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Abstract 

A new operation on languages, called the full quotient, is defined. The closure property for regular languages under 
this operation is established. An algorithm is given that constructs a finite automaton recognizing the full quotient of two 
regular languages. The time complexity of the algorithm is proportional to the product of the number of states of the input 
automata. Several additional properties of the full quotient are investigated. @ 1998 Elsevier Science B.V. 

Keywords: Formal languages 

1. Introduction 

This article is devoted to the presentation of a new 
operation on languages that is called thefull quotient. 
This operation is derived from the quotient defined 
e.g. in [ 21, also called residual in [ 31 or derivative in 
[ 1 ] . Roughly speaking, the full quotient is defined as 
a subset of the usual quotient, each element of which 
satisfies a kind of minimality condition. Similarly to 
the quotient, full quotient has two forms: left and right. 

Our interest in this operation is motivated by its re- 
lationship to the topic we are currently investigating, 
namely, the string rewriting of regular sets of words 
using rightmost and leftmost reduction strategy. Nev- 
ertheless, the full quotient seems general enough to be 
introduced separately in the present paper. 

The closure property of the family of regular lan- 
guages under full quotient is proved in this article. 
The reader is provided with an algorithm constructing 
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a finite automaton recognizing the left full quotient 
of two regular languages. The time complexity of this 
algorithm is also given. 

2. Basic definitions 

The reader is expected to have a smattering of finite 
automata and formal languages. Nevertheless, a few 
basic definitions from these topics are recalled in the 
sequel. 

From now on, suppose that every word or language 
considered is built over a finite alphabet A. Given a 
word W, the set of its non-empty prefixes (respectively, 
suffixes), written pref, (w) (respectively, suff+ ( w) ), 
is defined as follows: 

pref+(w) = {U E A+ 1 3u E A* . uu = w} 

(respectively, 

suff+(w) = {U E A+ 1 3 u E A* . uu = w}). 
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The set pref, ( w) U (8) of all prefixes of W, including M\\N={uEA*~~wEM.wuEN 
the empty word e, is written pref ( w) . A’du E pref+(u) . wu q! M} 

Let M and N be two languages. The left quotient 
(respectively, right quotient) of N by M, written M\N 
(respectively, N/M), is defined as follows: 

(respectively, 

n’dv E suff+(u) . VW $ M}). 

(respectively, The following example illustrates the concepts in- 
troduced above. 

A finite deterministic automaton on A is given by 
a finite set Q of states, an element qo of Q called the 
initial state, a subset F of Q called the set of final 
states and a transition function 6 from Q x A to Q. A 
finite deterministic automaton is said to be complete 
if its transition function is total. A finite deterministic 
automaton is noted as a quadruple (Q, S, qo, F) . 

Example 2. Let A = {a, b} be an alphabet and M = 
a(ba)* and N = a(a+ b)* be two languages over A. 

A path in the finite deterministic automaton 
A = (QA,8d,qoa,Fd) is a word tl . ..t. in 
(Qd x A x Qd)* such that for all i E {l,...,n}, 
ti = (qi,ai,q;+l) and qi+t = Sd(qi,Ui). The word 
alaz... u, is the label of the path, the state q1 its 
origin and the state qn+l its end. A word is said to be 
recognized by A if it is the label of a path in A, the 
origin of which is qoA and the end of which belongs 
to Fd. The language C(A) of A is the set of all the 
words recognized by A. A state of A is said to be 
reachable if it is the end of a path from qoA in A. 
The set of all the reachable states of A is written Rd. 

First, notice that any word u in A* and any word 
w in M are such that wu E N. However, K belongs 
to M\\N only if it satisfies the condition on prefixes, 
that is, only if it is not in (bu)+( a + b) *. Therefore, 
u must be an element of E + b + (a + bb) (a + b) *. 
Since every element of the latter set is in M\\N, we 
haveM\\N=&+b+(u+bb)(u+b)*. 

Similar reasoning yields N//M = E + a( a + b) * (a + 
bb) . 

3. Full quotient and its closure property for 
regular languages 

One common mistake about the left full quo- 
tient is to believe that M\\N = Min,,a(M\N) or 
M\N = Maxpref( M)\N where Minsue (respectively, 
Maxpref) stands for the restriction to the minima1 
elements with respect to the suffix ordering (respec- 
tively, maxima1 elements with respect to the prefix 
ordering). It is not too difficult to show that both 
Min,,ff(M\N) and Max,,,f(M)\N are included in 
M\\N, but these inclusions may be proper. The latter 
assertion may be checked by taking M = {a, b, ub} 
and N = {uuu, ubu, ubb, bba}. In fact, considering 
the subset of M\N of “non-left full quotients”, that is, 

Assume that one is interested in the following prob- 
lem: given a language M and a word x, find a word 
u such that wu = x: and w is the maxima1 element of 
M fl pref (x) . Then, u may be seen as a result of a 
partial operation “1” involving M and n, that is, u = 
M\x. Such an operation may be naturally extended 
to languages by setting M\\N = UxE,, M\\x for N C_ 
A*. The operation “1” is precisely defined as follows. 

MX(N={UEA*/~WEM.WUEN 

A 3 v E pref+(u) . WV E M}, 

the relation between M\N and M\\N can be written 

M\N = M\N U Mx(N. 

Definition 1. The leftfull quotient (respectively, right 
full quotient) of N C A* by M C A*, written M\N 
(respectively, N/M), is defined as follows: 

Notice that M/N and MX(N are not always disjoint 
sets. As a proof, consider languages M = {a, b, bu} 
and N = {uab, bub}: we have ub E M\N f~ Mj&‘N. 

Analogous comments relevant to the right full quo- 
tient are omitted. 

If w is a word, wR is the word w written back- 
ward. This notation is extended to sets of words: MR = 
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UwEM ( { We}) . Considering the definitions above, the 
following result is rather obvious. 

Proposition 3. Let M C A* and N 2 A*. Then 
(M/fN)R = NR\\MR. 

The main result of this article is the following. 

Theorem 4. The family of regular languages is closed 
under full quotient. 

Proof. In Section 4, a finite automaton that recognizes 
the left full quotient of two regular languages is con- 
structed. As far as the right full quotient is concerned, 
the proof comes from this construction and Proposi- 
tion 3. 0 

Notice that the family of regular languages is not 
closed under full quotient with arbitrary languages, 
unlike the usual quotient. It comes from the next ex- 
ample that the left full quotient of a regular language 
by a deterministic context free language is not neces- 
sarily regular. 

Example 5. Consider alphabet A = {a, b} and lan- 
guages R = a+b+a+b+ and L = {a*b”a”‘b”’ ) n E 
N \ {0}, m E IV}. Then 

L\R = {E} U bf U b+a+b+ U {a”b”’ 1 n > m > 0). 

Indeed any word w = a”b” in L can be completed with 
a word u = biajbk (where j # 0 and k # 0) to get 
a word of R. However, in order to satisfy the prefix- 
based condition, i, j and k must verify i # 0 or (i = 
0) A (j > k) (i.e., every word ajbk with j < k is not 
in L\\R because its prefix ajbi is such that a”b”ajbi is 
in L). Moreover, notice that any word w = a”b”a”‘b”’ 
in L can be completed with a word u = b’ with i # 0. 

4. Construction of a finite automaton recognizing 
left full quotient of two regular languages 

In this section, a construction of a finite automa- 
ton C recognizing the left full quotient of a regular 
language N by a regular language M is described. 
In order to show the correction of this construction, 
two automata, A and B, are built. Automaton A, 
in which M-prefixed words of N are easily distin- 

guishable, is constructed first. Then B is built from 
A; it recognizes all words obtained when removing, 
from M-prefixed words of N, the prefixes in M. Fi- 
nally, C is built from B. A straightforward algorithm 
producing an automaton recognizing M\\N is pro- 
vided in Section 5. It relies on the constructions of A 
and B. 

Automata M and n/. Let M = (QM, 6~, qoMM’ 
FM > and N = (Q,u, 6~, qoN, FN) be two finite de- 
terministic complete automata recognizing M and N 
respectively. 

Automaton d. . A is built according to the standard 
construction of the automaton recognizing .L( M) n 
L(N), except that the final states of d are QM x FN. 
Formally, 

=(QM X QN~SMII,V~ (90m790N),QM X FN), 

where 6Mlljv, that simulates the synchronized working 
of M and N, is defined as follows: 

8~11~ : (QM x QN) x A -+ QM x QN, 

((q,q’),a) ++ (~MM(%a)9~N(q’va)). 

It is easy to see that L(A) = C(N). 

Note 1. Obviously, changing the final states of A into 
FM x QN, one gets an automaton recognizing .C( M). 
Consequently, every word of N that is M-prefixed is 
recognized along a path of A passing through a state 
f E FM x QN (and that the prefix in M is recognized 
at f). 

Automaton 23. Careful readers will notice that au- 
tomaton f3 defined below is not deterministic, unlike 
automata M, N and A. Indeed, although 60 is a func- 
tion, B is provided with a set of initial states. Con- 
sequently, a word u is recognized by B if it is the 
label of a path from an initial state to a final state 
of B. 

Now the interest lies in the recognition of the words 
obtained when removing prefixes belonging to M from 
every word of N. In view of Note 1, these words are 
the labels of all the paths in A from (FM x QN) fl Rd 
to FA. It is important to only consider the elements 
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of FM x QM that belong to RA; if not, some words u Automaton C. Let C be the automaton (Qc, SC, (20~ , 
such that there is no w in A* satisfying wu E N could Fc ) where Qc = Qo, Qoc = Qo,, FC = FE and 6c is 
be taken into account. defined by 

Let U be the automaton (Qo, 6a, Qo, , Fa) where 
Qs=QMxQ~tSB=~d,QoL3=(FMxQN)nRd 
and Fu = Fd. 

&(%a) = 4’ 

ej (8d(q,a)=q'andq'$FM xQ,v). 
It is not too difficult to realize that 

C(B) = {U E A* 13 w E C(M) . wu E C(N)} 

= M\N. (1) 

Consequently, we have L(M)\L(N) C L(B). The 
next definition helps characterizing the subset of C( a) 
that is exactly .L(M)\L(N). 

Notice that, as automaton B, C is non-deterministic 
with respect to the initial state. Due to Lemma 7, the 
next proposition holds. 

Proposition 8. C(C) = L(M)\C(N). 

Definition 6. A path in t3 has a &fix-M prejx if it 
has a non-empty prefix, the end of which is in FM x 
QN- 

The next lemma comes from the above construction 
of a from A and from the definition of “1”. 

Lemma 7. Let u be a word in C(B). Then, u is a 
word of C( M) \C(N) if and only if it is the label of 
a path from Qa, to Fa that has no sufJix-M prejix. 

Proof. Let u be a word in C(M)\C(N). Then, 
because of ( 1) , u is recognized by B along a path 
P,, from Qo, to FE. According to Lemma 7, Pu 
has no suffix-M prefix, that is, P, is of the form 
(ql,al,q2). . . (qn+antqn+l) with qi+I = Satqivai) 
foralliin(l,..., n} and qi is not in FM x QM for 
all i in (2,. . . ,n + 1). So, for all i in (1,. . .,n}, 
we have qi+i = Sc(qi,ai) due to the definition of 6~. 
Consequently, and by definition of Qc, and Fc, P, 
is a path in C from Qo, to Fc, that is, u is a word of 
L(C). 

Proof. Let u be a word in C(a). Then, u is the label 
of a path P, in .13, the origin of which is in QoL, and 
the end of which is in FB. 

First, suppose that u is a word in _L(M>\\C(N>. 
Then, there exists w in L(M) such that wu is in L(N) 
and that for all u in pref+ ( u), wu is not in C(M) 
(a). If P,, had a suffix-M prefix P,, the label of which 
is u, we would have u E pref+( u) and wu E fZ( M) 
(according to suffix-M prefix definition), which con- 
tradicts sentence (a) above. So, P,, has no suffix-M 
prefix. 

Now, if u is a word in L(C), then it is the label 
of a path Pu in C from Qo, to Fc. According to 6c 
definition, Pu does not pass through a state of FM x 
QN, except for its origin which is in this latter set. 
Consequently, P, has no suffix-M prefix. As P, is 
also a path in B from Qa, to Fa (by definition of 
automaton C), we can state, due to Lemma 7, that u 
is a word of C(M)\\L(N). 0 

5. A straightforward algorithm 

Now, suppose that Pu has no suffix-M prefix. As 
u is in C(B) = M\N, there exists w in L(M) such 
that wu is in ,C( N) . But Pu has no non-empty pre- 
fix ending in FM x QN. Consequently, for all v in 
pref+(u), wu does not belong to C(M). So, u is in 
C(M)\-WW. 0 

A straightforward algorithm constructing an au- 
tomaton recognizing the left full quotient of two reg- 
ular languages M and N is now provided. The basis 
of the present work lies on the automata of the previ- 
ous section. In view of the definition of automaton C, 
the reachable states of A have to be considered. This 
leads to the following definition. 

Therefore, removing from a all the suffix-M 
prefixes, one can get an automaton recognizing 
L(M)\\C(N). Construction of automaton C given 
below takes its inspiration from this note. 

Definition 9. The reachable part of A is the automa- 
ton 

W’(d) = (Rd,~RP(d),40a,FdnRa), 
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Lefi-fuhuotient( (QM, ~MM, qOmt FM), (QN, SN, qON, FN)) 
StatesQueue := Empty-queue; 
Enqueue ( ( qom, qoN ) , StatesQueue) ; 
Q := {}; S := {}; Q. := {}; F := {}; 
while [ lEmpty?( StatesQueue) ] do 

(qM , qN) := Head (StatesQueue) ; 
StatesQueue := Dequeue (StatesQueue) ; 
if[(wtlw) $Ql then % (i) 
Q:=Qu{(m~wf}; 
if [qM E FM] thenQo:=QoU{(qM,qN)}endif; 
if [qN E FN] then F := FU {(qM,qN)} end if; 

fore& (qM,a,q~) E a,U((M) do 
(qN3Gqjhl) :=6N(qN,a); 
if [qh $! FM] then 

6 :=au {((4MT4N)9a9 (&,q&->)}; 
Enqueue( (qh, qh) , StatesQueue) ; 

end if; 
end for; 

end if; % (ii) 
end while; 

return <Q,&Qo,F); 
end Left-full-quotient; 

Fig. 1. Algorithm Left-full-quotient. 
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where Rd is the set of all the reachable states of A 
as defined in Section 2 and &p(d) is the part of 8d 
each element of which has its extremities in Rd. 

Suppose automaton RP(d) has been construc- 
ted. Then Qc, is easily obtained, and automaton 
(Rd,6Rp(dj,Qua,Fd I7 Rd) can be built. Let 

*‘,P(d, be the set of all the transitions of &P(d) 
that do not lead to a state of FM x QN. Automaton 
D = (Rd&p(d)>Qoa~ Fd n Rd) clearly verifies 
L(V) = L(C) due to the definition of C. 

The algorithm. In the following, transition functions 
6 are viewed as sets of transitions (that is as relations) ; 
therefore, (q, a, q’) E 6 stands for S( q. a) = q’. 

The algorithm is given in Fig. 1. It constructs D 
in a “breadth-first” way from automata M and N. It 
starts from the initial state ( qoN, qoN) of RP( A): 
it looks for each pair ((qoh,a,q), (qoN,a,q’)) E 
SM x SN and, if q $! FM, it constructs the transition 
((q0m9qON)7av ($9’)) of%p(_4) andstores (%d) 

in a queue. When every pair has been processed, the 
algorithm goes on with the state on the head of the 
queue. 

The algorithm makes use of two particular func- 
tions, 6~ (q) and 8N (q, a). The first one yields the 
set of transitions of M, the starting state of which 
is q. The second one returns the transition of N, the 
starting state and label of which is, respectively, q 
and a. 

Time complexity of the algorithm. Every mem- 
bership test, as well as computations of 6~ (q) and 
6N(q, a), are assumed to be basic operations. 

The set of instructions from (i) to (ii) is executed 
at most ~QM I. ~QN[ times. Moreover, for one state 
(q, q’) of the queue, the for loop is repeated exactly 
IAl times because M is a deterministic complete au- 
tomaton . 

The maximum amount of states that get through 
the queue is now computed. This amount is obtained 
supposing that, each time a state (q. q’) is dealt with, 
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IAl transitions are built for A, that is, IA 1 states are 
enqueued. This leads, on the whole, to a maximum 
amount of IQ& I. 1 QN[. I A I states. Thus, the while loop 
is repeated at most [QM I.lQ~l.lAl times. The follow- 
ing proposition has been established. 

Proposition. The time complexity of the algorithm 
Left-full-quotient is in O( lQ~l.lQ~j>. 

6. Conclusion 

A binary operation on languages, named full quo- 
tient due to its similarity to usual quotient, has been 
introduced. This similarity is not very deep, since, as 
shown in Section 3, the family of regular languages 
is not closed under full quotient with an arbitrary lan- 
guage. However, the main result of this paper estab- 
lishes that the full quotient of two regular languages 
is regular. With this aim in view, a construction of an 
automaton recognizing the full quotient has been de- 
scribed. From this construction, an algorithm has been 
derived, the time complexity of which is proportional 
to the product of the number of states of the initial 
automata. 

Closure properties of other families of languages 
under full quotient have not been investigated. More- 
over, one should ask whether the full quotient may 
be expressed as a finite combination of some famil- 
iar operations on languages. A positive answer to that 
question is rather dubious. In other words, it can be 
believed that in a sense the full quotient is an elemen- 
tary operation. 
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