termination inference tool. For each class of atomic queries not cov-
ered by a termination condition, the aim is to ensure the existence of one query from this class
which leads to an infinite search tree.
When termination and non-termination analysis produce complementary results for a logic pro-
cedure, they induce a characterization of the operational behavior of the logic procedure with
respect to the left most selection rule and the language used to describe sets of atomic queries.

RÉSUMÉ. Dans cet article, nous présentons une technique d’inférence de conditions de non-
termination de programmes logiques. Notre travail repose sur une extension du “Lifting Theo-
rem”, où des positions d’argument spécifiques peuvent être instanciées alors que les autres sont
généralisées. Des requêtes atomiques qui bouclent à gauche sont alors générées de façon as-
cendante à partir de sous-ensembles des dépliages binaires du programme traité.
L’inférence de non-terminaison est alors utilisée pour tester l’optimalité de conditions de termi-
naison gauche générées par un outil d’inférence de terminaison. Pour chaque classe de requêtes
atomiques non couverte par une condition de terminaison, nous tentons d’assurer l’existence
d’une requête de cette classe qui mène à un arbre de recherche infini.
Quand les analyses de terminaison et de non-terminaison produisent des résultats complémen-
taires pour une procédure logique, on obtient une caractérisation du comportement opérationnel
de la procédure par rapport à la règle de sélélection gauche et au langage utilisé pour décrire
les ensembles de requêtes atomiques.

KEYWORDS: logic programing, static analysis, non-termination, optimal termination condition.

MOTS-CLÉS : programmation logique, analyse statique, non-terminaison, condition optimale de
terminaison.

2e soumission à JFPLC’2002, le .

2 2e soumission à JFPLC’2002.

1. Introduction

Since the work of N. Lindenstrauss on TermiLog [LIN 97, DER 01], several auto-
matic tools for termination checking (e.g. TALP [ART 96]) or termination inference
(e.g. cTI [MES 00, MES 01] or TerminWeb [GEN 01]) are now available to the logic
programmer. One of them is even included in the Mercury compiler [SPE 97]. As the
halting problem is undecidable for logic programs, such analyzers compute sufficient
termination conditions implying left termination. In most works, only universal left
termination is considered and termination conditions rely on a language for describing
classes of atomic queries. Then the search tree associated to any (concrete) query sat-
isfying a termination condition is guaranteed to be finite. When terms are abstracted
using the term-size norm, then termination conditions are (disjunctions of) conjunc-
tions of conditions of the form “the -th argument is ground”. Let us call this language

.

In this report, we present the first approach to non-termination inference tailored
to attempt proofs of optimality of termination conditions. The aim is to ensure the
existence, for each class of atomic queries not covered by a termination condition,
of one one query from this class which leads to an infinite search tree. The main
contributions of this work are:

– A generalization of the Lifting Theorem from the Logic Programming theory.
The Lifting Theorem, at the heart of the completeness proof of SLD-resolution (see
e.g. [APT 82]), states that a SLD-derivation of can be lifted to a SLD-derivation
of . We prove that some specific arguments of , called “derivation neutral”, can be
instantiated as well, while retaining the existence of a lifted derivation , where the
length of and are identical.
– A new application of binary unfoldings to left loop inference. [GAB 94] intro-

duced the binary unfoldings of a logic program as a goal independent technique to
transform into a possibly infinite set of binary clauses, which preserves the termina-
tion property [COD 99] while abstracting the standard operational semantics associ-
ated to SLD-resolution. We present an algorithm to infer left looping classes of atomic
goals, where such classes are computed bottom-up from selected subsets of the binary
unfoldings of the analyzed program.
– An algorithmwhich, when combined with termination inference [MES 96], may

detect optimal left termination conditions expressed in for logic programs.

We organize the paper as follows: Section 2 presents the notations. Then we define
in Section 3 what we call an optimal termination condition. Sections 4 and 5 propose
an extension of the Lifting Theorem. We concentrate on non-termination inference in
Section 6 and optimality proofs of termination conditions in Section 7.

2. Preliminaries

2.1. Logic Programming

We try to strictly adhere to the notations, definitions, and results presented in
[APT 97]. Some of our results and our proofs are directly inspired by those writ-
ten by Apt. When it is the case, we notify the reader. We recall here some basic
facts.

denotes the set of non-negative integers and for any , denotes the
set . If then .

Non-Termination Inference 3

Let be a language of programs. We assume that contains an infinite number
of constant symbols including void. The set of relation symbols of is , and we
assume that each relation symbol has an unique arity, denoted . (resp.

) denotes the set of all (ground and non ground) terms of (resp. atoms of).
Let be an atom. Then denotes its relation symbol. A query is a finite
sequence of atoms (where). Let be a term. Then denotes
the set of variables occurring in . Let be a substitution.
We denote by the set of variables , and by the set of
variables appearing in . We define . Given
a set of variables , denotes the substitution obtained from by restricting its
domain to .

A logic program is a finite set of definite clauses. Clauses are
written in program examples with the ISO-Prolog syntax Let be
a logic program. Then denotes the set of relation symbols appearing in . In this
paper, we only focus on universal left termination. Consider a non-empty query (or
goal) and a clause . Let be a variant of variable disjoint 1 with
and assume that and unify. Let be an mgu of and . Then
is a left derivation step with as its input clause. If the substitution or the
clause is irrelevant, we drop a reference to it. We write (resp.)
to summarize a finite number () (resp.) of left derivation steps from to ,
where each input clause is a variant of a clause of .

Let be a query. A left derivation of is a maximal sequence of left
derivation steps starting from the query , where each input clause is a variant of a
clause of . A finite left derivation may end up either with the empty query (then
it is a successful left derivation) or with a non-empty query (then it is a failed left
derivation). We say left terminates (resp. left loops) with respect to if every left
derivation of is finite (resp. there exists an infinite left derivation of).

We recall that for logic programs, left termination is instantiation-closed: if
left terminates with respect to , then left terminates with respect to for any
substitution and any . Similarly, left looping is generalization-closed: if
there exists such that left loops with respect to , then left loops with respect
to any .

2.2. The binary unfoldings of a logic program

Let us present the main ideas about the binary unfoldings [GAB 94] of a logic
program, borrowed from [COD 99]. This technique transforms a logic program
(without any query of interest) into a possibly infinite set of binary clauses. Intuitively,
each generated binary clause (where is either an atom or the atom
which denotes the empty query) specifies that, with respect to the original program ,
a call to (or any of its instances) necessary leads to a call to (or its corresponding
instance).

More precisely, let be an atomic query. Then is a call in a left derivation of
if . We denote by the set of calls which occur in the

left derivations of . The specialization of the goal independent semantics for

. More generally, a variant of satisfying the standardization apart condition: has to
be variable disjoint from the initial query, the substitutions and the clauses used so far in the
computation.

4 2e soumission à JFPLC’2002.

call patterns for the left-to-right selection rule is given as the fixpoint of an operator
over the domain of binary clauses, viewed modulo renaming. In the definition below,
denotes the set of all binary clauses of the form

for any , where .

renamed apart from

renamed apart from

We define its powers as usual. It can be shown that the least fixpoint of this monotonic
operator always exists and we set _ . Then the calls that occur
in the left derivations of can be characterized as follows:

_ . This last property was one of the
main initial motivation of the proposed abstract semantics, enabling logic programs
optimizations. Similarly, _ gives a goal independent representation of the
success patterns of .

But we can extract more information from the binary unfoldings of a program
: universal left termination of an atomic goal with respect to is identical to

universal termination of with respect to _ . Note that the selection rule
is irrelevant for a binary program and an atomic query, as each subsequent query
has at most one atom. The following result lies at the heart of Codish’s approach to
termination [COD 99, GEN 01]:

Theorem 1 (Codish and Taboch, 99) Let be a program and an atomic goal.
Then left loops with respect to iff loops with respect to _ .

As an immediate consequence of Theorem 1 frequently used in our proofs, assume
that we detect that loops with respect to a subset of the binary clauses of ,
with . Then loops with respect to _ (which can be an infinite set
of binary clauses) hence left loops with respect to .

Example 1 Consider the following program :

The binary unfoldings of are:

_

The mere existence of the clause implies that
loops. Hence left loops.

Non-Termination Inference 5

3. Optimal termination conditions

Let be a logic program and be a relation symbol , with .
First, we describe the language presented in Section 1 for abstracting sets of
atomic queries:

Definition 1 (Mode) A mode for is a subset of , and denotes the following
set of atomic goals: The set
of all modes for , i.e. , is denoted .

Note that if then . Since a logic procedure
may have multiple uses, we generalize:

Definition 2 (Multi-mode) A multi-mode for is a set of modes for , and denotes
the following set of atomic queries: .

Note that if , then . Now we can define what we mean by termina-
tion and looping condition:

Definition 3 (Terminating mode, termination condition) A terminating mode
for is a mode for such that any query left terminates with respect to . A
termination condition for is a a set of terminating modes for .

Definition 4 (Looping mode, looping condition) A loopingmode for is a mode
for such that there exists a query which left loops with respect to . A loop-
ing condition for is a set of looping modes for .

As left termination is instantiation-closed, any mode that is “below” (less general
than) a terminating mode is also a terminating mode for . Similarly, as left looping is
generalization-closed, any mode that is “above” (more general than) a looping mode
is also a looping mode for . Let us be more precise:

Definition 5 (Less_general, more_general) Let be a multi-mode for the relation
symbol . We set:

_

_

We are now equipped to present a definition of optimality for termination conditions:

Definition 6 (Optimal termination condition) An optimal termination condition
for is a termination condition for such that there exists a looping condition

verifying: _ _ .

Otherwise stated, given a termination condition , if each mode which is not less
general than a mode of is a loopingmode, then characterizes the operational
behavior of w.r.t. left termination and our language for defining sets of queries.

Example 2 Consider the program :

6 2e soumission à JFPLC’2002.

A well-known termination condition is . Indeed, any query
of the form or , where is a ground term (i.e.
such that), left terminates. We have:

_

On the other hand, left loops. Hence is a loop-
ing condition and _ . Since

_ _ , we conclude that the termina-
tion condition is optimal.

We have already presented a tool for inferring termination conditions in [MES 01].
We now describe the concepts underlying the inference of looping modes.

4. Neutral arguments for left derivation

A basic idea in the work we present lies in identifying arguments in clauses which
we can disregard when unfolding a query. For instance, the second argument of
the non-unit clause of in Example 2 is such a candidate. Moreover, a very
common programming technique called accumulator passing (see for instance e.g.
[O’K 90], p. 21–25), always produces such patterns.

We first give a technical tool to describe specific arguments inside a program and
present a generalization of the relation “is an instance of”. In Subsection 4.2, we
formalize the concept of derivation neutrality. Subsection 4.3 gives the main result, in
the form of a generalized Lifting Theorem, with an application to loop checking.

4.1. Sets of positions

Definition 7 (Set of positions) A set of positions is a mapping :

Example 3 (Example 2 continued) If we want to spot the second argument of the
relation symbol , we set .

Definition 8 (-instance and -generalization) Let be a set of positions. We make
use of the following relations:

– The relation :

iff

iff

– The relation “is a -instance of”: is a -instance of iff there exists a
substitution such that .

– The relation “is a -generalization”: is a -generalization of iff is a
-instance of .

Non-Termination Inference 7

Example 4 (Example 3 continued) Since , we do not care
of what happens to the second argument of : is a -
instance of , with . Otherwise stated,

is a -generalization of the atom .

Finally we give a bunch of obvious definitions:

Definition 9 (Ordering sets of positions)

– if for each relation symbol in , .
– if and .
– is the set of positions verifying: for each in , and is

the set of positions verifying: for each in , .

4.2. DN sets of positions

We give here a precise definition of the kind of arguments we are interested in.
The name “derivation neutral” stems from the fact that -arguments do not play any
rôle in the derivation process. The next subsection formalizes this intuition.

Definition 10 (Derivation Neutral) A set of positions isDN for a clause
if:

is a variable
occurs only once in

for each if then

A set of positions is DN for a logic program if it is DN for each clause of .

Example 5 (Example 4 continued) The set of positions is
DN for the recursive clause defining , but is not DN for the program
since appears twice in the unit clause.

4.3. Left derivation and DN sets of positions

Our goal here is to generalize the Lifting Theorem of Logic Programming (see
Sections 3.4 and 3.5 of [APT 97], p. 56–60) in the following sense: while lift-
ing a left derivation, we may safely ignore derivation neutral arguments which can
be instantiated to any terms. As a consequence, loop detection with DN sets of
positions generalizes loop detection with the subsumption test (take

for any). Proofs can be found in the long version of this paper, available at

Theorem 2 (-Lifting) Let be a left derivation and

be a -generalization of . Then there exists a left derivation

where for each , the corresponding is a -generalization of .

8 2e soumission à JFPLC’2002.

Example 6 Let be a logic program. Let be a DN set of positions for , with
. Assume that there exists a successful left derivation of . Then

we hold a similar left derivation when generalizing , whatever the second argument
is: for any term (including) which generalizes , for any term , there
exists a left derivation of .

5. DN sets of positions for binary programs

We present in this section an algorithm for computing DN sets of positions. We
shall show in the next section that we can incrementally build selected sets of binary
clauses, together with their correspondingDN sets of positions. So, although the algo-
rithm below can be generalized to arbitrary logic programs, we only consider binary
programs, i.e. finite sets of binary clauses. Moreover, our interest lies in defining an
incremental algorithm for computing DN sets of positions.

, :
in: : a finite set of binary clauses and : a set of positions
out: a DN set of positions
1:
2: while (,) do
3: (,)
4: return

, :
1:
2: for each do
3: is a variable that occurs

only once in
4:
5: for each do
6: for each do
7: if then
8:
9: return

Example 7
.

6. Inferring looping modes

Before we dive into algorithms and correctness proofs, let us try to give the in-
tuitions. Assume we hold a binary program _ , a DN set of
positions for , and an atom which loops with respect to . We
consider an -ary relation symbol , a binary clause
_ , and we would like to prove that the mode is looping.

If is a -generalization of , then loops.
Now, to show that is a looping mode, we can try to instantiate the variables of

Non-Termination Inference 9

by a grounding substitution . The looping behavior is preserved if
the impact of only affects the arguments of which are neutral with
respect to derivation. Hence the condition of Subsection 6.2:

We conclude by applying Theorem 1. Now
assume that with . The reasoning above is of course valid.

Let be a logic program, parametric for the subsections which follow.

6.1. Looping modes from one binary clause

(,):
in: : a mode of and : a binary clause _
out: a pair , where is a DN set of positions for , if allows to

classify as a looping mode or the boolean false
1:
2:
3: if is a -instance of /* p=q, n=n’ */

and
4: then return
5: else return false

Termination of relies on termination of . Partial correctness follows
from partial correctness of and the result below.

Theorem 3 Let , be a mode of , and _ .
If false, there exists such that left loops w.r.t. .

6.2. Looping modes from a set of binary clauses

We now introduce a data structure which we call dictionary. It is a set of tuples
where , is a set of binary clauses and

a set of positions. Moreover:

Definition 11 (D) A dictionary enjoys the property D if is a finite set such
that for any we have: is a finite subset of

_ , is DN for , and loops w.r.t. .

Termination of (see Figure 1) comes from finiteness of
and termination of . Partial correctness follows from partial correctness of
and:

Theorem 4 Let , be a mode of , and _ .
If satisfies D and false then there exists

such that left loops w.r.t. .

6.3. Looping modes for a predicate

The function we use to infer looping modes for a predicate symbol is given in
Figure 2. The correctness of our algorithms relies on:

10 2e soumission à JFPLC’2002.

(, ,):
in: : a mode of , : a binary clause _ and

: a dictionary satisfying D
out: a pair , where is a DN set of positions for

_ , which allows to classify as a looping mode or the
boolean false

1:
2: for each do

3: if
is a -instance of and

(c)
4: then return
5: return false

Figure 1. The function .

(, ,):
in: : a finite set of binary clauses _ ,

: a relation symbol and : a dictionary satisfying D
out: a pair where is a looping condition for and is a

dictionary satisfying D
1: , and
2: for each with do
3: for each do /*NB: is modified lines 6 and 11 */
4: if false then
5:
6: /* cf. Definition 5 */
7:
8:
9: elsif false then
10:
11:
12:
13:
14: return

Figure 2. Inference of looping modes for a predicate symbol.

Lemma 1 D always holds for .

Concerning termination, note that calls to , , and
fulfill their specifications hence terminate. Since both and

are finite sets, termination is ensured. Partial correctness is a consequence
of Lemma 1 and partial correctness of and .

Non-Termination Inference 11

6.4. Looping modes for a logic program

The top-level function we use to infer looping modes for each predicate symbol
of any logic program is given in Figure 3. Notice that is finite and, for any

(,):
in: : a logic program and : an non-negative integer
out: a set of pairs where, for each , is a looping condition

for

1: the binary clauses of
2: and
3: for each do
4: (, ,)
5:
6: return

Figure 3. The top-level function for inferring looping modes.

non-negative integer , is a finite set _ . Line 2, is
initialized to which satisfies D. Hence all calls to
fulfill their specification. This shows termination and partial correctness of the func-
tion . We point out that correctness is independent of
whether the relation symbols are analyzed according a topological sort of the strongly
connected components of the call graph of . However, is always increasing
and, due to the definition of binary unfoldings, inference of looping modes is much
more efficient if relation symbols are processed bottom-up.

6.5. Running the algorithm

Example 8 We consider the program :

augmented by the program. Here are some elements of :

The dictionary , built from the binary clause while processing :

shows the looping mode , including the query:
with all its -generalizations. For , from the binary clauses and , the
updated dictionary

12 2e soumission à JFPLC’2002.

allows the elimination of the looping modes and including

– the query with all its -generalizations and
– the query with all its -generalizations.

Note that we do not have to guess the constant for the last query as it appears
naturally in the binary unfoldings of .

7. Proving optimality of termination conditions

It turns out that a slight modification of enables to
propose a function which may prove the optimality (see Definition 6) of termination
conditions (as computed by a tool for termination inference, e.g. cTI [MES 01] or
TerminWeb [GEN 01]). For each pair in the set the function returns, we can
conclude that the corresponding is the optimal termination condition which char-
acterizes the operational behavior of with respect to . Termination and partial
correctness rely on similar arguments than those in Subsections 6.3 and 6.4.

(, ,):
in: : a logic program, : an non-negative integer and

: a set of termination conditions
out: a set of pair where, for each , is the multi-mode

of with no information with respect to its left behavior
note: If for each , , then is optimal

1: , and
2: for each do
3: (, ,)
4:
5:
6: return

Example 9 We apply our algorithm to the program of Subsection 6.5 (see
also Example 2). We get, for :

Non-Termination Inference 13

For , we have:

Hence in both cases, we have characterized the left behavior of the predicates by using
two complementary tools.

8. Conclusion

To our best knowledge, there is no other automated analysis dealing with opti-
mality proofs of termination conditions for logic programs. But loop checking in
logic programming is a subject related to non-termination, where Bol [BOL 91] sets
up some solid foundations (see also [SKO 97]). A loop check is a device to prune
derivations when it seems appropriate. A loop checker is defined as sound if no so-
lution is lost. It is complete if all infinite derivations are pruned. A complete loop
check may also prune finite derivations. Bol shows that even for function-free pro-
grams (also known as Datalog programs), sound and complete loop checks are out of
reach. If such a mechanism is to be included into a logic programming system, then
Bol advocates and studies sound loop checkers. Completeness is shown only for some
restricted classes of function-free programs. Loop checking is also important for par-
tial deduction [KOM 82]. In this case, Bol emphasizes complete loop checkers, which
were also studied in [BRU 92, SHE 01].

The main difference with our work is that we want to pinpoint some infinite deriva-
tions that we build bottom-up. We are not interested in completeness nor in soundness.
Moreover, in [DEV 93], the undecidability of the halting problem for programs with
one binary clause and one atomic query is shown. This clearly puts an upper bound
on what one can expect to do.

Nonetheless, we point out that the combination of termination inference and non-
termination inference may give a strong result for the program being analyzed. Al-
though the two methods are both incomplete, when their results are complementary, it
implies that each analysis is optimal. Altogether they can sometimes characterize the
operational behavior of logic programs with respect to the left most selection rule and
the language used to describe classes of atomic queries.

More work is needed to refine the implementation into an efficient analyzer. In
particular, the binary unfoldings need to be either computed with care or abstracted,
due to the potential exponential number of binary clauses it may generate. How to
take the predefined predicates into account is another problem to solve. Finally we
have started to adapt the approach to constraint logic programming. For rational trees,
[De 89] provides an undecidable necessary and sufficient condition for the existence
of a query which loops with respect to a binary clause. Moving to other constraint
structures seems a worth-while topic.

14 2e soumission à JFPLC’2002.

9. References

[APT 82] APT K. R., VAN EMDEN M. H., “Contributions to the theory of Logic Program-
ming”, Journal of the ACM, vol. 29, num. 3, 1982, p. 841–862.

[APT 97] APT K. R., From Logic Programming to Prolog, Prentice Hall, 1997.
[ART 96] ARTS T., ZANTEMA H., “Termination of logic programs using semantic unifi-

cation”, Logic Program Synthesis and Transformation, vol. 1048 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 1996, TALP can be used online at

.
[BOL 91] BOL R., “Loop Checking in Logic Programming”, PhD thesis, CWI, Amsterdam,

1991.
[BRU 92] BRUYNOOGHE M., DE SCHREYE D., MARTENS B., “A General Criterion for

Avoiding Infinite Unfolding during Partial Deduction”, New Generation Computing,
vol. 11, num. 1, 1992, p. 47–79.

[COD 99] CODISH M., TABOCH C., “A semantic basis for the termination analysis of logic
programs”, Journal of Logic Programming, vol. 41, num. 1, 1999, p. 103-123.

[De 89] DE SCHREYE D., BRUYNOOGHE M., VERSCHAETSE K., “On the existence of non-
terminating queries for a restricted class of Prolog-clauses”, Artificial Intelligence, vol. 41,
1989, p. 237–248.

[DER 01] DERSHOWITZ N., LINDENSTRAUSS N., SAGIV Y., SEREBRENIK A., “A General
Framework for Automatic Termination Analysis of Logic Programs”, Applicable Algebra
in Engineering,Communication and Computing, vol. 12, num. 1/2, 2001, p. 117-156.

[DEV 93] DEVIENNE P., P.LEBÈGUE, ROUTIER J.-C., “Halting problem of one binary Horn
clause is undecidable”, LNCS, vol. 665, Springer-Verlag, 1993, p. 48–57, Proc. of
STACS’93.

[GAB 94] GABBRIELLI M., GIACOBAZZI R., “Goal independency and call patterns in the
analysis of logic programs”, Proceedings of the ACM Symposium on applied computing,
ACM Press, 1994, p. 394–399.

[GEN 01] GENAIM S., CODISH M., “Inferring Termination Condition for Logic Programs us-
ing Backwards Analysis”, Proceedings of Logic for Programming, Artificial intelligence
and Reasoning, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2001, Ter-
minWeb can be used online from .

[KOM 82] KOMOROWSKI H. J., “Partial Evaluation as a Means for Inferencing Data Struc-
tures in an Applicative Language : a Theory and Implementation in the Case of Prolog”,
Proc. of the 9th POPL, 1982, p. 255–267.

[LIN 97] LINDENSTRAUSS N., “TermiLog: a system for checking termination of queries to
Logic Programs”, 1997, .

[MES 96] MESNARD F., “Inferring left-terminating classes of queries for constraint logic pro-
grams by means of approximations”, MAHER M. J., Ed., Proc. of the 1996 Joint Intl. Conf.
and Symp. on Logic Programming, MIT Press, 1996, p. 7–21.

[MES 00] MESNARD F., NEUMERKEL U., “cTI: a tool for inferring termination conditions of
ISO-Prolog”, april 2000, .

[MES 01] MESNARD F., NEUMERKEL U., “Applying static analysis techniques for inferring
termination conditions of logic programs”, COUSOT P., Ed., Static Analysis Symposium,
vol. 2126 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2001, p. 93–110.

[O’K 90] O’KEEFE R., The Craft Of Prolog, MIT Press, 1990.
[SHE 01] SHEN Y.-D., YUAN L.-Y., YOU J.-H., “Loops Checks for Logic Programs with

Functions”, Theoretical Computer Science, vol. 266, num. 1-2, 2001, p. 441–461.
[SKO 97] SKORDEV D., “An Abstract Approach to Some Loop Detection Problems”, Funda-

menta Informaticae, vol. 31, 1997, p. 195–212.
[SPE 97] SPEIRS C., SOMOGYI Z., SØNDERGAARD H., “Termination Analysis for Mer-

cury”, VAN HENTENRYCK P., Ed., Proc. of the International Static Analysis Symposium,
vol. 1302 of LNCS, Springer-Verlag, 1997, p. 160–171.

