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ABSTRACTIN this paper, we present an approach to non-termination inference of logic programs.
Our framework relies on an extension of the Lifting Theorem, where somésjpegument po-
sitions can be instantiated while others are generalized. Atomic left looping queries are then
generated bottom-up from selected subsets of the binary unfoldings of the program of interest.
Then non-termination inference is tailored to attempt proofs of optimality of left termination
conditions computed by a termination inference tool. For each class of atomic queries not cov-
ered by a termination condition, the aim is to ensure the existence of one query from this class
which leads to an ibnite search tree.

When termination and non-termination analysis produce complementary results for a logic pro-
cedure, they induce eharacterizatiorf the operational behavior of the logic procedure with
respect to the left most selection rule and the language used to describe sets of atomic queries.

RfSumMf. Dans cet article, nous prZsentons une technique dOinfZrence de conditions de non-
termination de programmes logiques. Notre travail repose sur une extension du OLifting Theo-
remO, os des positions dOargument spifEs peuvent «tre instanciZes alors que les autres sont
gZnZralisZes. Des requstes atomiques qui bouclent ~ gauche sont alors gZnZrZes de faon as-
cendante ~ partir de sous-ensembles des dZpliages binaires du programme traitZ.

LOinfZrence de non-terminaison est alors utilisZe pour tester IOoptimalitZ de conditions de termi-
naison gauche gZnZrZes par un outil dOinfZrence de terminaison. Pour chaque classe de requstes
atomiques non couverte par une condition de terminaison, nous tentons dOassurer I0existence
dOune requste de cette classe qui mene ~ un arbre de recherbhi in

Quand les analyses de terminaison et de non-terminaison produisent des rZsultats complZmen-
taires pour une procZdure logique, on obtient gaeactZrisatiodu comportement opZrationnel

de la procZdure par rapport ~ la regle de sZIZlection gauche et au langage utilisZ pour dZcrire

les ensembles de requstes atomiques.

KEYWORDSIlogic programing, static analysis, non-termination, optimal termination condition.

MOTS-CLfS :programmation logique, analyse statique, non-terminaison, condition optimale de
terminaison.
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1. Introduction

Since the work of N. Lindenstrauss on TermiLog [LIN 97, DER 01], several auto-
matic tools for termination checking (e.g. TALP [ART 96]) or termination inference
(e.g. cTI [MES 00, MES 01] or TerminWeb [GEN 01]) are now available to the logic
programmer. One of them is even included in the Mercury compiler [SPE 97]. As the
halting problem is undecidable for logic programs, such analyzers comp ttaesuf
termination conditions implying left termination. In most works, only universal left
termination is considered and termination conditions rely on a language for describing
classes of atomic queries. Then the search tree associaag(mncrete) query sat-
isfying a termination condition is guaranteed toHete. When terms are abstracted
using theterm-sizenorm, then termination conditions are (disjunctions of) conjunc-
tions of conditions of the form Otli¢h argumentis groundO. Let us call this language
[fterm-

In this report, we present tHerst approach to non-termination inference tailored
to attempt proofs obptimality of termination conditions. The aim is to ensure the
existence, for each class of atomic queries not covered by a termination condition,
of oneone query from this class which leads to afpriite search tree. The main
contributions of this work are:

b A generalization of the Lifting Theorem from the Logic Programming theory.
The Lifting Theorem, at the heart of the completeness proof of SLD-resolution (see
e.g. [APT 82)), states that a SLD-derivation@# can be lifted to a SLD-derivatiof
of ). We prove that some spéci arguments of), called Oderivation neutralO, can be
instantiated as well, while retaining the existence of a lifted derivatipmvhere the
length of¢ and¢’ are identical.

B A new application of binary unfoldings to left loop inference. [GAB 94] intro-
duced the binary unfoldings of a logic progrdfas a goal independent technique to
transformP into a possibly ifpnite set of binary clauses, which preserves the termina-
tion property [COD 99] while abstracting the standard operational semantics associ-
ated to SLD-resolution. We present an algorithm to infer left looping classes of atomic
goals, where such classes are computed bottom-up from selected subsets of the binary
unfoldings of the analyzed program.

D An algorithm which, when combined with termination inference [MES 96], may
detect optimal left termination conditions expressed jp.,,, for logic programs.

We organize the paper as follows: Section 2 presents the notations. Thebwee de
in Section 3 what we call an optimal termination condition. Sections 4 and 5 propose
an extension of the Lifting Theorem. We concentrate on non-termination inference in
Section 6 and optimality proofs of termination conditions in Section 7.

2. Preliminaries
2.1. Logic Programming

We try to strictly adhere to the notations, leitions, and results presented in
[APT 97]. Some of our results and our proofs are directly inspired by those writ-
ten by Apt. When it is the case, we notify the reader. We recall here some basic
facts.

N denotes the set of non-negative integers and foraryN, [1,n] denotes the
set{1,...,n}. If n = 0then[l,n] = @.
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Let £ be a language of programs. We assume thabntains an ifnite number
of constant symbols includingoid. The set of relation symbols daf is II, and we
assume that each relation sympdias aruniquearity, denotedirity(p). TU . (resp.
T B.) denotes the set of all (ground and non ground) term§ fksp. atoms of).
Let A be an atom. Thenel(A) denotes its relation symbol. Auery A is a bnite
sequence of atomdy, ..., A, (wheren > 0). Lett be aterm. TheWar(t) denotes
the set of variables occurring in Leté = {z,/t1,...,z,/t,} be a substitution.
We denote byDom(6) the set of variable§z, ..., z,}, and byRan(6) the set of
variables appearing ity, ..., t,. We déneVar(d) = Dom(0) U Ran(6). Given
a set of variabled’, |V denotes the substitution obtained fréhby restricting its
domain toV.

A logic programis abnite set of dénite clauses. Clausd$ «+ B,,..., B, are
written in program examples with the ISO-Prolog syr#tax- B;,...,B,. Let P be
a logic program. Thell p denotes the set of relation symbols appearing inn this
paper, we only focus on universal left termination. Consider a non-empty query (or
goal) A, A and a clause. Let H + B be a variant of: variable disjoint with 4, A

and assume that andH unify. Letd be an mgu ofd andH. ThenA, A :9>(B, A)d
is aleft derivation stepwith H < B as itsinput clause If the substitutiorf or the
clausec is irrelevant, we drop a reference to it. We Wr@e:;} Q' (resp.Q :1*3> QN

to summarize &nite number £ 0) (resp.> 0) of left derivation steps from) to @/,
where each input clause is a variant of a clausk of

Let @ be a query. Aleft derivationof {Q} U P is amaximalsequence of left
derivation steps starting from the quepy where each input clause is a variant of a
clause ofP. A bnite left derivation may end up either with the empty query (then
it is a successfuleft derivation) or with a non-empty query (then it isfaled left
derivation). We say) left terminateqresp.left loop9 with respect taP if every left
derivation of{ @} U P is Pnite (resp. there exists arbnite left derivation of Q } U P).

We recall that for logic programs, left termination is instantiation-closed) if
left terminates with respect tB, then@6 left terminates with respect tB' for any
substitutiond and anyP’ C P. Similarly, left looping is generalization-closed: if
there exist® such that)#d left loops with respect t&’, then( left loops with respect
toanyP D P'.

2.2. The binary unfoldings of a logic program

Let us present the main ideas about Hieary unfoldings{GAB 94] of a logic
program, borrowed from [COD 99]. This technique transforms a logic progfam
(without any query of interest) into a possiblypmite set of binary clauses. Intuitively,
each generatedinary clauseH <+ B (whereB is either an atom or the atomue
which denotes the empty query) spees that, with respect to the original progrdm
a call toH (or any of its instances) necessary leads to a cdll {or its corresponding
instance).

More precisely, letG be an atomic query. Thea is acall in a left derivation of
{G}UPIfG :} A, B. We denote byualls p(G) the set of calls which occur in the
left derivations of G} U P. The specialization of the goal independent semantics for

1. More generally, a variant of ¢ satisfying thestandardization apartondition: ¢ has to
be variable disjoint from the initial query, the substitutions and the clauses used so far in the
computation.
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call patterns for the left-to-right selection rule is given asi#kgoint of an operatdl’ g
over the domain of binary clauses, viewed modulo renaming. In thaitien below,
id denotes the set of all binary clauses of the foifm,, ..., x,) + p(z1,...,x,)
for anyp € Il p, wherearity(p) = n.

TE(X)={(H«< B)§ | ¢:=H ¢ By,...,By, € P, ic[l,m],
(Hj « true)’_} € X renamed apart from
H; + B € X Uidrenamed apart from
i <m = B #true
0 =mgu((By,...,B:), (Hy,...,H;))}

We débne its powers as usual. It can be shown that the legsbint of this monotonic
operator always exists and we $et_unf (P) := Ifp (Tﬁ). Then the calls that occur

in the left derivations of G} U P can be characterized as followsalls p(G) =
{BO|H < B € bin_unf(P),0 = mgu(G,H)}. This last property was one of the
main initial motivation of the proposed abstract semantics, enabling logic programs
optimizations. Similarlypin_unf (P) gives a goal independent representation of the
success patterns &f.

But we can extract more information from the binary unfoldings of a program
P: universal left termination of an atomic go@l with respect taP is identical to
universal termination o7 with respect tabin_unf(P). Note that the selection rule
is irrelevant for a binary program and an atomic query, as each subsequent query
has at most one atom. The following result lies at the heart of CodishOs approach to
termination [COD 99, GEN 01]:

Theorem 1 (Codish and Taboch, 99)Let P be a program and~ an atomic goal.
ThenG left loops with respect t& iff G loops with respect tdin_unf (P).

As an immediate consequence of Theorem 1 frequently used in our proofs, assume
that we detect that’ loops with respect to a subset of the binary clauseg ﬁ)fT i,

with ¢ € N. ThenG loops with respect tdin_un f(P) (which can be an ipnite set

of binary clauses) hencg left loops with respect t@.

Example 1 Consider the following progran®:
P(X,Z) ‘- P(Y,Z),q(X,Y)- P(X,X)- q(a,b)-

The binary unfoldings of are:

TS, 10 = @

Tg, 11 = {p(z,2) < ply,2),p(z,z) < true,q(a,b) + true} U Tg, 10
Tp 12 = {pla,b)  true,p(z,y)  q(=,y),p(z,y) < q(z,9)}UTH 11
T 13 = {p(,b) « q(z,0),p(x,b) « q(y,a)} UTE, 12

TS, t4 = T2 13 =bin_unf(P')

The mere existence of the clayge, z) < p(y,z) € Tﬁ 1 1 implies that{p(z,b)} U
{p(z, z) < p(y, 2)} loops. Hencgp(z, b)} U P left loops.
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3. Optimal termination conditions

Let P be a logic program ang be a relation symbat II p, with arity(p) = n.
First, we describe the languads..., presented in Section 1 for abstracting sets of
atomic queries:

Debnition 1 (Mode) A modem,, for p is a subset ofl, n], and denotes the following
set of atomic goalsfm,| = {p(t1,...,tn) € TBz| Vi € m, Var(t;) = @} The set
of all modes fop, i.e. 2!, is denotednodes(p).

Note that ifm, = @ then[m,] = {p(t1,...,tn) € TB.}. Since a logic procedure
may have multiple uses, we generalize:

Debnition 2 (Multi-mode) A multi-modefor p is a set of modes fgy, and denotes
the following set of atomic querie§d/,,| = Up,enr, [m).

Note that ifM,, = &, then[M,] = @. Now we can dene what we mean by termina-
tion and looping condition:

Debnition 3 (Terminating mode, termination condition) A terminating moden
for p is a mode fop such that any querg [m,] left terminates with respect t8. A
termination conditiorf’'C/, for p is a a set of terminating modes fpr

Depnition 4 (Looping mode, looping condition) Alooping moden , for pis a mode
for p such that there exists a quegy[m ] which left loops with respect tB. Aloop-
ing conditionL,, for p is a set of looping modes far

As left termination is instantiation-closed, any mode that is ObelowO (less general
than) a terminating mode is also a terminating modef@&imilarly, as left looping is
generalization-closed, any mode that is OaboveO (more general than) a looping mode
is also a looping mode far. Let us be more precise:

Debnition 5 (Less_general, more_general) et M, be a multi-mode for the relation
symbolp. We set:

less_general(M,) {m € modes(p) | Im' € M, m' C m}

more_general (M,) {m € modes(p) | 3Im' € M, m C m'}

We are now equipped to present ddgion of optimality for termination conditions:
Debnition 6 (Optimal termination condition) An optimaltermination condition
TC, for p is a termination condition fop such that there exists a looping condition
L, verifying: modes(p) = less_general(T'C}) U more_general(L,).

Otherwise stated, given a termination conditiofi,, if each mode which is not less
general than a mode @fC', is a looping mode, theliC',, characterizeshe operational
behavior ofp w.r.t. left termination and our language foreng sets of queries.

Example 2 Consider the progrard PPEND:

append([1,Ys,Y¥s).
append ([X|Xs],Ys, [X|Zs]) :- append(Xs,Ys,Zs).
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A well-known termination condition §Cppena = {{1},{3}}. Indeed, any query
of the formappend (t, Ys, Zs) or append (Xs, Ys,t), wheret is a ground termi(e.
such thatVar(t) = ©), left terminates. We have:

less—geneTal(TCaPpend) = {{1}, {3}7 {1, 2}7 {17 3}7 {27 3}7 {17 2, 3}}

Onthe other handgppend (Xs, [, Zs) leftloops. Hencd ,,pens = {{2}}is aloop-
ing condition andmore_general(L oppend) = {@,{2}}. Sincemodes(append) =
less_general(T'Cappend) U more_general(Lqppend), We conclude that the termina-
tion conditionT'C gppenqa is Optimal.

We have already presented a tool for inferring termination conditions in [MES 01].
We now describe the concepts underlying the inference of looping modes.

4. Neutral arguments for left derivation

A basic idea in the work we present lies in identifying arguments in clauses which
we can disregard when unfolding a query. For instance, the second argument of
the non-unit clause ofppend in Example 2 is such a candidate. Moreover, a very
common programming technique calladcumulator passingsee for instance e.g.
[OOK 90], p. 21D25), always produces such patterns.

We brst give a technical tool to describe sgecarguments inside a program and
present a generalization of the relation Ois an instance ofO. In Subsection 4.2, we
formalize the concept of derivation neutrality. Subsection 4.3 gives the main result, in
the form of a generalized Lifting Theorem, with an application to loop checking.

4.1. Sets of positions

Debnition 7 (Set of positions) A set of positionss a mappingr:

o — 2N
p — I C[1,arity(p)]

Example 3 (Example 2 continued)If we want to spot the second argument of the
relation symbobippend, we setr := (append — {2}).

Debnition 8 (T-instance andr-generalization) Letr be a set of positions. We make
use of the following relations:

P The relation=:
A=, B Iiff

n=m

Al,...,An:TBl,...,Bm iff {V’LE[L’I’L], Al:TBZ

P The relation Ois a-instance ofO:(Q) is a T-instance ofQ’ iff there exists a
substitution such that) =, Q'n.

b The relation Ois a-generalizationO1) is a T-generalization ofp’ iff Q' is a
T-instance ofy).
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Example 4 (Example 3 continued)Sincer = (append — {2}), we do not care
of what happens to the second argumentgbend: append([1],2,[3,4]) is a 7-
instance ofappend([1|z], f(x),[3|z]), withn = {z/[],z/[4]}. Otherwise stated,
append([1|z], f(x),[3|z]) is ar-generalization of the atomppend([1], 2, [3, 4]).

Finally we give a bunch of obvious Beitions:

Debnition 9 (Ordering sets of positions)

br C 7' if for each relation symbabin II, 7(p) C 7' (p).

brcr'ifr Cr andr # 7.

B is the set of positions verifying: for eaghn I, 7., (p) = & andrq, IS
the set of positions verifying: for eaghn I, 7,,,0. (p) = [1, arity(p)].

4.2. DN sets of positions

We give here a precise Heition of the kind of arguments we are interested in.
The name Oderivation neutralO stems from the facttheguments do not play any
r™le in the derivation process. The next subsection formalizes this intuition.

DepPnition 10 (Derivation Neutral) A set of positions is DN for a clausep(sy, ..., s,)
< Body if:

s; is a variable
Vi € 7(p), s; occurs only once ip(s1, ..., Sp)
for eachq(ty,...,t,) € Body, if s; € Var(t;) thenj € 7(q) .

A set of positions i®N for a logic progran? if it is DN for each clause of.

Example 5 (Example 4 continued) The set of positions = (append — {2}) is
DN for the recursive clause @ring append, but isnot DN for the programd PPEND
sinceYs appears twice in the unit clause.

4.3. Left derivation and DN sets of positions

Our goal here is to generalize the Lifting Theorem of Logic Programming (see
Sections 3.4 and 3.5 of [APT 97], p. 56D60) in the following sense: while lift-
ing a left derivation, we may safely ignore derivation neutral arguments which can
be instantiated to any terms. As a consequence, loop detection with DN sets of
positions generalizes loop detection with the subsumption test ftake (p —

o) for any p). Proofs can be found in the long version of this paper, available at
URL : www.univ-reunion.fr/ gcc/papers

Theorem 2 (r-Lifting) Let¢ := Q = @1 = @2 = -- be a left derivation and
C1 Cc2 Cc3
Q' be ar-generalization of). Then there exists a left derivation

{:Q=Q=Q,= -
C1 C2 c3

where for eact@); € ¢, the correspondin@)’, is aT-generalization of);.
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Example 6 Let P be a logic program. Let be a DN set of positions faP, with
7(p) = {2}. Assume that there exists a successful left derivati¢p@f t) }UP. Then
we hold a similar left derivation when generaliziagwhatever the second argument
is: for any terms’ (including s) which generalizes, for anytermu € TU ., there
exists a left derivation ofp(s’, u)} U P.

5. DN sets of positions for binary programs

We present in this section an algorithm for computing DN sets of positions. We
shall show in the next section that we can incrementally build selected sets of binary
clauses, together with their corresponding DN sets of positions. So, although the algo-
rithm below can be generalized to arbitrary logic programs, we only consider binary
programsj.e. bnite sets of binary clauses. Moreover, our interest lies naey an
incrementaklgorithm for computing DN sets of positions.

dna(BinProg, T):
in:  BinProg: abnite set of binary clauses and a set of positions
out: aDN set of positions’ C

=T

while dna_one_step(BinProg,r")# 7' do
7' :=dna_one_step(BinProg,r’)
return 7’

dna_one_step (BinProg, 7') :

1. =71
2: foreachp(sy,...,sn) < q(t1,...,tn) € BinProg do
3: E = {i € [1,n] | s; is a variable that occurs
only once inp(s1,...,s,)}
4. F:=0
5: foreachi € 7'(p) N E do
6: foreachj € [1,n/] \ 7'(¢) do
7: if s; € Var(t;) thenF := F U {i}
8  (p):=(F(p)NE\F
9: return 7'

Example 7 dna({a

6. Inferring looping modes

Before we dive into algorithms and correctness proofs, let us try to give the in-
tuitions. Assume we hold a binary program _ , a DN set of
positions for , and an atom which loops with respectto . We
consider an -ary relation symbol, a binary clause

, and we would like to prove that the mode is looping.

If is a -generalization of , then loops.
Now, to show that is a looping mode, we can try to instantiate the variables of
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by a grounding substitution. The looping behavior is preserved if
the impact of only affects the arguments of which are neutral with
respect to derivation. Hence the condition of Subsection 6.2:
We conclude by applying Theorem 1. Now
assume that with . The reasoning above is of course valid.

Let be alogic program, parametric for the subsections which follow.

6.1. Looping modes from one binary clause

¢ .
in: :amode of and : a binary clause _
out: a pair , where is a DN set of positions for , if allows to
classify  as alooping mode or the booletaise
1
2:
3 if isa -instance of * p=q, n=n0O */

and
4: thenreturn
5: else return false

Termination of relies on termination of . Partial correctness follows
from partial correctness of and the result below.

Theorem 3 Let , be a mode of, and _ .
If false there exists such that left loops w.r.t.

6.2. Looping modes from a set of binary clauses
We now introduce a data structure which we chdltionary. It is a set of tuples

where , is a set of binary clauses and
a set of positions. Moreover:

Debnition 11 (D) A dictionary enjoys the properti) if is a bnite set such
that for any we have: is a bnite subset of
_ , is DN for , and loops w.r.t.
Termination of (see Figure 1) comes fro#miteness of

and termination of . Partial correctness follows from partial correctness of
and:

Theorem 4 Let , be a mode of, and _ .
If satidresD and falsethen there exists
such that left loops w.r.t.

6.3. Looping modes for a predicate

The function we use to infer looping modes for a predicate symbol is given in
Figure 2. The correctness of our algorithms relies on:



10 2 soumission JFPLCH2002.

C .. ):
in: :amode of , : abinary clause _ and
: a dictionary satisfyind
out: a pair , where is a DN set of positions for
_ , which allows to classify as a looping mode or the

boolearfalse
1
2. foreach do

isa -instance of and
3: if
(©)

4: then return

5: return false

Figure 1. The function

( D
in: . abnite set of binary clauses ,
. arelation symbol and . a dictionary satisfyindp
out: a pair where is a looping condition for and isa
dictionary satisfyingd
1 , and
2. foreach with do
3: for each do /*NB: is modiped lines 6 and 11 */
4: if false then
5:
6: [* cf. Debnition 5 */
7.
8:
9: elsif false then
10:
11:
12:
13:
14: return

Figure 2. Inference of looping modes for a predicate symbol.

Lemma 1 D always holds for

Concerning termination, note that calls to , and
fulbll their spechcations hence terminate. Since both and
arebnite sets, termination is ensured. Partial correctness is a consequence
of Lemma 1 and partial correctness of and
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6.4. Looping modes for a logic program

The top-level function we use to infer looping modes for each predicate symbol
of any logic program is given in Figure 3. Notice that is bnite and, for any

(.
in: : alogic programand : an non-negative integer
out: asetof pairs where, for each , isalooping condition
for
1 the binary clauses of
2: and
3: foreach do
4: ( - )
5:
6: return

Figure 3. The top-level function for inferring looping modes.

non-negative integer is abnite set _ . Line 2, is
initialized to  which sati®esD. Hence all calls to

fulbll their specication. This shows termination and partial correctness of the func-
tion . We point out that correctness is independent of
whether the relation symbols are analyzed according a topological sort of the strongly
connected components of the call graph of However, is always increasing

and, due to the dmition of binary unfoldings, inference of looping modes is much
more ebcient if relation symbols are processed bottom-up.

6.5. Running the algorithm

Example 8 We consider the program

augmented by the program. Here are some elements of

The dictionary , built from the binary clause while processing

shows the looping mode , including the query:
with all its  -generalizations. For , from the binary clauses and , the
updated dictionary
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allows the elimination of the looping modes and including
b the query with all its  -generalizations and
b the query with all its  -generalizations.

Note that we do not have to guess the constafr the last query as it appears
naturally in the binary unfoldings of

7. Proving optimality of termination conditions

It turns out that a slight mobtation of enables to
propose a function which may prove the optimality (sedvfiiton 6) of termination
conditions (as computed by a tool for termination inference, e.g. ¢TI [MES 01] or
TerminWeb [GEN 01]). For each pair in the set the function returns, we can
conclude that the corresponding is the optimal termination condition which char-
acterizes the operational behavior ofvith respect to . Termination and partial
correctness rely on similar arguments than those in Subsections 6.3 and 6.4.

€. ):
in: : alogic program, @ an non-negative integer and
. a set of termination conditions
out: asetof pair where, for each , is the multi-mode
of with no information with respect to its left behavior

note: If for each , , then is optimal
1 , and
2. foreach do
3: ( ' )
4.
5:
6: return

Example 9 We apply our algorithm to the program of Subsection 6.5 (see

also Example 2). We get, for
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For , we have:

Hence in both cases, we have characterized the left behavior of the predicates by using
two complementary tools.

8. Conclusion

To our best knowledge, there is no other automated analysis dealing with opti-
mality proofs of termination conditions for logic programs. But loop checking in
logic programming is a subject related to non-termination, where Bol [BOL 91] sets
up some solid foundations (see also [SKO 97]). A loop check is a device to prune
derivations when it seems appropriate. A loop checker Bdd assoundif no so-
lution is lost. It iscompletef all inpnite derivations are pruned. A complete loop
check may also prunkenite derivations. Bol shows that even for function-free pro-
grams (also known as Datalog programs), sound and complete loop checks are out of
reach. If such a mechanism is to be included into a logic programming system, then
Bol advocates and studies sound loop checkers. Completeness is shown only for some
restricted classes of function-free programs. Loop checking is also important for par-
tial deduction [KOM 82]. In this case, Bol emphasizes complete loop checkers, which
were also studied in [BRU 92, SHE 01].

The main difference with our work is that we want to pinp@ainenpnite deriva-
tions that we build bottom-up. We are not interested in completeness nor in soundness.
Moreover, in [DEV 93], the undecidability of the halting problem for programs with
one binary clause and one atomic query is shown. This clearly puts an upper bound
on what one can expect to do.

Nonetheless, we point out that the combination of termination inference and non-
termination inference may give a strong result for the program being analyzed. Al-
though the two methods are both incomplete, when their results are complementary, it
implies that each analysis is optimal. Altogether they can sometimes characterize the
operational behavior of logic programs with respect to the left most selection rule and
the language used to describe classes of atomic queries.

More work is needed to Fne the implementation into ankxfient analyzer. In
particular, the binary unfoldings need to be either computed with care or abstracted,
due to the potential exponential number of binary clauses it may generate. How to
take the predened predicates into account is another problem to solve. Finally we
have started to adapt the approach to constraint logic programming. For rational trees,
[De 89] provides an undecidable necessary andcseit condition for the existence
of a query which loops with respect to a binary clause. Moving to other constraint
structures seems a worth-while topic.
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