
HAL Id: hal-01915093
https://hal.univ-reunion.fr/hal-01915093v1

Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronized Product of Linear Bounded Machines
Teodor Knapik, Etienne Payet

To cite this version:
Teodor Knapik, Etienne Payet. Synchronized Product of Linear Bounded Machines. 12th Interna-
tional Symposium on Fundamentals of Computation Theory (FCT’99), Alexandru Ioan Cuza Univer-
sity, Aug 1999, Iasi, Romania. pp.362-373. �hal-01915093�

https://hal.univ-reunion.fr/hal-01915093v1
https://hal.archives-ouvertes.fr

Synchronized Product of Linear Bounded
Machines

Teodor Knapik and Étienne Payet

IREMIA, Université de La Réunion,
BP 7151, 97715 Saint Denis Messag. Cedex 9, France

{knapik,epayet}@univ-reunion.fr

Abstract. This paper introduces a class of graphs associated to linear
bounded machines. It is shown that this class is closed, up to observa-
tional equivalence, under synchronized product. The first–order theory
of these graphs is investegated and shown to be undecidable. The latter
result extends to any logic in which the existence of sinks may be stated.

1 Introduction

Finite transition systems together with their synchronized product define a sim-
ple and elegant theoretical framework for specification and verification of systems
of communicating processes. This framework is known as the Arnold–Nivat ap-
proach [2,16]. A number of equivalent approaches as e.g. CCS [14] or Meije [3]
and decision procedures for various logics (see e.g. [8] and [11]) have provided
grounds for the model checking (see e.g. [12] or [13]). In spite of encouraging
time–complexity results in this area, the approaches based on finite transition
systems encounter space–complexity problems. To face up these problems, many
compression–like techniques, as e.g. binary decision diagrams, have been deve-
loped [4].
The problem of storage space for a representation of a process may be over-

come using (possibly) infinite transition systems. Among these, the best known
are the pushdown transition systems viz the transition graphs of pushdown ma-
chines. Since the result of [15] about the decidability of the monadic second–order
logic of these graphs, more general families of graphs that enjoy this decidability
property have been discovered in terms of several descriptions (see [7] and [5]).
Although the latter approaches provide an increased expressive power, they

did not give rise to an important development of the “infinite model checking”
theory and practice. In the authors’ opinion, this is due to the fact that interac-
ting processes cannot be described within these approaches, because the classes
of graphs of [5], [7] and [15] are not closed under the synchronized product.
The classes of finite (resp. pushdown) transition systems are naturally related

to rational (resp. context–free) languages. Both classes have been already inve-
stegated, the former more deeply than the latter. But almost nothing is known
about graphs related to the next level of the Chomsky hierarchy, namely the
context–sensitive languages. The present paper goes into this direction with the
emphasis on the synchronized product.

G. Ciobanu and G. Păun (Eds.): FCT’99, LNCS 1684, pp. 362–373, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Synchronized Product of Linear Bounded Machines 363

We consider a multi–tape linear bounded machine with a single, read–only
input tape and we define the transition graphs of such devices. We study two
transformations on these machines. The first–one is similar to the usual simu-
lation of a multi–tape Turing machine by a single–tape one. The second–one
consists in a construction of a multi–tape machine that behaves like several
communicating single–tape machines. In both cases, we show that the trans-
formations preserve observational equivalence of associated graphs (this is the
main difference with the usual treatment where isomorphisms are considered.)
The composition of both transformations allows to establish that the class of
graphs of linear bounded machines is closed, up to observational equivalence,
under synchronized product.
Unfortunately, as established in the paper, the first–order theory of the gra-

phs of linear bounded machines is not decidable.

2 Preliminaries

Throughout this paper, the empty word is written ε and, if n ∈ IN, [n] stands
for the set {1, . . . , n} (with [0] = ∅).

2.1 Rooted Graphs, Their Synchronized Product and Their
ε-Equivalence

A simple directed edge–labelled graph G (or more simply a graph) over C is a set
of edges, i.e. a subset of D×C ×D where D is an arbitrary set, the elements of
which are called the vertices of G and C is an alphabet possibly extended with
the empty word. Given d and d′ in D, an edge from d to d′ labelled by c ∈ C is
written d c→ d′. Thus, c→ is a binary relation on D for each c ∈ C. A (finite) path
in G from d to d′ is a sequence of edges of the form d0

c1→ d1, . . . , dn−1
cn→ dn such

that d0 = d and dn = d′. The word w = c1 . . . cn is then the label of the path. In
this case, we may write d w→ d′. We shall constantly consider graphs, the vertices
of which are all accessible from some distinguished vertex. Thus, a graph G is
said to be rooted on a vertex d if there exists a path from d to each vertex of G.
The maximal subgraph of G that is rooted on a vertex e is written G[e].
Synchronized Product of Rooted Graphs. The synchronized product of graphs
has been introduced by Arnold and Nivat [2,16]. It is an essential part of the
semantic of interacting processes. For more material, the reader may refer to
[1]. We introduce here a definition that is a variant of Arnold and Nivat’s one.
Indeed, in the scope of this paper, we need a product that takes as entry some
rooted graphs and returns a rooted graph as well. Given n alphabets C1, . . . , Cn

possibly extended with ε, a synchronization constraint C over C1, . . . , Cn is a
subset of

∏
i∈[n] Ci. Let G1[d1], . . . , Gn[dn] be some rooted graphs over C1, . . . ,

Cn. The synchronized product of G1[d1], . . . , Gn[dn] with respect to C, written∏C
i∈[n] Gi[di], is the graph G[(d1, . . . , dn)] where

G = {
e

c→ e′ ∣∣ c ∈ C and ∀i ∈ [n], ei
ci→ e′

i ∈ Gi[di]
}
.

364 T. Knapik and É. Payet

In this definition, ei (resp. ci, resp. e′
i) stands for the i

th coordinate of tuple e
(resp. c, resp. e′).

ε–Equivalence of Rooted Graphs. In the following definition,
ε��� stands for the

reflexive–transitive closure of ε→ and
a��� = ε��� ◦ a→ ◦ ε��� for any a in alphabet

Σ. Let G1[e1] and G2[e2] be two rooted graphs over Σ ∪ {ε} with sets of vertices
respectively D1 and D2. These graphs are said to be ε–equivalent if there exists
a relation � ⊆ D1 ×D2 such that:

1. Dom(�) = D1 and Ran(�) = D2;
2. e1 � e2;
3. for each a in Σ, each path d1

a��� d′
1 in G1[e1] and each vertex d2 of G2[e2]

such that d1 � d2, there exists a vertex d′
2 in G2[e2] such that d′

1 � d′
2

and d2
a��� d′

2 is a path of G2[e2];
4. for each a in Σ, each path d2

a��� d′
2 in G2[e2] and each vertex d1 of G1[e1]

such that d1 � d2, there exists a vertex d′
1 in G1[e1] such that d′

1 � d′
2

and d1
a��� d′

1 is a path of G1[e1].

It should be noted that ε–equivalence is an observational equivalence (also cal-
led weak bisimulation) as defined by Milner in [14] if one considers ε to be a
nonobservable event.

2.2 Linear Bounded Machines and Their Graphs

We use a definition of a Linear Bounded Machine1 (LBM for short) that is
slightly different from standard ones and has a flavour of a Chaitin computer
[6]. Our motivation does not rely on any languages theory aspect. Actually, we
are interested in LBM’s as an approach for modelling process behaviour that is
defined as a graph associated to an LBM. For that matter, we need LBM’s such
that the motion of the input tape head is one–way, from the left to the right.
When this head moves from a cell c to the right neighboor of c, the machine
reads the content of c. Moreover, the work tapes are infinite to the left and to
the right and, in addition to the usual moves (left and right), each work tape
head may stay at its place.
Formally, a k work tape LBM L is a tuple (Q,Σ, Γ1, . . . , Γk, δ, q0) where Q

is the finite set of states, Σ is the input alphabet, Γ1, . . . , Γk are the work tape
alphabets, q0 is the initial state, and δ is the set of transitions:

δ ⊆ Q×Σ ∪ {ε} × Γ1 × · · · × Γk × Γ1 × {�,�,�} × · · · × Γk × {�,�,�} ×Q

where � (resp. � and �) symbolizes a move to the left (resp. a move to the right
and no move) and an input ε represents the special case where the input tape
head of L does not move and does not read any character. We assume that the
blank character, written , belongs to each Γi.
1 A linear bounded machine is a linear bounded automaton with no final state.

Synchronized Product of Linear Bounded Machines 365

An internal configuration (µ1qν1, . . . , µkqνk) of L is an element of the set
Γ1

∗.Q.Γ1∗ × · · · × Γk
∗.Q.Γk

∗. This encodes the description of L at a time as
follows: q is the current state, for all i in [k], µiνi is the content of the ith work
tape from the leftmost nonblank character to the rightmost nonblank character
and for all i in [k], the head of the ith work tape is reading νi’s first character or
if νi is empty. Note that for all i in [k], both µi or νi may contain . An internal
configuration, every coordinate of which equals q0, is called initial configuration
of L.
To every LBM L = (Q,Σ, Γ1, . . . , Γk, δ, q0) we associate the graph GL[ι] where

ι is the initial configuration of L and GL is defined as follows. The vertices of
GL are all the internal configurations of L and the labels of GL belong to the set
Σ ∪ {ε}. Moreover, (µ1qν1, . . . , µkqνk)

c−→(µ′
1q

′ν′
1, . . . , µ

′
kq

′ν′
k) is an edge of GL

if and only if for each i ∈ [k], there exist Xi, Yi ∈ Γi and �i ∈ {�,�,�} such
that (q, c,X1, . . . , Xk, Y1,�1, . . . , Yk,�k, q

′) ∈ δ and either �i =� and one of the
following holds:

– ∃αi, βi ∈ Γi
∗, ∃Zi ∈ Γi, µi = αiZi, νi = Xiβi, µ′

i = αi and, if ZiYiβi �∈ { }∗,
then ν′

i = ZiYiβi, else ν′
i = ε;

– µi = ε, ∃αi ∈ Γi
∗, νi = Xiαi, µ′

i = ε and, if Yiαi �∈ { }∗, then ν′
i = Yiαi,

else ν′
i = ε;

– Xi = , µi = ε, νi = ε, µ′
i = ε and, if Yi �= , then ν′

i = Yi, else ν′
i = ε;

or �i =� and one of the following holds:

– ∃αi ∈ Γi
∗, νi = Xiαi, ν′

i = αi and, if µiYi �∈ { }∗, then µ′
i = µiYi else µ′

i = ε;
– Xi = , νi = ε, ν′

i = ε, and if µiYi �∈ { }∗, then µ′
i = µiYi, else µ′

i = ε;

or �i = � and one of the following holds:

– ∃αi ∈ Γi
∗, νi = Xiαi, µ′

i = µi and, if Yiαi �∈ { }∗, then ν′
i = Yiαi, else ν′

i = ε;
– Xi = , νi = ε, µ′

i = µi and, if Yi �= , then ν′
i = Yi, else ν′

i = ε.

We say that two LBM’s are ε–equivalent if the associated graphs are so.

3 Multi–work Tape LBM’s

In this section, it is established that every LBM with k work tapes is ε–equivalent
to an LBM with one work tape. This is done by providing a construction of the
one work tape LBM from the k work tapes one.
It is important to note that this result is not necessarily a consequence of the

fact that the languages recognized by the linear bounded automata with n work
tapes are the same as those recognized by the linear bounded automata with
m work tapes, for all n and m in IN (a linear bounded automaton is an LBM
provided with a set of final states). When two kinds of devices accept the same
family of languages then the classes of graphs generated by both devices need
not to be the same up to observational equivalence. For instance, the graphs of
pushdown automata are not, in general, ε–equivalent to the graphs of realtime

366 T. Knapik and É. Payet

pushdown automata whereas both kinds of automata accept exactly the family
of context–free languages.

Let L = (Q,Σ, Γ1, . . . , Γk, δ, q0) be a k work tape LBM. The one work tape
LBM L′, that is ε–equivalent to L, is constructed in the following way. On
one hand, the work tape inscription of L′ consists of the concatenation of the
inscriptions of all the work tapes of L separated by delimiters. On the other
hand, the motion of the k work tape heads of L is simulated by the single work
tape head of L′ by means of head marks.

More precisely, we introduce the following new characters: for each i in [k+1],
a delimiter, written %i, and, for each work tape character X, a correspon-
ding head mark, written Ẋ. In the sequel, for all i in [k], Hi denotes the set
{Ẋ | X ∈ Γi}. An internal configuration (µ1qν1, . . . , µkqνk) of L is simulated by
an inscription %1 α1Ẋ1β1 %2 . . . %k αkẊkβk %k+1 on the work tape of L′. This
inscription is such that, for each i in [k], νi �= ε ⇒ (∃γi ∈ { }∗, νiγi = Xiβi),
νi = ε ⇒ (Xi = and βi ∈ { }∗) and ∃γi ∈ { }∗, γiµi = αi.

The LBM L′ simulates L in the following way. First, in order to simulate the
initial configuration of L, L′ copies the word %1 ˙ %2 . . . %k

˙ %k+1 on its work
tape. Let δcopy denote the set of transitions of L′ performing this copy, Qcopy

denote the set of states involved in δcopy and suppose that after these operations,
L′ switches to state q0. A computation for L consists in overprinting a character
Yi on a character Xi on each work tape i and possibly moving the head of i to
the left or to the right. This is simulated by L′ in the following way. If L does
not move the head of i, then L′ overprints Ẏi on Ẋi. If L moves the head of i
to the left (resp. right), then L′ overprints Yi on Ẋi and, if Z is the character
written to the left (resp. right) of Yi, it overprints Ż on Z. Overprintings on each
ith portion of the work tape of L′ (i.e. the part of this tape corresponding to the
ith work tape of L) that are due to a transition t ∈ δ are performed by means
of state qt,i. Moreover, in order to perform each overprinting due to t, the work
tape head of L′ must be able to move from the ith portion of the work tape to
the next one to the right (if it exists); this is done by means of the state mt,i;
when the last overprinting is done on the kth portion, the work tape head comes
back to the first portion of the tape by means of the state mt,k.

Whenever L is placing the head of i before the beginning (resp. after the
end) of the inscription, L′ has to insert ˙ to the right of %i (resp. to the left of
%i+1). For that matter, L′ shifts to the left (resp. to the right) the portion of
its inscription from %1 to %i (resp. from %i+1 to %k+1) and then writes ˙ in
the right cell. These operations are performed by a set of transitions denoted by
δshift and they start from lt,i ∈ Qshift (resp. rt,i+1 ∈ Qshift) where Qshift is
the set of states involved in δshift. We suppose that after shifting the portion of
its tape and writting ˙, L′ switches to mt,i.

Finally, take it that L′ = (Q′, Σ, Γ ′, δcopy ∪ δshift ∪ δ′, q0′) where Q′ is the
set Q ∪ {qt,i | t ∈ δ and i ∈ [k]} ∪ {mt,i | t ∈ δ and i ∈ [k]} ∪Qcopy ∪Qshift , Γ ′

is the set Γ1 ∪ · · · ∪ Γk ∪ {%1, . . . ,%k+1} ∪ H1 ∪ · · · ∪ Hk and δ′ is constructed
this way: t = (q, c,X1, . . . , Xk, Y1,�1, Y2,�2, . . . , Yk,�k, q

′) ∈ δ if and only if the

Synchronized Product of Linear Bounded Machines 367

following set is part of δ′:
{
(q, c, Ẋ1, Y1,�1, qt,1)

} ⋃ {
(qt,i, ε,X, Ẋ,�,mt,i)

∣∣ i ∈ [k − 1], X ∈ Γi

} ⋃

{
(qt,i, ε,%i,%i,�, lt,i)

∣∣ i ∈ [k]} ⋃ {
(qt,i, ε,%i+i,%i+1,�, rt,i+1)

∣∣ i ∈ [k]} ⋃

{
(qt,k, ε,X, Ẋ,�,mt,k)

∣∣ X ∈ Γk

} ⋃

{
(mt,i, ε,X,X,�,mt,i)

∣∣ i ∈ [k − 1], X ∈ Γi ∪ {%i+1} ∪ Γi+1
} ⋃

{
(mt,i, ε, Ẋi+1, Yi+1,�i+1, qt,i+1)

∣∣ i ∈ [k − 1]} ⋃

{
(mt,k, ε,X,X,�,mt,k)

∣∣ X ∈ ⋃
i∈[k] Γi ∪ {%1, . . . ,%k} ∪ ⋃

i∈[k]�{1}Hi

} ⋃

{
(mt,k, ε, Ẋ, Ẋ,�, q′)

∣∣ X ∈ Γ1
}
.

Consequently, the internal configurations of L′ are the elements of

%1.Γ1
∗.Q′.Γ1∗.H1.Γ1

∗.%2.Γ2
∗.H2.Γ2

∗.%3 . . .%kΓk
∗.Hk.Γk

∗.%k+1 ∪ . . .

(the work tape head may be located anywhere, so the dots mean “the same with
Q′ anywhere else”).
Obviously, L′ is an LBM because the number of cells that are used on its

work tape is a linear function of the size of the input word; this number is
(k + 1) +

∑
i∈[k] Si(n) where k + 1 stands for the number of cells containing a

delimiter, n is the size of the input word and the Si are the k linear functions
in the size of the input word of L. Note that the number of states of L′ is in
O

(
k.|δ|) and the number of transitions of L′ is in O

(|δ|.∑i∈[k] |Γi|
)
.

In view of the definition of L′, the following proposition is straightforward.
Proposition 3.1. Let ι and ι′ denote the initial configuration of L and L′ res-
pectively. Then, GL[ι] and GL′ [ι′] are ε–equivalent.

4 Synchronized Product of LBM’s

We consider n LBM Li, i ∈ [n]. Suppose that for all i in [n], Li has ki work tapes,
ιi denotes the initial configuration of Li and Li = (Qi, Σi, Γi,1, . . . , Γi,ki , δi, q0i).

Let C ⊆ ∏
i∈[n](Σi∪{ε}) be a synchronization constraint. The LBM composed

according to C is the ∑
i∈[n] ki work tape LBM L defined as follows: the set of

states is
∏

i∈[n]Qi, the input alphabet is C, the work tape alphabets are all the
Γi,j for i ∈ [n] and j ∈ [ki], the initial state is (q01, . . . , q0n), and the set of
transitions consists of tuples
(
q, a, (X1,j)j∈[k1] , . . . , (Xn,j)j∈[kn] , (Y1,j ,�1,j)j∈[k1] , . . . , (Yn,j ,�n,j)j∈[kn] , q

′
)

such that a ∈ C and, for each i ∈ [n], (qi, ai, (Xi,j)j∈[ki] , (Yi,j ,�i,j)j∈[ki] , q
′
i) ∈ δi.

Here, for each i ∈ [n], (Xi,j)j∈[ki] stands for the sequence Xi,1 , . . . , Xi,ki and

368 T. Knapik and É. Payet

(Yi,j ,�i,j)j∈[ki] stands for the sequence Yi,1 ,�i,1 , . . . , Yi,ki
,�i,ki

. Moreover, qi

(resp. ai, resp. q′
i) stands for the i

th coordinate of tuple q (resp. a, resp. q′). Note
that the number of states of L is equal to

∏
i∈[n] |Qi| and that the number of

transitions of L is at most equal to
∏

i∈[n] |δi|.

Proposition 4.1. Let ι denote the initial configuration of L. Then, graphs GL[ι]
and

∏C
i∈[n] GLi

[ιi] are isomorphic.

Proof. Let φ be the one–to–one correspondence
∏

i∈[n]

(∏
j∈[ki]

Γi,j
∗.Qi.Γi,j

∗) −→
∏

i∈[n],j∈[ki]

Γi,j
∗.(

∏
l∈[n]

Ql).Γi,j
∗ such that

φ
(
(µ1,1q1ν1,1 , . . . , µ1,k1q1ν1,k1) , . . . , (µn,1qnνn,1 , . . . , µn,knqnνn,kn)

)

=
(
µ1,1(q1, . . . , qn)ν1,1 , . . . , µn,kn

(q1, . . . , qn)νn,kn

)
.

The roots ι1, . . . , ιn and ι are such that φ
(
ι1, . . . , ιn

)
= ι. Moreover, according to

the definition of transitions of L, it is clear that d a→ d′ is an edge of
∏C

i∈[n] GLi
[ιi]

if and only if φ(d) a→φ(d′) is an edge of GL[ι]. ��
In view of the above, the following corollary is obvious.

Corollary 4.2. The class of graphs of LBM’s is closed, up to isomorphism,
under synchronized product.
The next corollary is obtained as a composition of Proposition 3.1 and Pro-

position 4.1.
Corollary 4.3. The class of graphs of single work tape LBM’s is closed, up to
ε-equivalence, under synchronized product.

5 An Example

We consider a small portion of a railway network that is composed of three
stations S0, S1 and S2 linked together by a single track:

✛

✲

✛

✲
S1 S2

d0 a1 d′
1 a2

a0 d1 a′
1 d2

S0

Train crossing is allowed only at station S1 which has two platforms. Note that
a train arriving to S1 from S0 (resp. S2) may go back to S0 (resp. S2). We model
the behaviour of this railway portion by means of a synchronized product of
LBM’s.
This portion of the railway network may be seen as a composed process in

the sense that its behaviour is the result of the parallel working of station S1 and

Synchronized Product of Linear Bounded Machines 369

portions S0S1 and S1S2 of the track. Note that this composed process, unlike its
composing parts, is not a pushdown one i.e. its behaviour cannot be modelled
by a pushdown transition graph. Indeed, suppose that left–to–right motions
are distinguished from right–to–left motions. In the left–to–right direction, the
departure of a train from S0 is represented by d0, the arrival of a train at S1 is
represented by a1, the departure of a train from S1 is represented by d′

1 and the
arrival of a train at S2 is represented by a2. Notations for the other direction
are depicted above. Then, if G is a rooted graph modelling the behaviour of the
whole portion, the set Lang(G) of the labels of the paths from the root to any
other vertex looks like

{
w ∈ {a0, d0, a1, d1, a′

1, d
′
1, a2, d2}∗

∣∣∣ ∀u, v ∈ {a0, d0, a1, d1, a′
1, d

′
1, a2, d2}∗,

uv = w ⇒ (|u|a1 ≤ |u|d0 , |u|a2 ≤ |u|d′
1
, |u|a′

1
≤ |u|d2 , |u|a0 ≤ |u|d1 ,

|u|d1 ≤ |u|a1 + |u|a′
1
and |u|d′

1
≤ |u|a1 + |u|a′

1
)
}
.

Obviously, Lang(G) is context–sensitive and one can establish, using Ogden’s
Lemma, that Lang(G) is not context–free. But, if G was the graph of a pushdown
process, then Lang(G) would be a context–free language [5]. Thus, G is not the
graph of a pushdown process.
In order to model the behaviour of the portion of a railway network, we need

the following construction. We associate to any LBM L = (Q,Σ, Γ1, . . . , Γk, δ, q0)
the LBM L1l = (Q,Σ, Γ1, . . . , Γk, δ ∪ δ1l, q0) where

δ1l = {(q, ε,X1, . . . , Xk, X1,�, . . . , Xk,�, q) | q ∈ Q and ∀i ∈ [k], Xi ∈ Γi}
Observe that GL1l differs from GL only by ε-loops added to each vertex by δ1l.
Let us now specify each part of this railway portion using LBM’s. The beha-

viour of the track between S0 and S1 can be modelled by the machine L1l
0 where

L0 =
({q0, qd0 , qa1 , qd1 , qa0}, {a0, d0, a1, d1}, { , d0, d1}, δ0, q0

)
with

δ0 =

(q0, d0, , d0,�, qd0), (q0, d1, , d1,�, qd1), (qd0 , d0, d0, d0,�, pd0),
(qd0 , ε, , ,�, q0), (qd0 , a1, d0, ,�, qd0), (pd0 , ε, , d0,�, qd0),
(qd1 , d1, d1, d1,�, pd1), (qd1 , ε, , ,�, q0), (qd1 , a0, d1, ,�, qd1),
(pd1 , ε, , d1,�, qd1)

.

The graph of L0 may be depicted as follows:

�
�✒

❅
❅❘

❅
❅❘

�
�✒

✛

✛ ✲

✲ ✲

✲

❄

✻

q0
ε

ε

qd0d0

qd1d1

a1

a0

d0pd0

d1pd1

d0

d1

a1

a0

d0

d1 ε

ε
d0qd0d0

d1qd1d1

qd0

qd1

370 T. Knapik and É. Payet

Notice that Lang(GL1l
0
), the set of the labels of the paths in GL1l

0
from q0 to any

other vertex, is L∗ where

L =
{
w ∈ {d0, a1}∗ ∣∣ ∀u, v ∈ {d0, a1}∗ (uv = w ⇒ |u|a1 ≤ |u|d0)

} ∪{
w ∈ {d1, a0}∗ ∣∣ ∀u, v ∈ {d1, a0}∗ (uv = w ⇒ |u|a0 ≤ |u|d1)

}
.

This means that there cannot be more train arrivals than train departures in
each direction on this portion of the track and that any train arriving at S1 may
go back to S0. The behaviour of the track between S1 and S2 can be modelled
by the LBM L1l

2, the input alphabet of which is {a′
1, d

′
1, a2, d2}, defined in the

same way as L1l
0.

Station S1 is composed of two platforms. One of them is modelled by the LBM
L1l
11 =

({qa, qd}, {a, d}, { }, {(qa, a, , ,�, qd), (qd, d, , ,�, qa)}∪ δ1l11, qa

)
which is

such that Lang(GL1l
11
) = (ad)∗. The other one is modelled by the LBM L1l

12, the
input alphabet of which is {a′, d′}, which is defined in the same way as L1l

12.
Letters a, d, a′ and d′ have the same meaning as a0 . . . above.

The whole portion of the railway network can now be modelled by the syn-
chronized product of L1l

0, L1l
11, L1l

12 and L1l
2 with respect to the synchronization

constraint C described as follows: any arrival to S1 from a track corresponds to
an arrival on a platform and any departure from a platform corresponds to a de-
parture from S1 to a track. Let Σ0, Σ11, Σ12 and Σ2 denote the input alphabet
of L1l

0, L1l
11, L1l

12 and L1l
2 respectively. Then, constraint C is the set of the tuples

(c0, c11, c12, c2) ∈ Σ0 ∪ {ε} ×Σ11 ∪ {ε} ×Σ12 ∪ {ε} ×Σ2 ∪ {ε} such that
(
c0 = a1 ⇔ (c11 = a or c12 = a′)

)
,

(
c2 = a′

1 ⇔ (c11 = a or c12 = a′)
)
,(

c0 = d1 ⇔ (c11 = d or c12 = d′)
)
and

(
c2 = d′

1 ⇔ (c11 = d or c12 = d′)
)
.

We do not give a complete description of the machine that models the whole
portion of the network because it is quite a big machine (to have an idea, one may
compute its number of states which is equal to |Q0| × |Q11| × |Q12| × |Q2| = 100
where Q0, Q11, Q12 and Q2 stand for the set of states of L1l

0, L1l
11, L1l

12 and L1l
2

respectively).

6 First–Order Logic on Graphs of Linear Bounded
Machines

Up to now, we have only addressed the problem of the specification of commu-
nicating processes within an approach based on linear bounded machines. In the
present section, we discuss the problem of formal verifications within this ap-
proach. More precisely we assume that a system of communicating processes has
been specified, viz each sequential process has been described by an LBM and
their interaction has been expressed as some synchronization constraint. Up to
ε–equivalence, such a system may be represented by an LBM, the graph of which
is a synchronized product of the graphs of composing processes. The verification

Synchronized Product of Linear Bounded Machines 371

problem consists then in checking the truth of a formula of some logic on the
resulting graph considered as a model–theoretic structure.
Concerning the verification problem, we claim that in the area of LBM speci-

fications, even for rather weak logics, one should not expect algorithmic solutions
but rather semi–algorithmic ones. More precisely we establish that the first–order
theory of the graphs of LBM’s is not recursive (even not recursively enumerable).
Formally, the first–order theory of a rooted graph G ⊆ D × C × D where

C = Σ ∪ {ε}, is defined as follows. The variables form an infinite countable set
X and are interpreted as vertices of G. The binary predicates sc for each c ∈ C,
= and the unary predicate r allow to build atomic formulae. These predicates
are interpreted on G resp. as c→, the identity relation on D and the singleton
{e}, where e stands for the root of G. Using classical connectives and quantifiers,
from atomic formulae that are of the form sc(x, y), x = y or r(x), first order
formulae are constructed in the usual way. The set of valid sentences on G, i.e.
valid formulae on G with no free variable, is called the first–order theory of G.
Example 6.1. The sentence ∀x ∃ y ∨

c∈C sc(x, y) belongs to the first–order theory
of a graph G if and only if G has no sink.
The indecidability result that we have to establish involves linear bounded

automata (LBA for short). Formally an LBA Lf is a single–work–tape2 LBM
L = (Q,Σ, Γ, δ, q0) with a distinguished state f ∈ Q, called the final state. The
language accepted by Lf , written Lang(Lf), is the set of labels of all paths in
the graph GL[ι] from the initial configuration ι to µfν for some µ, ν ∈ Γ ∗. Two
LBA’s Lf and L′

f ′ are equivalent if Lang(Lf) = Lang(L′
f ′).

The emptiness problem for LBA’s is the following decision problem.
Instance: An LBA Lf .
Question: Lang(Lf) = ∅ ?

It is well known that this problem is not recursively enumerable. Using this fact,
we can establish the following.
Theorem 6.2. The problem

Instance: An LBM L and a first–order sentence ϕ.
Question: Does ϕ belong to the first–order theory of GL ?

is not recursively enumerable.

Proof. We show that the emptiness problem for LBA’s is many–one reducible
to the problem of the statement.
Let Lf = (Q,Σ, Γ, δ, q0, f) be an LBA. Let L′

f = (Q′, Σ, Γ, δ′, q0, f) be an
LBA equivalent to Lf and satisfying the following properties:

(1) δ′ ∩ ({f} × C × Γ × Γ × {�,�,�} ×Q′) = ∅,
(2) δ′ ∩({q}×C×{X}×Γ ×{�,�,�}×Q′) �= ∅ for all (q,X) ∈ (Q�{f})×Γ .

Such an LBA may readily be constructed. Concerning (1), for each rule of δ that
has the form (q1, c1, X1, Y1,�1, f), we add a rule (q1, c1, X1, Y1,�1, q

′) where
q′ /∈ Q is a new state and each rule (f, c2, X2, Y2,�2, q2) ∈ δ is replaced by the
2 In fact an LBA can be multitape but for the purpose of the paper single–work–tape
LBA’s suffice.

372 T. Knapik and É. Payet

rule (q′, c2, X2, Y2,�2, q2). Concerning (2), we add a new state p /∈ Q, the rules
(p, ε,X,X,�, p) for all X ∈ Γ and for each (q,X) ∈ (Q � {f}) × Γ such that
δ ∩ ({q} ×Σ × {X} × Γ × {�,�,�} ×Q) = ∅, we add the rule (q, ε,X,X,�, p).

Now Lang(Lf) = Lang(L′
f) and the following holds: a vertex µqν of GL′

f
is a

sink if and only if q = f . Consequently Lang(Lf) = ∅ if and only if the sentence
of Example 6.1 belongs to the first–order theory of GL′

f
. ��

Taking into account the fact that the property of being a sink is expressible in
the Hennessy–Milner logic [9], the following corollary may be derived from above
proof.
Corollary 6.3. The Hennessy–Milner logic is not semi–decidable on the graphs
of LBM’s.
We close this section by the following remark. If the existence of sinks is

expressible within a logic, then it cannot exist a complete formal system for
checking the truth of the formulae of the logic on graphs of arbitrary LBM’s.

7 Conclusion

We have defined transition graphs associated to a peculiar kind of linear boun-
ded machines that read their input performing all computations on work tapes.
The closure under synchronized product of the family of graphs thus defined
has been established up to observational equivalence (considering ε–transitions
as non observable) using two transformations. We hope that both transforma-
tions may be improved using some speedup and tape compression techniques
so as to preserve bisimulation (or even isomorphism) instead of observational
equivalence.
As a consequence of the closure result and similarly to the Arnold–Nivat

approach, the linear bounded machines provide a uniform framework for the
specification of communicating processes. Moreover the expressive power within
this framework seems to be very satisfactory. However, this has a counterpart
in the undecidability result. We have established that the first–order theory of
the graphs of linear bounded machines is not recursively enumerable. This result
extends to any logic in which the existence of sinks may be stated. It may be
observed that this is one of the weakest safety properties that one should be able
to express within a logic usable for verification purposes, since it corresponds to
the existence of deadlocks. In spite of this negative result, we believe that some
semi–decision techniques adequate for the graphs of linear bounded machines
may be developed for various logics. An elementary example of this kind may
be found in [10].
The transition graph of linear bounded machine has been defined as the

maximal subgraph of the configuration graph that is accessible from the initial
configuration. When this accessibility requirement is dropped, we have a transi-
tion graph, the vertices of which are all configurations. Since our undecidability
result was related to the reachability problem, more precisely to the language of
an LBA, the emptiness problem for LBA does not lead to a similar result in the

Synchronized Product of Linear Bounded Machines 373

latter case. Is the first-order theory of such graphs still undecidable ? Currently,
we do not know the answer to this question.

References

1. A. Arnold. Finite Transition Systems. Prentice Hall Int., 1994.
2. A. Arnold and M. Nivat. Comportements de processus. In Colloque AFCET
“Les mathématiques de l’Informatique”, pages 35–68, 1982.

3. G. Boudol. Notes of algebraic calculi of processes. In Logics and Models of
Concurrent Systems, volume F–13 of NATO ASI series, pages 261–303. 1985.

4. R. Bryant. Binary decision diagrams and beyond: Enabling technologies for formal
verification. In Proceedings of the International Conference on Computer Aided
Design, ICCAD‘95, 1995.

5. D. Caucal. On infinite transition graphs having a decidable monadic second–
order theory. In F. M. auf der Heide and B. Monien, editors, 23th International
Colloquium on Automata Languages and Programming, LNCS 1099, pages 194–
205, 1996.

6. G. Chaitin. A Theory of Program Size Formally Identical to Information Theory.
J. Assoc. Compt. Mach., (22):329–340, 1975.

7. B. Courcelle. The monadic second–order logic of graphs, II: Infinite graphs of
bounded width. Mathematical System Theory, 21:187–221, 1989.

8. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Formal
Models and Semantics, volume B of Handbook of Theoretical Computer Science,
pages 997–1072. Elsevier, 1990.

9. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
J. ACM, 32:137–162, 1985.

10. T. Knapik. Domains of word–functions and Thue specifications. Technical Report
INF/96/11/05/a, IREMIA, Université de La Réunion, 1997.

11. D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor, Formal
Models and Semantics, volume B of Handbook of Theoretical Computer Science,
pages 789–840. Elsevier, 1990.

12. R. P. Kurshan. Computer–aided Verification of Coordinating Processes. Princeton
University Press, 1994.

13. K. McMillan. Symbolic Model Checking. Kluwer, 1993.
14. R. Milner. Calculus of Communicating Systems. LNCS 82. Springer Verlag, 1980.
15. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata and

second–order logic. Theoretical Comput. Sci., 37:51–75, 1985.
16. M. Nivat. Sur la synchronisation des processus. Revue technique Thomson-CSF,

(11):899–919, 1979.

	Introduction
	Preliminaries
	Rooted Graphs, Their Synchronized Product and Their epsilon-Equivalence
	Linear Bounded Machines and Their Graphs

	Multi--work Tape LBM's
	Synchronized Product of LBM's
	An Example
	First--Order Logic on Graphs of Linear Bounded Machines
	Conclusion

