N
N

N

HAL

open science

Thue specifications, infinite graphs and synchronized
product

Etienne Payet

» To cite this version:

Etienne Payet. Thue specifications, infinite graphs and synchronized product. Fundamenta Informat-

icae, 2000, 44 (3), pp.265-290. hal-01915145

HAL Id: hal-01915145
https://hal.univ-reunion.fr /hal-01915145
Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.univ-reunion.fr/hal-01915145
https://hal.archives-ouvertes.fr

Thue Specifications, Infinite Graphs and Synchronized
Product

Etienne Payet

IREMIA, Université de La Réunion,

BP 7151, 97715 Saint Denis Messageries Cedex 9, France
e-mail: epayet@univ-reunion.fr

Abstract. This paper presents some formal verification-oriented results about the class of
graphs associated with Thue specifications. It is shown that this class is closed, up to iso-
morphism, under synchronized product. It is also established that every rational graph with
no edge labeled by the empty word is isomorphic to the graph of a Thue specification. A
consequence of this result is that the first-order theory of the graphs of Thue specifications
is undecidable. Connections between graphs of Thue specifications and those of Turing ma-
chines are finally investigated. The main result is that the graph of each Thue specification
is observationally equivalent to that of a Turing machine but the reverse does not hold.

1. Introduction

An important step in formal verification consists in defining a mathematical model of a computer
system to be verified. Labeled transition systems [AN82, Niv79] are currently used as such
models, e.g. in methods like model checking [CE81]. They are made of a set of states and
a set of labeled transitions. FEach label represents an event that causes the transition of the
computer system from one state to another. The synchronized product of labeled transition
systems is an operation of paramount importance since it allows to model systems of interacting
processes. It consists in considering some labeled transition systems modeling each component
of the set of processes and a synchronization constraint, i.e. a set of tuples of labels, modeling
the interactions. A tuple in the constraint is composed of events that are allowed to happen
at the same time. The result of the synchronized product is a labeled transition system that
consists of the composition of the initial ones and whose labels belong to the constraint.

At practical level, in many real cases, processes that are handled can only be represented
by very large transition systems. Consequently, verification techniques that are based on such



structures are known to encounter space-complexity problems. To face up these problems, many
compression-like techniques, as e.g. binary decision diagrams [Bry86], have been developed and
used in methods as symbolic model checking [McM92].

The problem of storage space for a representation of a process may be overcome using
(possibly) infinite transition systems. Indeed, such systems having a strong regularity can be
represented in a finite and compact way. Consequently, a process whose behaviour is modeled by
a finite and very large, but strongly regular, transition system could be handled efficiently thanks
to a compact presentation of an infinite transition system that would be an approximation of
its behaviour. Such an approach could be used to avoid an enumeration of every state of the
process. It could also be used to deal efficiently with processes whose number of states is really
infinite (as e.g. any process with an unbounded queue).

Labeled transition systems can be seen as simple labeled graphs, i.e. as sets of labeled
edges between vertices. Computer scientists started to study infinite graphs only recently. They
discovered that some transition systems enjoy interesting properties such as having a decidable
monadic second-order theory. This is the case for the transition graphs of pushdown machines
[MS85], the regular graphs [Cou89] and the prefix-recognizable graphs [Cau96]. The proof of
each of these results relies on Rabin’s theorem, stating the decidability of the monadic second-
order theory of the infinite binary tree [Rab69]. Unfortunately, none of the classes of these three
kinds of graphs is closed under synchronized product. Nevertheless, the class of rational graphs
[Mor00], that contains each of the three above classes, enjoy the closure property under this
operation.

In this paper, we consider a class of infinite transition systems which has been introduced by
Knapik and Calbrix [KC99]. The elements of this class are the graphs that are associated with
Thue specifications. The latter have been introduced by Knapik in [Kna96] and they partly
consist of a string-rewriting system S and a rational set R whose elements are irreducible by S.
The graph associated with such a specification is defined as follows. Its set of vertices is R and
there is an edge labeled by a letter a between r; and 79 if and only if r1a reduces by S into ro.

Originally, Thue specifications have been introduced as a specification and verification tech-
nique for infinite state processes. One of their interests is that they allow expression of dy-
namic properties such as deadlock freeness in a syntactic way thanks to language theory and
string-rewriting systems. Moreover, automatic proof and string-rewriting techniques can be used
within approaches based on Thue specifications to verify these properties. One such method
is currently under investigation [Kna0O] but it is limited to one Thue specification. In order
to extend this method to sets of interconnected specifications, we introduce a construction of a
composed Thue specification from given Thue specifications and a synchronization constraint.
As explained above, each component of the system is specified separately and our construction
yields a single specification which represents the behaviour of the whole system. Hence, we may
apply to the latter the verification method of [Kna00] or its future extensions.

A major key point in Thue specifications is that they provide a simple and uniform formalism
to describe several classes of infinite graphs. In [Cau00], Caucal introduces special kinds of
word-rewriting systems: prefix/suffix and left/right systems. These systems yield a uniform
characterization of prefix-recognizable (1) and of rational (2) graphs. Concerning (1), Caucal
translates the prefix rewriting of systems into the rewriting of prefix systems. Concerning (2),
he translates the mechanism of transducers into the rewriting of right systems.



In this paper, we present some formal verification-oriented results about the class of graphs
of Thue specifications. First, we prove that this class is closed, up to isomorphism, under
synchronized product. Then, we show that every rational graph with no edge labeled by the
empty word is isomorphic to the graph of a Thue specification. A consequence of this result
is that the first-order theory of the graphs of Thue specifications is undecidable. Finally, we
consider connections between graphs of Thue specifications and those of Turing machines. We
show that the graph of each Thue specification is observationally equivalent to that of a Turing
machine. Nevertheless, the reverse does not hold.

This article is organized as follows. Section 2 introduces some basic notations and definitions
from languages theory and about graphs, Thue specifications, Turing machines and rational
graphs. Section 3 is devoted to the specification of systems of interacting processes by means
of Thue specifications. We investigate the closure of the class of graphs of Thue specifications
under synchronized product. Section 4 is related to the problem of verifying processes modeled
by Thue specifications. We prove that the first-order theory of graphs of Thue specifications is
undecidable. Section 5 establishes a connection between the class of graphs of Thue specifications
and that of Turing machines. Brief conclusions close the paper.

2. Preliminaries

The reader is expected to have a smattering of formal languages and Turing machines. Never-
theless, the basic material for this paper is reviewed in the present section.

Throughout this article, if n € IN, [n] stands for the set {1,...,n} (with [0] = @). The
domain of a binary relation R is written Dom(R) and its range is written Ran(Rr). If  is a tuple,
o (f) stands for the i*" coordinate of .

2.1. Alphabets, Words and Languages

In the scope of this paper, we consider finite alphabets, generally denoted by 3 or I'. If X is a
finite alphabet, we denote by %* the free monoid generated by . The neutral element of this
monoid is the empty word, written ¢ and X7 is the set X* \ {e}. The set X U {e} is written X.
The length of a word w is denoted by |w|. The i character of w is written w(i). The set of
suffixes and the set of non empty suffixes of w respectively are

Suff(w) = {v € X* | ' € ¥* . v'v =w} and Sufft(w) = Suff(w) \ {e} .

If w = zyz (where x, y and z are elements of ¥*), the word y is said to be a factor of w. Finally,
an n-tuple, every coordinate of which is the empty word, is written &,.

2.2. Graphs

A simple directed edge-labeled graph § (or more simply a graph) over alphabet X is a
set of edges, i.e. a subset of V x X x V where V is an arbitrary set, the elements of which are
called the vertices of G. In the sequel of this paper, we shall frequently consider graphs that are
labeled by an alphabet extended by the empty word, e.g. ¥. Given v and v’ in V', an edge from



v to v’ labeled by ¢ € S is written v —;H)’. Thus, —;> is a binary relation on V for each ¢ € 5.

In the following, —29 stands for the reflexive-transitive closure of % and —g-) = —2-) o % o —éa for
any a in 3.
A (finite) path in G from v to v’ is a sequence of edges of the form vy cé V9, .o, Up_1 Cn—gl Uy

such that n € N, v; = v and v, = v’ (consequently, a path may be empty). The word
W= cq...cy i then the label of the path. In this case, we may write v % v

We shall sometimes consider graphs, the vertices of which are all accessible from some dis-
tinguished vertex. Thus, a graph G is said to be rooted on a vertezr v if there exists a path from
v to each vertex of G.

Synchronized Product of Graphs. The synchronized product of graphs has been intro-
duced by Arnold and Nivat [AN82, Niv79]. It is an essential part of the semantic of interacting
processes. For more material, the reader may refer to [Arn94]. Given n alphabets 1,...,%,,

a synchronization constraint C over q,...,%, is a subset of Hz'e[n] ;. Let Gi, 1 € [n], be some
graphs such that for each i € [n], the set of vertices of G; is V; and G; is labeled by %;. The
synchronized product of the G;’s with respect to constraint C, written ng[n] Gi, is the graph

G = {(v,c,v') eVxCxV ‘ Vi € [n], Wi(v)7rig—(é>)ﬂi(v') € gi}

3

where V' stands for the set [;cp,, Vi.

e-Equivalence of Rooted Graphs. Let G; and Gs be two rooted graphs over 3 with set of
vertices Vi and V5, respectively. Suppose that r1 (resp. r9) is a distinguished root of Gy (resp.
Gs2). These graphs are said to be e-equivalent if there exists a relation «~ C V; X Vo such that:
1. Dom(ew) = V) and Ran(ew) = Vy;
2. 11 e Y]

3. for each a in X, each path vy —5-) v} in G; and each vertex vg of Go such that vy e~ vy,
1

. . a
there exists a vertex vj in Gy such that v} «w vl and vy o vh;
2

4. for each a in X, each path v —5-) vh in Gy and each vertex vy of Gy such that vy e~ vy,
2

. . a
there exists a vertex v} in Gy such that v} «w v} and vy > vl
1

It should be noted that e-equivalence is an observational equivalence (also called weak bisimu-
lation) as defined by Milner [Mil80] if one considers ¢ to be a non-observable event.
2.3. Thue Specifications and Their Graphs

Semi-Thue Systems. A semi-Thue system S (an sts for short) on an alphabet ¥ is a subset
of ¥* x ¥*. A pair (I,r) of S is called (rewrite) rule and is written [ — r, the word [ (resp. r) is



its left-hand (resp. right-hand) side. The single-step reduction relation induced by S on ¥* is
the binary relation

E)z {(u,v) €X' x X | Jz,y e ¥¥, (l,r) €S, u=zxly andvzm‘y}.

The reduction relation on * induced by S is the reflexive and transitive closure of §> and is

denoted by ? A word u is reducible by S if u belongs to Dom(?). Otherwise, u is irreducible

by S. The set of all words that are irreducible by S, written Irr(S), is rational whenever Dom(S)
is. Indeed, it is easy to see that Irr(S) = ¥* \ ¥*Dom(S)E*.
A word v is a normal form of u if v is irreducible and u % v. The set of normal forms of u

is written uls.

Particular Kinds of Semi-Thue Systems. Let S be an sts over alphabet 3.

e S is linear if there exists a linear function f from IN to IN such that

Vuw,w' € ¥, w?w' = |w'| < f(jw]) .

e S is length-decreasing if, for each [ —r € S, |l| > |r|. Obviously, any length-decreasing sts
is linear.

Thue Specifications. A Thue specification is a four-tuple (Q, A, S, R) where Q is a finite
state alphabet, A is a finite event alphabet, S is a semi-Thue system on QU A and R C Q* is a
rational subset of Irr(S).

A rooted Thue specification is a five-tuple (2, A, S, R,u) where (2, A, S, R) is a Thue spec-
ification and u is a word of R. Notice that a consequence of this definition is that S does not
contain any rule, the left-hand side of which is the empty word (else, Irr(S) = @, R = @ and
there cannot be a u satisfying the definition).

A linear (resp. length-decreasing) Thue specification is a Thue specification, the sts of which
is linear (resp. length-decreasing).

Graph of a Thue Specification. Let 7 = (Q,A,S, R) be a Thue specification. The graph
of T, written G(T), is defined as follows. The vertices of G(7) are the words of R, the edges of
G(T) are labeled by the letters of A and there is an edge labeled by a from v to w whenever w
is a normal form of va.

The graph of a rooted Thue specification (2, A, S, R,u) is the maximal subgraph of Thue
specification (2, A, S, R) that is rooted on vertex w.

The family of the graphs of rooted Thue specifications is denoted by G[Ts]. The subfamilies
of G[Ts| corresponding to special kinds of rooted Thue specifications are denoted as follows:
G[Lin-Ts] for the graphs of linear rooted Thue specifications and G[Len-Ts] for the graphs of
length-decreasing rooted Thue specifications.



2.4. Turing Machines and Their Graphs

Turing Machines. In the scope of this paper, we use a definition of a Turing machine that is
inspired by that of an off-line Turing machine (see e.g. [MS97] for details). A Turing machine is
made up of a read-only input tape and of work-tapes. It cannot write on its input tape and all
computations are done on the work tapes that are infinite to the left and to the right. Initially,
an input word is stored on the input tape and the work tapes only contain blank characters.
Then, the input tape head reads the input word from the left to the right (with the possibility
of stopping and then resuming its motion) and computations are made on the work tapes. Note
that the input tape head of these Turing machines is one-way, from the left to the right, unlike
the motion of an off-line Turing machine input tape head, which is two-ways. Moreover, there
are no accepting states. Indeed, our motivation does not rely on any languages theory aspect.
Actually, we are interested in Turing machines as an approach for modeling process behaviour
that is defined as a graph associated to a machine.

Formally, a k work tape Turing machine M over alphabet ¥ is a tuple (Q, >, '1,..., [, d,qo)
where () is the finite set of states, X is the input alphabet, T'q, ... , 'y are the work tape alphabets,
qo is the initial state, and ¢ is the set of transitions:

FCQXT XDy X xTpxTy x {€,p,m} x - xTj x {<,p, B} xQ

where « (resp. » and m) symbolizes a move to the left (resp. a move to the right and no move)
and an input e represents the case where the input tape head of M does not move and does not
read any character. We assume that the blank character, written [, belongs to each I';.

An e-transition is an element of the set

Qx{epxix- - xTpxI'i x{q,p, B} x - x[px{<€,» 8} XQ.

An internal configuration (p1qua, ..., prqrg) of M is an element of the set T'1*.Q.I'1 ™ x - -+ x
['v*.Q.I'y*. This encodes the description of M at a time as follows: ¢ is the current state, for
all 7 in [k], u;v; is the content of the i*h work tape from the leftmost non-blank character to the
rightmost non-blank character and for all 4 in [£], the head of the i*h work tape is reading v;’s
first character or [ if v; is empty. Note that for all i in [k], both p; or v; may contain . An
internal configuration, every coordinate of which equals qg, is called initial configuration of M.

Linear Bounded Machines. Turing machine £ = (Q,3,T',..., T, d,qo) is linear bounded
if there exist k linear functions from IN to IN denoted by Sy, ..., S; such that, when computing
an input, the length of which is n, £ uses at most S;(n) cells of the i*" work tape.

Real-time Turing Machines. A Turing machine M = (Q,%,I'y,...,T',d,qo) is said to be
real-time if it never reads € on its input tape i.e. if

JCAQXxExTyx-- - xTpxDy x{g,p,B} X - xTpx{<€,p, B} xXQ.

It is clear that M is also a linear bounded machine. Indeed, when computing an input, the
length of which is n, M uses at most n cells on each work tape.



Finite Automata. A finite automaton is given by a finite set () of states, a finite alphabet I,
a subset § of @ x ¥ x QQ called the set of transitions, an element go of @ called the initial state
and a subset F' of () called the set of final states. It is denoted by the five-tuple (Q, 3, d, qo, F).
The language of a finite automaton A, written Lang(.A), is the set of all words w such that there
exists a sequence (qo,€1,q1),- -5 (qn—1,Cn,qn) of transitions satisfying ¢; ...¢, = w and ¢, € F.

Graph Associated to a Turing Machine. Let M = (Q,%,T,...,T',d,q90) be a Turing
machine. Let G be the graph defined as follows. The vertices of G are all the internal configu-

0

rations of M, the labels of G belong to Y and (1quiy - kquk) %(,u’lq'ui, oy lpq'yy) s an
edge of G if and only if for each i € [k], there exist X;,Y; € T'; and #; € {«, »,m} such that

(q7C,X1,...,Xk,Y17‘17...7Yk70k7ql) €d

and either ¢; =< and one of the following holds:
o Jaj, B € 1N, 3Z; € 1y, iy = iZy, vi = XiBi, pi = e and, if Z;Y;8; # 00, then v} = Z;Yif3;,
else V] =¢;
o u; =¢, oy € Iy, v; = Xjou, p = € and, if Yioy; #0, then v =Y,ay, else v] = ¢;
o X; =0,3; €Iy, 3Z;, €Ty, i = o Z;, vy = €, p, = o and, if Z;Y; #00, then v) = Z;Y;,
else V] = ¢;
o X; =0 pi=c¢,v=c¢, p, =cand, if Y; #0, then v] =0Y;, else v/ = ¢;
or 4; =» and one of the following holds:
e Jo; €I, v, = X, V) = o and, if 1, Y; #10, then pl = p;Y; else ul, = ¢;
o X;=0v;=c¢,v=c¢, and if 1;Y; #0, then p} = 1;Y;, else p} = ¢;
or ¢; = m and one of the following holds:
o Jo; € I, vy = Xy, ph = p; and, if Yoy #10, then v) = Yy, else V) = ¢;
o X;=0v;=c¢,p, =p;and, if Y; #0, then ] =Y, else ] = ¢.
The graph of M, written G(M), is the maximal subgraph of G that is rooted on the initial
configuration of M.
The family of the graphs of Turing machines is denoted by G[TM]. The subfamilies of G[TM]
corresponding to special kinds of Turing machines are denoted as follows: G[Lin-TM] for the
graphs of linear bounded machines and G[Real-TM] for the graphs of real-time Turing machines.

2.5. Transducers and Rational Graphs

The machines that realize rational binary relations are called transducers. Formally, a transducer
K is a six-tuple (Q,%,I',d,qo, F') where @) is the finite set of states, 3 is the input alphabet, T
is the output alphabet, 6 C QQ X Z* x Z* x (Q is the finite set of transitions, gy € @ is the initial
state and F' C @ is the set of final states. The relation R that is realized by K is defined as:
R C X* x '™ and for each w € X*, for each w' € I'*, (w,w’) € R if and only if there exists a
sequence (qo, T1,Y1,q1) - - - (qn—1, Tn, Yn, qn) of transitions satisfying z1 ...z, = w, y1 ...y, = w'
and ¢, € F.

Let 3 and Z be two finite alphabets and G be a graph, the vertices of which belong to Z*,
that is labeled by ¥. This graph is said to be rational if, for each a € %, the relation — is
rational, i.e. there exists a transducer that realizes % ¢



3. Closure under Synchronized Product

Now, we prove that the class of graphs of Thue specifications is closed under synchronized
product. For this aim, we construct a Thue specification, the graph of which is isomorphic to
the synchronized product of the graphs of the original ones.

3.1. Synchronized Product of Thue Specifications

Let n > 2 be an integer and 7; = (2, A4, S, R;), i € [n], be some Thue specifications. Let
C C Hie[n] A; be a synchronization constraint. The synchronized product of the T;’s according
to C is the Thue specification

C
i€[n] i€[n]

where § and R are defined in this section. We first give a few definitions that will be useful in
the sequel.

e L is the following subset of [Hie[n] Q; U &]*

Vi € [Jw] — 1], V4 € [n], mj(w(i)) =€ = mj(w(i +1)) = ¢ and }
{ 7 ‘ i [Jol], 3 € [}, w5 (w)) £ Ut

e For each i € [n], T; stands for the mapping m; extended to [Hie[n] ﬁ;u&] * in the following
way:

Tit [TLem @ UA]T — (UA)
wF#e — mi(w(1))...m(w(|wl]))
€ — €.
e ¢ is the one-to-one correspondence:

1€[n]

w — ' such that Vi € [n], 7;(w') = m; (@) .
In the sequel of this section, for better readability, tuples (a1, ..., ay) will sometimes be repre-

ai
sented in the vertical way ( : )
a

n

Example 3.1. Suppose that n = 3 and that for each i € [n], Q; = A; = {a,b,c}. Then, £
contains

S|
S
S
™

and

(=
(=l
o
S
S



but it does not contain

€ a b b
€ and b €
€ c €
On the other hand,
€ ab a
| ¢ | =¢ and ¢ b =
€ caa

The Semi-Thue System S. This system is the union of a set S, of arrangement rules and
a set Ss of simulation rules. Arrangement rules are:

e cach i1y — @y such that

— 11, ty, @ and @ are some elements of Hie[n} EZVZ U KZ and
— 11 # &, and
— if S={i € n]|m(f1) = and m;(f2) # €}, then S # @ and
x Vi €S, m (ﬁg) = ¢ and T (ﬁl) =m (t_é) and
x* Vi &S, Wi(ﬁl) = Wl(t_i) and Wi(ﬁz) = 7ri(7?2)7
e and &, —e¢.
The following lemma emphasizes the role of S,,.

Lemma 3.1. The rewriting system S, is convergent. Moreover, for each word w in the language
[Hie[n] Q; U Ai]* N L, wls, is the word w' in L satisfying: for each i € [n], m; (w') = (w)
Each word in L is irreducible by S,.

The set S, of simulation rules is the set of all rules w — w’ such that

e we Landw €L,
e Ji€[n], Ti(w) > 7i(w) €S and Vi € [ |w] ], i (w(j)) e,
o Vj € [n] ~ i}, T (w') =75 (w).

These rules allow to apply, for each i in [n], the elements of S; to the i*" projection of words of
L without modifying the other projections.

Example 3.2. Suppose that n =2, Q; = Ay = {a1}, Q2 = Ay = {as}, S1 = {a1a1 = a1} and
Sy = {ay = asas}. The set S, of arrangement rules is

5= {0 - )
()~ () ()= ()0}



5= ()= () (- ()= () fu
L= (-]}

The first (resp. second) part of this union corresponds to rules generated by Sy (resp. Ss).

The Rational Language R. For each i € [n], let A; = (Qi, Qi, 6, G045 E) be a finite automa-
ton with no e-transition that recognizes R;. Our goal is to prove that ¢( Hie[n] RZ-) is rational
by constructing from the A;’s a finite automaton that recognizes this language. As every word
of ¢( [Licp R;) is irreducible by each arrangement rule (because Ran(¢) C £) and by each sim-
ulation rule (this is due to the way we have constructed Ss and to the fact that for each i € [n],
R; C Irr(S;)), we could then define R as R = ¢(Hie[n] R;).

Here is a way to construct a finite automaton that recognizes ng( Hie[n] Ri). The idea is to

make a product of the A;’s. Nevertheless, we have to add in a first way e-transitions to each
A; if we want this product to recognize every word of ng( Hie[n] Ri). Effectively, if, for instance,

n =2, Ry = {a} and Ry = {aaa}, the word (a,a)(c,a)(e,a) is in ¢(R1 x Ry) because it equals
gb(a, aaa). Consequently, we associate to each A; the automaton B; defined as:
Bi = (QiU{fl}, i, 6,08}, qoi, FiU{f]}) where:
e f/is a new state that does not belong to @; and
o 6 ={(fe.f]) | fe F}u{(fi.e,fD}.
Let B be the product of the B;’s according to constraint [, Qi ~{&L}, i.e
B= (Tl @uirh TT %~ 1} & (o0, T[] BU{A})

i€[n] i€[n] i€[n]

where § = {(g,a,q') | a # &, and Vi € [n], (mi(q),mi(a),mi(¢)) € & UL} Tt follows from
construction of the B;’s that the language recognized by B is ng( Hie[n] Ri).
Consequently, ng( Hie[n] Ri) is rational and as it is also included in Irr(S), we define R as

R=¢([] R) -

1€[n]

Example 3.3. Consider rational languages {¢,z} and a*. Here are two finite automata with
no e-transition that recognize these languages:

A= ({0 a1} {2} {ao, 5,000 a0, {ao a1 }) and 4> = ({po}, {a}, {(po, @,p0)},pos {po}) -



From A; and As we construct:

Bl = ({(IO7(117f{}7 {[L‘}7 {(q07x7q1)7 (q0787f{)7 (q1787f{)7 (f{757 f{)}7q07 {q07QI7f{}) and

By = ({pOafé}’ {a}’ {(poaaaPO)v (pOagafé)v (févgv fé)}ap()a {pOafé}) .

The product of By and By according to constraint ({z,e} x {a,e}) \ {(e,€)} is such that
its set of states is {(QOaPO)a (QIaPO)a (f{7p0)7 (qu fé)a (qh fé)’ (f{a fé)}a

its alphabet is {(5,@), (x,¢€), (x,a)},

its set of transitions is

{ ((q0,p0), (e,0), (f1,20)) ((90,P0), (z, @), (41,P0)), ((90,P0). (x,€), (a1, f3)),
((QI7PO)7 (57 a)7 (f{7p0))7 ((f{7p0)7 (57a)7 (f{?p[)))v ((q07 fé)7 (ZL‘, 5)7 (Qh fé)) } ’

its initial state is (qo,po),

its set of accepting states is {(q07p0)7 (q17p0)7 (f{7P0)7 (qm fé)7 (C]h fé)7 (f{u fé)}

The accessible part of this automaton may be depicted as follows:
[}

BN
(,a)

The language of the automaton is (z,¢€) + (¢,a)* + (z,a).(¢,a)* i.e. ¢({z,e} x a*).

3.2. Graphs G([], 7:) and er[n] G(T;) are isomorphic

i€[n]

The main result of this section (Theorem 3.1) is established here. The following lemmas and
propositions will be used in the proof.

Lemma 3.2. Let Z,Z € []

ie[n](Qi U A;)* such that there exists i € [n] satisfying m; (a‘c’) §*> T (Z)

7

and for each j # i, 7;(Z) = 7;(Z). Then, $(Z) —;>¢(2')
Proof. By induction on the length of the rewriting ; (f) Si> i (Z) d

Proposition 3.1. Let Z,7 € Hie[n] R; and @ € C such that, for each i € [n], we have the

—

rewriting ; (f)m (&') Si> e (y) Then, ¢(f)-5—;> P(7)-

Proof:
Let @& be the usual concatenation operation for product of monoids, i.e. for each tuples
(wi, ..., wp) and (w, ..., wp) in [Le, (i U Aq)*, we have

(Wi, .-y wy) @ (W, .., wh) = (wiwh, ..., wy.wl)

Let (#;)i<n be the sequence defined as:



[ f() = f@ a and
e for each i € [n], Z; is the n-tuple defined as m; (a?z) = (g) and, for each j # i, «; (a?z) =
7Tj (fifl).
For each i € [n], m; (:f:’i,l) = m (:f:’g) = m (:i’@ é’) = m (:f:’)7rZ (Ei). Consequently, we have the
rewriting m; (:i’i,l) Si> T (g’) i.e. m; (:i’i,l) Si> T (:f:’l) Moreover, for each j # i, we have 7; (:Ei,l) =
u (:f:’l) Consequently, according to Lemma 3.2, for each ¢ € [n], we have ng(:f:’i,l)—;ng(:f:}).

Finally, as @) = £ ® @ and &, = 7, we have ¢(Z ® @) ?qﬁ(gj). As ¢(Z).¢(a) Si>¢(f ® @) and

$(d@) = d, we get ¢(Z).d—2 $(7)- O

Proposition 3.2. Let Z,7 € Hie[n] R; and @ € C such that ng(:f:’).(_i? &(g). Then, for each
i € [n], m (:f:’)m (6) ?m (g)

Proof:

Let wy 2w 2 Wy be a rewriting of ¢(Z).d into ¢(7) (i.e. wy = ¢(Z).d and w, = ¢(7)).
The application of a rule of S; to a word wy, of the rewriting corresponds to the application of
a rule of a S; to T;(wy,) and does not modify the words 7;(wy), j € [n] \ {i}. Moreover, the
arrangement rules do not modify the words 7; (wk), j € [n]. Consequently, w, is such that for

each i € [n], 7 (wo) ?ﬁ (wy). But 7 (wo) =7 (¢(2).8) = 7i ($(7)).m: (@), 7i (7)) ‘S mi(2)

and 7; (gb(g’)) det.o e (gj’) Consequently, the result of the proposition holds. O

In view of Prop. 3.1 and Prop. 3.2, the following theorem holds.

Theorem 3.1. Graphs g(er[n] Ti) and er[n] G(T;) are isomorphic.

4. A Connection with the Class of Rational Graphs

Let G be a rational graph, the vertices of which belong to Z* (where Z is any non-empty finite
alphabet). Suppose that G is labeled by X, a finite alphabet that does not contain the empty
word. As G is rational, for each a € X, ? is a rational transduction. For each a € %, let

Ko = (Qaaza Z, 5a7QSaFa)

be a transducer that realizes %) Suppose that (), " Z = @ and that for each b € ¥, b # a =
Qa N Qb =d.

Our goal is to construct a Thue specification, the graph of which is isomorphic to G. To this
. . a,
aim, we define transducer K that realizes | J,cy. ?:

K= ({QO} U U @Qe% 2 {(0,524)} v dar 20, | Fa)

aEX acn aEx



where qo is a new state that does not belong to Z U |J,c5x Qo We define from K the Thue
specification:

T=(QUZU{£},%,8,R) such that
e £ is a new symbol that does not belong to QU X U Z,
e sts S is
S= {tLa—al|aeX} U {za—az|a€X, 2€Z}U

{qoa—>q8 |a € E} u
{qw—=w'q" | (q,w,v',q') € Uyes, 0a} U
{f£—=q£|f€Usex Fa} U

{zqo—>qoz | z € Z},
« R—qy. 7" . £
Let ¢ be the one-to-one correspondence from Z* to R that maps each w € Z* to qowf € R.
It is clear that w %)w’ if and only if gow£ g(i>7_) qow' £. Consequently, graphs G and G(T) are

isomorphic. So, we have the following theorem.

Theorem 4.1. The class of rational graphs with no e-edge is included, up to isomorphism, in
the class of graphs of Thue specifications.

Morvan establishes in [Mor00] that the first-order theory of rational graphs is not decidable.
His proof consists in reducing the Post’s correspondence problem to the decidability of a first-
order formula of the form 3z s,(z,z) on a rational graph. This proof also works for rational
graphs with no e-edge. Consequently, the following corollary holds.

Corollary 4.1. The first-order theory of graphs of Thue specifications is not decidable.

Notice that it is possible to associate to rational graphs G together with a distinguished root
r a rooted Thue specification T, the graph of which is isomorphic to that of G. It suffices to
consider the above construction with the following additional definition for the initial word u of
T: u=qor£. As Morvan’s undecidability proof also holds for rooted rational graphs, we have
the following result.

Theorem 4.2. The first-order theory of graphs of rooted Thue specifications is not decidable.

Notice that those undecidability results could be obtain from rather simple formulas, as that
of the following example.
Example 4.1. Let 7 = (2,A,S, R) be a Thue specification. The following formula belongs
to the first-order theory of the graph of T if and only if S is confluent on Dom(—).A where
_ a,, g(T)
— = —:
9(T)  aea9(T)

Vri,ro €ER, Ya €A, 1 51y = (Vr3 € R, Tli>7“3=>7“2:7“3) '
g(7) a(T)

Consequently, as confluence is undecidable in general, the first-order theory of G(7) is not
decidable.



5. Connections with the Class of Graphs of Turing Machines

In this section, we provide a construction that takes a rooted Thue specification as an input and
produces a Turing machine, the graph of which is e-equivalent to that of the specification. This
construction is illustrated by a concrete example.

5.1. Turing Machine Associated to a Thue Specification

Let T = (2,A,S, R,u) be a rooted Thue specification. We construct a Turing machine M that
“simulates” T, more precisely the graph of which is e-equivalent to that of 7.

Machine M consists of two work tapes that we call By and Be. The first operations that are
performed by M from its initial configuration (qo,qo) consist in writing the word v on By and
By and to switch to configuration (ug(, ugy).

We could construct M in such a way that it then reads a character on its input tape: if it
reads a, it could then write this letter at the end of the inscription v of By and reduce the word
ua using rules from S. Nevertheless, such a conception encounters a problem if each rewriting
of ua produces a word that is not in R. Effectively, in such a case, in the graph of T there is
no outgoing edge from w that is labeled by a. But, as M has read a on its input tape, in its
graph there is an outgoing edge from its initial configuration that is labeled by a. Consequently,
graphs G(M) and G(T) are not e-equivalent in this case.

The following note provides a way to bypass this problem. When a word wa (with w € R
and a € A) is being rewritten, the first rule that is used is applied to a suffix la of wa (because
w is irreducible by §). Consequently the first rule that is used has the form la — r. Moreover,
if w = w'l, applying this rule to wa is equivalent to changing w'l into w'r.

Consequently, we construct M in such a way that its behaviour implements the algorithm
of Fig. 1. It is important to note that M reads a letter a on its input tape only in two precise
cases (let w be the inscription of By at the beginning of procedure Simulate):

1. when wa is in R, i.e. when there is an edge labeled by a from w to wa in G(T);

2. when a rewriting of wa, the first rule of which is la —r € S, has produced a word w' € R,
i.e. when there is an edge labeled by a from w to w' in G(T).

In case the word being rewritten has no normal form with respect to S, the loop while ...
do of procedure Simulate does not terminate. Consequently, we construct M in such a way
that it implements the loop for each a € A do by an appropriate set of non-deterministic
transitions.

Nevertheless, the graph of M is not e-equivalent to that of 7 yet. Effectively, consider the
example below. We have represented, at the top line, the graph of a Thue specification and, at
the bottom line, a part of the graph of the Turing machine that “simulates” the specification.
Those graphs are not e-equivalent because the only possible e-equivalence relation is such that

u e (ug),uqp), u e~ (uqy,u'qp), v e~ (uqp,u"qp), for each ¢ € [n], o} e u and for each

. " b . 7 b
i €[pl, t; e u. But u—u , u e o] and there is no vertex ¢ such that v e ¢ and ¢f —» ¢.



procedure M
switch to configuration (ug, ugqp);
Simulate;

procedure Simulate
w := inscription(By);
for each a € A do
if wa € R then End[a,wa];
else
for each la —r € S such that w = w'l do
change inscription w'l of By into w'r;
while inscription(B;) ¢ R do
pick up a rule I’ = r' of S;
apply I’ — 7' to the inscription of By;
End [a, inscription(By)];

procedure End [a eEA, we R]
read a on the input tape;
switch to configuration (wgj, wyq();
Simulate;

Figure 1. Working of M

a u
u
b u
i 9 9 ! a 10 [
by — - —— - 2% ('LL QOauQO)
g
/ !
(uqo,UQO) n n
9 "1 "r
by ——— - —— - Lp ('LL qo, U qO)
€ € b

In order to face up this problem, M is constructed in such a way that at each step of any
reduction, it can go back to the configuration it had before it started to reduce. This is done
by means of the second work tape that stores the word that is on B; before the reduction. Note
that if the reduction of a word wa ends with w' € R, M has to write w' in the place of w on
Bo. Consequently, the previous example turns into the following:



a
u
b u!
g
N _\_g _________ a
| r——— - - - 7 ! a
| i | l [PV
by € h— - — vty ———» (Ugp, W)
YvYyY c S S
/ !
u U
( AqOA, AqO) o IS g " "ol o 0
[ 5 by —— > -~ —»Lp———>(u dp, U qo)
T i ! b
L - - a4 & !
L L . ____-__ 4
g

where transitions starting from ¢, ; (resp. from ",1) correspond to the copying of u’ (resp.
u'") on Bg. It is easy to see that those graphs are e-equivalent.

Finally, each time M rewrites a word wilws using a rule [ — r, it writes r in the place of [.
If | = Uiy, with |l1]| = |r| and |l2| # €, it writes 7 in the place of I, then it erases I and shifts
to the left the portion of the work tape that corresponds to we. If r = 17y, with |r1| = |I| and
|r2| # €, M writes 71 on [ then it shifts to the right the portion of B corresponding to we and
it writes o at the end of 1. After performing these operations, the machine verifies if the word
that is produced by the rewriting is in R.

Here is a more formal definition of M. Let A = (Q4,,d4,po, F') be a finite, deterministic
and complete automaton that recognizes R. Suppose that A has no e-transition. We set

M = (Qui, A, QU A U O}, QU T}, 604, 00) -
The set of states Qg is defined as
Qm= {00,9} U Qu U Qpback U Qreplace U Qsnife U
{la],[a,€] |aec A} U {[a,p] |a€eA, peQa}U
{[ae]|acQnA} U {[[a.p]|acQnA, peQa}U
{la,l=r|w]|aeA I5reS8, wesSuft(l)}u
{[a|w,h] |a€A, A—re8, we Sufi(l) and h € Suff(r)}

where Qy, Qpack, Qreplace and Qgpiry are the set of states involved in dy, dpack, Oreplace and ghift
(see below).
The set of transitions is

6./\/1 = 6u U 6back U 5replace U 6shift U 5start U 5check—wa U 6rewrite U 5check U 6100k—f0r

where 0y, Opack, Oreplace and dgshiy are the sets of e-transitions that perform the operations de-
scribed above: ¢, is the of e-transitions that write v on B; and By (when M has written w, it
switches to configuration (ug(,uq))), dback is the set of e-transitions that allow to M to switch



back to the configuration it had before a reduction, dyeplace is the set of e-transitions that write
on By the inscription of By when this inscription is the result of a rewriting and is in R and dgps
is the set of e-transitions that shift a portion of the inscription of B; when a rule is applied.

Without loss of generality, we may assume that J, and dyeplace are deterministic, i.e. for
each configuration (piqu1, paqre) such that ¢ € @, (resp. ¢ € Qreplace), if there exists in § a
transition of the form

(q,e,X1,X2,Y1,41,Y2, €2,p) where

e X is the first character of v if this word is not empty, else X; =0 and
e X5 is the first character of v if this word is not empty, else Xy =1,

then each transition of ¢ that has the form (¢',e, X1, X5, Y], #,,Y5, #5,p") with ¢ € @, (resp.
q' € Qreplace) s such that:

(Yllv ,17Y2170127pl) 7é (Y17‘17Y27‘27p) = (qlaXivXé) 7é (Q7X17X2)'

The sets of transitions dstart, Ocheck-wa, Orewrites Ocheck and dpok-for are defined as follows. The
transitions of dgar¢ launch the first loop for each ... do of procedure Simulate of algorithm of
Fig. 1:

bt = {(dhe00040m[ze]) acnal U

{(qg,s,n,u,u,<,n,-, [a,q6]> ‘ aEA, ad Q} .

Let w be the inscription of By. It is clear that if an element a of A is not in Q, wa cannot
belong to R because R C Q*. In this case, machine M directly tries to rewrite wa from state
[a, qp)- Else, from state [6, € ], the machine verifies if wa € R by means of transitions of the set
Ocheck-wa defined as:

5check—wa =

aGQﬂA,xEQ}U

[E,p],s,x,D,x,b,D,l, [G,p’]) ‘aEQﬂA, z€Q, p,p €Qu, (p,z,p) 66,4} U

(
([@e].ennnmnmf@m]) [acanal y
(
(

[6,p],a,|],|],a,>,a,>,q6) ‘aEQﬂA, p € Q4, Af € F such that (p,a, f) 66,4} U

a€QNA, peQu, V' € Qu, }

— !
([a,p],g,D,D,D,<,D,.a [G,QO]) ‘ (p’a’pl) c 6_,4 :>pl ¢ F

For any given a, if wa is an element of R, machine M is allowed to read a on its input tape, to
write a at the end of the inscription of its work tapes and to start again from ¢f. Else (i.e. if wa



is reducible or if wa € Irr(S) \ R), M switches to state [a,q)] because we have supposed that
automaton A is deterministic and complete. From this state, M tries to rewrite wa by means
of the rules of S. This is performed by the transitions of drewrite:

6rewrite:
{([a,qﬁ],s,x,lﬁl,ﬂv,b,ﬂ,l, [a | 577“]) ‘a—)reS, a € A, avEQU{[I}} U

eEAl—res,
(aqo 5$D$<D.[al_>r|:m]>‘ ZEQ,$G£SUH(1)}U
acA l—reS, xeQUA,
(“—>7’|9 ], 2,02, «0m, [a’*”‘"’g])‘ g € Sufft (1), zg € Suff(l) }U

a1 =7 | 1], e, 2,02 »,0,m, [a|zr])‘aeA,z—weS,zeQuAu{D}}U

g € Suff(l), h € Suff(r),

a€ A, z,2' €eQUA, Il —=res,
b
g=uzg, h=2a'h

ac€ A, A—res8, ge Sufft(l), } U

(a|g, 5$Dxl|]l[a<|g]>‘$:g(1)

a€ A, ze QUAU{D},

(a|6h lezlzmlm, [a>|h]>‘ EIl—>rES,h€Suﬁ'+(r)}U

a €A, ZGQUAU{D}}

{
{
{
{ a1 0,8], 2,00, m, [ ']
{
{
{

(a|66 5z|]z<|]l[a€]>

The first four sets of this union contain the transitions that perform the search of a left-hand
side of a rule. The other ones contain the transitions that perform the application of a rule.
States [a, 4 | g] and [a,» | g] launch the transitions of the set i, that perform the shifting
of a portion of the inscription of B; during the application of a rule. States [a, < | g] are used
in case of a shifting to the left and states [a, > | g] in case of a shifting to the right. Suppose
that after any shifting from a state [a, 4| g] or [a,» | g], M switches to state [a, € .

Each time M has applied a rule, it has to verify if the word that is obtained is in R. This
is done by means of the transitions of dcheck:

Ocheck = {([a,e],s,x,ﬂ,x,<,ﬂ,l, [a,E]) ‘aEA, xEQ} U
{([a,e],a,x,ﬂ,x,l,ﬂ,l, [a]) ‘aEA, x%Q} U

{([o:€].2.0.00»,0.m [a,p]) | a € A} U



{([a,p],s,x,l],x,b,l],l, [a,p’]) ‘a EA z€Q, pp €Qu, (p,z,p)e€ 5.4} U
{([a,p],a,l],l],l],<,|],<, [replace]) ‘pe F, ac A} U

{([ep),&,0,0.0,«,0,m, [a]) ‘pe Qu~F aeAl.

If the word w' that is produced by an application of a rule to the word wa is an element of R,
the machine reads a on its input tape and replaces the inscription of By by that of By (i.e. w').
In order to perform this replacing, M switches to state [replace] that launches the transitions
of Oreplace- After any replacing, M switches to configuration (w'qj, w'q(). If the word w’ is not in
R, M continues to rewrite, so it has to look for the left-hand side of a rule within the inscription
of By1:

dlook-for = {([a],e,x,ﬂ,x,<,ﬂ,l, [a]) ‘aEA, xEQUA} U
{([a],s,x,l],:l:,b,l],l, [a]) ‘aEA, xEQUA} U

{([a],s,x,l],:r:,<,|],l, [a,l—>r | :v]) ‘l—w €eS,a€A, x e Suff(l)} .

We insist that from any state of a transition in dcheck-was Orewrite> Oshift, Ocheck and Olook-fors M
is allowed to perform transitions of dp,cx that bring it back to configuration (wgj, wgg). This is
why the graph of M is e-equivalent to that of T, as explained above.

Both lemmas below are direct consequences of the definition of M.
Lemma 5.1. Each vertex (uqu, p'qv') of G(M) satisfies one of the following points.

1. Eitherq=q), p=p/, p€ Randv =1"=¢.

2. Either q¢ € Qreplace,; v € R and there exists a unique sequence v1, ... , vy, of vertices of

G(M) such that

(uqv, ' q) == v == .. == vy = (urgy, prgp)
’ GM) T aM) T gy gy T BT
(because Oreplace @5 a deterministic set of transitions). Moreover, for each vertez v of G(M),
we have (uqu, 1'qv’) —=» v if and only i
(nqv, p'q )Q(M) f y if
(qu, flq) == v1 = ... = vy —— (uvgh, prgh) o .
gM) — gm) g(M) g(M) G(M)
3. Fither q € Q.. As 6y, is a deterministic set of transitions, this case is similar to the
previous one with (puvqy, prqp) instead of (ug(, uqp)-
4. FEither ¢ € Qu U Qreplace and there exists w € R such that (wq(’),wq(’))g—(ijl)(uqy, pwaqr').

Moreover, for each vertex (wq, wq) of G(M), we have:
/ / € 1 I € / /
wqp, wqy) —» (pgu, p'q) <= v, q) s (wq), w
(wqp qO)g(M)(uq pqv') (kqv, 1'q )g(M)( 40> W)

(this is due to the transitions of dpack)-



Lemma 5.2. Let w,w' € R and a € A. Then, we have (wqj, wqp) g—;\z)(w’q{),w’q{)) if and only

if w' € (wa)ls. Consequently, (wq),wqy) is a vertex of G(M) if and only if w is a vertex of
g(T).

The following result is a consequence of those lemmas.

Proposition 5.1. Graphs G(T) and G(M) are e-equivalent.

Proof:
It suffices to consider the relation ewC R x [(QU A)*.Q.(2U A)* x Q*.Q.Q*] defined as

£
o= {(1“4 (pqv, ' q")) | g € Qreplace (nqv, 1'qr) g—(—A;)(uVQ67uVQ6)} U

{(u, (nqv, W'qv)) | 4 € Qu, (pav,p'qr) g—(iz)(uq(’),uq(’))} U

{(w, (kqr,wq)) | ¢ & Qu U Qreplace (wap, wah) g—(i;)(uqv, WJ)} :

a

Note that there exist some rooted graphs that are e-equivalent to no rooted graph with no
e-transition. Consider for example graph G depicted below:

a
9

b

The only possible candidates for a rooted graph with no e-transition that would be e-equivalent
to G have one of the following forms:

a
or Oi,o

b

It is clear that none of these two graphs is e-equivalent to G. Consequently, as there is no
e-transition in the graph of a Thue specification, there is no Thue specification whose graph is
g-equivalent to G.

In case T is a linear rooted Thue specification, machine M constructed above is a linear
bounded one because the working of M cousists in the application of the rules of the semi-Thue
system S of T.

The following theorem sums up all of these results.

Theorem 5.1. Graphs of Turing machines and those of rooted Thue specifications are connected
in the following way.

o G[TS] is e-equivalent to a strict subset of G[TM].
e G[Lin-TS| if e-equivalent to a strict subset of G[Lin-TM].



5.2. An Example

Consider the following Thue specification
T = ({a}, {a.b}, {ab—e,ab—b}, o', <)

and the following finite, deterministic and complete automaton with no e-transition that recog-
nizes a*:

A= ({po}. {a, {o,ap0)}, po, {p0}) -

The Turing machine associated with 7 is
M= (Qus {a}, {a,b.0}, {a,0}, dar, @)
where () o4 is the set of states that are involved in d, and
M = 0y U Ostart U Ocheck-wa U Orewrite U Oshift U dcheck U Oreplace U Olook-for U Oback -

The sets of transitions composing dxs are the following.

e (0, performs the inscription of u, i.e. of €, on By and By and switches the machine to
configuration (ugj, ugj):

5, = {(qo,e,D,D,D,I,D,I,q(’))}.

e Ogart 1S the set:

{(Q(I)ugal:lv[lvll <7|:|7.7 [67 E] )7 (Q6,€,D7D7D7 <7|:|7.7 [b7 qé)] )}

® Ocheck-wa 1S the set:
{ ( [a’ E]’ &, G,D, a, <7D7 u, [aa E] )a ( [aa E]a 65D7D5D5 >7|:|7 u, [aap()] )a

( [aap()])gaa')['aaa »aDa.a [671)0] )7 ( [671)0]5@5['7['70'7 >, a, >7q6) }



® Orewrite 15 the set:

{ ([b,qé],s,a,l],a,<,|],l,[b,ab—)s|ab]),([b,qé],s,a,l],a,t[l,l,[b,ab—)b|ab]),
[b,ab— € | b],€,a,0,a, «,0,m,[b,ab— ¢ | ab] ),
[b,ab—b | bl ¢, 0,0, a, «,0,m, [b,ab— b | ab] ),
b,ab— ¢ | abl,e,a,0,a,»,0,m,[b | abe] ), ([b,ab— b | abl,e,a,0,a,»,0,m,[b | ab,b] ),
b,ab— ¢ | abl,e,b,0,b,»,0,m,[b | ab,e] ), ([b,ab—b | ab],e,b,0,b,,0,m,[b | ab,b] ),

b,ab—s ¢ | abl,e,0,0,0,»,0,m,[b | ab,e] ), ([b,ab— b | abl,e,0,0,0,»,0,m,[b | ab,b] ),

(1
(
(1
(1
(1
(1

[b]ab,el,e,a,0,a,m,0,m, b, 4 |ab]) ([b|ab,b],s,a,D,b,b,[l,l,[Mb,s]),
([o1b,2],2,0,0,b,m0m b, [8]) |

Note that we should have considered similar transitions with states of the form [a...]
instead of states of the form [b...]. Nevertheless, such transitions have no use because
letter a is such that R.a C R, i.e. for each w € R, wa is irreducible by S and transitions
with states [a...] perform rewritings of wa.

e When M applies the rule ab— ¢ to an inscription of B; that has the form wjabws, it
changes this word into wylws, then it shifts wo to the left so that the inscription of By is
changed into wyws,. These operations start from state [b, € | ab] and end at state [b, €].

Identically, when M applies the rule ab— b to an inscription of By that has the form
wyabwy, it changes this word into w;bbws (letter a is changed into the left-hand side of
the rule), then into wybllws. It then shifts to the left the word ws so that the inscription of
B is changed into wibws. Operation wibbwe — wiblws and shifting operations start from
state [b, € | b] and end at state [b, €].

All of these operations are performed by the transitions of dgphirr. We do not detail this set
here.

® Ocheck 18 the set:
{ ( [ba E]a &, a,D,a, <7D7 u, [ba E] )7 ( [ba E]a 57D>DaD7 »aua u, [bap()] )7
( [b7p0]7 &, a7|:|7 a, ’7['7 m, [b7p0] )7 ( [b7p0]7 b7D7D7D7 <7D7 <, [replace] )7

( [6,pol, e,0,0,0, «,0,m, [B] ) }

As explained above, it is sufficient to only consider transitions of dcpeck, the states of which
have the form [b...].



® dreplace Performs the copying of the inscription of By on By and is the set:
{ ( [replace], €, a, a, a, 4, a, 4, [replace] ),
( [replacel, e, a,0, a, 4, a, <4, [replace] )7
( [replace], ¢,0, a,0, m, a, W, [erase] )7 ( [replace], ¢,0,0,0,»,0, », [go to end] )7

( [erase],e,0,a,0,m,0, «, [erase] ), ( [erase],e,0,0,0,»,0,», [go to end] ),
(lzo to end],€,a,a,a,m,a,»[g0 to end] ), ([go to end],e,0,0,0,m0m,q5) .
o Glookfor 15 the set:
{ ([b],2 a0, a, <, 0,m, 8] ), ([B]e, a0 a,m 0 m (5] ),
([b,2,b,0,b, «.0,m,[6] ), ([B],,b,0,5,»,0,m,[b] ),
(8], 2,50, b, «,0,m, [b,ab—e | b] ), ([b],,b,0,b, «,0,m,[b,ab—b | b] ) }

It is sufficient to only consider the transitions of djpok-for Wwhose states have the form [b...].

e Jphack brings back the machine to the configuration it had before starting to rewrite a word.
Each state that is involved in dcheck-wa, Orewrites Oshifts Ocheck and Ojpok-for 18 the origin of a
transition of dp,ek.

6. Conclusion

We have studied some formal verification-oriented properties of the class of graphs associated
with Thue specifications. We have established the closure of this class, up to isomorphism, under
synchronized product. Given any specifications 71, ..., 7, and a synchronization constraint C,
the proof consists in the construction of a Thue specification, written er[n] T;, the graph of
which is isomorphic to the synchronized product of those of 77, ..., 7, with respect to C. It
can be proved that the number of rules of er[n] T; depends exponentially of the number n of
given Thue specifications, exponentially of the size of the left-hand side of the rules of these
specifications and polynomially of the size of their alphabets.

As a consequence of the closure result, and similarly to the Arnold-Nivat approach [AN82,
Niv79], Thue specifications provide a uniform framework for the specification of communicating
processes and their expressive power seems to be very satisfactory. However, the closure under
synchronized product has a counterpart in the undecidability result: we have established that
the first-order theory of the graphs of Thue specifications is undecidable. Consequently, it is
important to develop automated or assisted proof techniques for Thue specifications. One such
method is currently under investigation [Kna00].



We have also considered connections between the class G[TS] of graphs of rooted Thue specifi-
cations and the class G[TM] of graphs of Turing machines. We have provided a construction that
takes a rooted Thue specification as an input and produces a Turing machine whose graph is ob-
servationally equivalent to that of the specification (considering e-transitions as non-observable).
We have shown that there cannot be any general construction in the other direction because
there exist Turing machines whose graph is observationally equivalent to no graph with no
e-transition.

References

[AN82]

[Arn94]
[Bry86]

[Cau96]

[Cau00]

[CES1]

[CousY]
[KC99]
[Kna96]

[Kna00]

[McM92]

[Mil80]

André Arnold and Maurice Nivat. Comportements de processus. In Collogue AFCET
“Les mathématiques de I’Informatique”, pages 35—68, 1982.

André Arnold. Finite Transition Systems. Prentice Hall Int., 1994.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8), 1986.

Didier Caucal. On infinite transition graphs having a decidable monadic second—order
theory. In F. Meyer auf der Heide and B. Monien, editors, Proc. 23rd Inter. Col. on
Automata Languages and Programming, Paderborn, Germany, volume 1099 of Lecture
Notes in Computer Science, pages 194-205, 1996.

Didier Caucal. On Word Rewriting Systems IHaving a Rational Derivation. In
J. Tiuryn, editor, Proc. Srd Inter. Conf. on Foundations of Software Science and
Computation Structures, Berlin, Germany, volume 1784 of Lecture Notes in Com-
puter Science, pages 48—62. Springer Verlag, 2000.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using Branching Time Temporal Logic. In Proc. Workshop on Logics of
Programs, volume 131 of Lecture Notes in Computer Science, pages 52-71, Berlin,
1981. Springer Verlag.

Bruno Courcelle. The monadic second-order logic of graphs, II: Infinite graphs of
bounded width. Mathematical Systems Theory, 21:187-221, 1989.

Teodor Knapik and Hugues Calbrix. Thue Specification and Their Monadic Second-
Order Properties. Fundamenta Informaticae, 39:305-325, 1999.

Teodor Knapik. Thue specifications. IREMIA, Université de la Réunion. Unpublished
draft, 1996.

Teodor Knapik. Checking simple properties of transition systems defined by thue
specifications. Technical Report INF/00/01/01/a, IREMIA Université de La Réunion,
2000. http://www.univ-reunion.fr/ knapik /publications/INF-00-01-01-a.ps.gz.

Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State Explosion

Problem. PhD thesis, Carnegie Mellon University, 1992. Also published by Kluwer,
Symbolic Model Checking, 1993.

Robin Milner. Calculus of Communicating Systems, volume 82 of Lecture Notes in
Computer Science. Springer Verlag, 1980.



[Mor00]

[MS85]

[MS97]

[Niv79)]

[Rab69]

Christophe Morvan. On rational graphs. In J. Tiuryn, editor, Proc. 3rd Inter. Conf.
on Foundations of Software Science and Computation Structures, Berlin, Germany,
volume 1784 of Lecture Notes in Computer Science, pages 252-266. Springer Verlag,
2000.

David E. Muller and Paul E. Schupp. The Theory of Ends, Pushdown Automata and
Second—order Logic. Theoretical Computer Science, 37:51-75, 1985.

Alexandru Mateescu and Arto Salomaa. Aspects of Classical Language Theory. In
Grzegorz Rozenberg and Arto Salomaa, editors, Word, Language, Grammar, volume 1
of Handbook of Formal Languages, pages 175-251. Springer Verlag, 1997.

Maurice Nivat. Sur la synchronisation des processus. Revue technique Thomson-CSF,
11:899-919, 1979.

Michael O. Rabin. Decidability of second-order theories and automata on infinite
trees. Trans. Amer. Math. Soc., (141):1-35, 1969.





