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Guided Unfoldings for Finding Loops in

Standard Term Rewriting
[Extended Abstract]

Étienne Payet

LIM, Université de La Réunion, France
etienne.payet@univ-reunion.fr

Abstract. In this paper, we reconsider the unfolding-based technique
that we have introduced previously for detecting loops in standard term
rewriting. We improve it by guiding the unfolding process, using distin-
guished positions in the rewrite rules. This results in a depth-first compu-
tation of the unfoldings, whereas the original technique was breadth-first.
We have implemented this new approach in our tool NTI and compared
it to the previous one on a bunch of rewrite systems. The results we get
are promising (better times, more successful proofs).

Keywords: term rewrite systems, dependency pairs, non-termination, loop, un-
folding

1 Introduction

In [8], we have introduced a technique for finding loops (a periodic, special form
of non-termination) in standard term rewriting. It consists of unfolding the term
rewrite system (TRS) R under analysis and of performing a semi-unification [7]
test on the unfolded rules for detecting loops. The unfolding operator UR which
is applied processes both forwards and backwards and considers every subterm
of the rules to unfold, including variable subterms.

Example 1. Let R be the TRS consisting of the following rules (x is a variable):

R1 = f(s(0), s(1), x)
︸ ︷︷ ︸

l

→ f(x, x, x)
︸ ︷︷ ︸

r

R2 = h→ 0 R3 = h→ 1 .

Note that R is a variation of a well-known example by Toyama [11]. Unfolding
the subterm 0 of l backwards with the rule R2, we get the unfolded rule U1 =
f(s(h), s(1), x)→ f(x, x, x). Unfolding the subterm x (a variable) of l backwards
with R2, we get U2 = f(s(0), s(1), h)→ f(0, 0, 0). Unfolding the first (from the left)
occurrence of x in r forwards with R2, we get U3 = f(s(0), s(1), h)→ f(0, h, h). We
have {U1, U2, U3} ⊆ UR(R). Now, if we unfold the subterm 1 of U1 backwards
with R3, we get f(s(h), s(h), x)→ f(x, x, x), which is an element of UR(UR(R)).

http://arxiv.org/abs/1808.05065v1


The left-hand side l1 of this rule semi-unifies with its right-hand side r1 i.e.,
l1θ1θ2 = r1θ1 for the substitutions θ1 = {x/s(h)} and θ2 = {}. Therefore,
lθ1 = f(s(h), s(h), s(h)) loops with respect to R because it can be rewritten to
itself using the rules of R:

f(s(h), s(h), s(h))→
R2

f(s(0), s(h), s(h))→
R3

f(s(0), s(1), s(h))→
R1

f(s(h), s(h), s(h)) .

Iterative applications of the operator UR result in a combinatorial explosion
which significatively limits the approach. In order to reduce it, a mechanism
is introduced in [8] for eliminating the unfolded rules which are estimated as
useless for detecting loops. Moreover, in practice, three analyses are run in par-
allel (in different threads): one with forward unfoldings only, one with backward
unfoldings only and one with forward and backward unfoldings together.

So, the technique of [8] roughly consists in computing all the rules of UR(R),
UR(UR(R)), . . . and removing the useless ones, until the semi-unification test
succeeds on an unfolded rule or a time limit is reached. Therefore, this approach
corresponds to a breadth-first search for a loop, as the successive iterations of
UR are computed thoroughly, one after the other. However, it is not always
necessary to compute all the elements of each iteration of UR. For instance, in
Ex. 1 above, U2 and U3 do not lead to an unfolded rule satisfying the semi-
unification criterion. This is detected by the eliminating mechanism of [8], but
only after these two rules are generated. In order to avoid the generation of
these useless rules, one can notice that 〈s(0), x〉 is the leftmost disagreement pair
of l and r i.e., intuitively, it is the first pair of different subterms that occur
when reading both l and r from left to right. Hence, one can first concentrate
on resolving this disagreement, unfolding this pair only, and then, once this is
resolved, apply the same process to the next disagreement pair.

Example 2 (Ex. 1 continued). 〈s(0), x〉 is the leftmost disagreement pair of l and
r. There are two ways to resolve it (i.e., make it disappear).

The first way consists in unifying s(0) and x, i.e., in computing R1θ where θ is
the substitution {x/s(0)}, which gives U0 = f(s(0), s(1), s(0))→ f(s(0), s(0), s(0)).

The other way is to unfold s(0) or x. We decide not to unfold variable sub-
terms, hence we select s(0). As it occurs in the left-hand side of R1, we unfold
it backwards. The only possibility is to use R2, which results in

U1 = f(s(h), s(1), x)→ f(x, x, x) .

Note that this approach only generates two rules (U0 and U1) at the first iteration
of the unfolding operator. In comparison, the approach of [8] produces 14 rules,
as all the subterms of R1 are considered for unfolding.

Hence, the disagreement pair 〈s(0), x〉 has been replaced with the disagree-
ment pair 〈s(h), x〉. Unifying s(h) and x i.e., computing U1θ

′ where θ′ is the
substitution {x/s(h)}, we get U ′

1 = f(s(h), s(1), s(h))→ f(s(h), s(h), s(h)). So, the
disagreement 〈s(0), x〉 is solved: it has been replaced with 〈s(h), s(h)〉. Now, the
leftmost disagreement pair in U ′

1 is 〈1, h〉 (here we mean the second occur-
rence of h in the right-hand side of U ′

1). Unfolding 1 backwards with R3, we
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get V1 = f(s(h), s(h), s(h))→ f(s(h), s(h), s(h)) and unfolding h forwards with R3,
we get V ′

1 = f(s(h), s(1), s(h))→ f(s(h), s(1), s(h)). The semi-unification test suc-
ceeds on both rules: V1 yields the looping term f(s(h), s(h), s(h)) and V ′

1 yields
f(s(h), s(1), s(h)).

The approach which is sketched in Ex. 2 corresponds to a depth-first search
for a loop. The iterations of UR are not thoroughly computed. Only a selected
disagreement pair is considered and once it is resolved we backtrack to the next
one. Hence, the unfoldings are guided by disagreement pairs. In this paper, we
formally describe the intuitions presented above (Sect. 3 and Sect. 4) and we
report some experiments on a bunch of rewrite systems from the TPBD [10]
(Sect 5). The results we get are promising and we do not need to perform several
analyses in parallel, nor to unfold variable subterms, unlike with the approach
of [8].

2 Preliminaries

We refer to [4] for the basics of rewriting. From now on, we fix a finite signature
F together with an infinite countable set V of variables with F∩V = ∅. Elements
of F are denoted by f, g, h, 0, 1, . . . and elements of V by x, y, z, . . . The set of
terms over F ∪ V is denoted by T (F ,V). For any t ∈ T (F ,V), we let root(t)
denote the root symbol of t: root(t) = f if t = f(t1, . . . , tm) and root(t) = ⊥ if
t ∈ V . Moreover, we let Var(t) denote the set of variables occurring in t and
Pos(t) denote the set of positions of t. For any p ∈ Pos(t), we write t|p to denote
the subterm of t at position p and we write t[p← s] to denote the term obtained
from t by replacing t|p with a term s. For any p, q ∈ Pos(t), we write p ≤ q if
and only if p is a prefix of q; we write p < q if and only if p ≤ q and p 6= q.
We also define the set of non-variable positions which either are a prefix of p or
include p as a prefix:

NPos(t, p) = {q ∈ Pos(t) | q ≤ p ∨ p ≤ q, t|q 6∈ V} .

For any non-empty set of positions S, we let minS denote the position in S
which is leftmost and downmost (for instance, min{1, 2, 1.2, 1.3, 2.1}= 1.2). We
let min ∅ be undefined.

We write substitutions as sets of the form {x1/t1, . . . , xn/tn} denoting that
for each 1 ≤ i ≤ n, variable xi is mapped to term ti (note that xi may occur
in ti). The empty substitution (identity) is denoted by id . The application of a
substitution θ to a syntactic object o is denoted by oθ. We let mgu(s, t) denote
the set of most general unifiers of terms s and t. A disagreement pair of s and t
is an ordered pair 〈s|p, t|p〉 where p ∈ Pos(s)∩Pos(t), root(s|p) 6= root(t|p) and,
for every q < p, root(s|q) = root(t|q).

Example 3. Let s = f(s(0), s(1), y), t = f(x, x, x), p1 = 1, p2 = 2 and p3 = 3.
Then, 〈s|p1

, t|p1
〉 = 〈s(0), x〉 and 〈s|p2

, t|p2
〉 = 〈s(1), x〉 are disagreement pairs

of s and t. However, 〈s|p3
, t|p3
〉 = 〈y, x〉 is not a disagreement pair of s and t

because root(y) = root(x) = ⊥.
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A rewrite rule (or rule) over F ∪ V has the form l→ r with l, r ∈ T (F ,V),
l 6∈ V and Var(r) ⊆ Var(l). A term rewriting system (TRS) over F ∪ V is a
finite set of rewrite rules over F ∪ V . Given a TRS R and some terms s and
t, we write s→

R
t if there is a rewrite rule l→ r in R, a substitution θ and

p ∈ Pos(s) such that s|p = lθ and t = s[p← rθ]. We let
+
→
R

(resp.
∗
→
R
) denote

the transitive (resp. reflexive and transitive) closure of →
R
. We say that a term

t is non-terminating with respect to (w.r.t.) R when there exist infinitely many
terms t1, t2, . . . such that t→

R
t1→

R
t2→

R
· · · . We say that R is non-terminating

if there exists a non-terminating term w.r.t. it. A term t loops w.r.t. R when

t
+
→
R

C[tθ] for some context C and substitution θ. Then t
+
→
R

C[tθ] is called a loop

for R. We say that R is looping when it admits a loop. If a term loops w.r.t. R
then it is non-terminating w.r.t. R.

We refer to [3] for details on dependency pairs. The defined symbols of a TRS
R over F ∪ V are DR = {root(l) | l→ r ∈ R}. For every f ∈ F we let f# be a
fresh tuple symbol with the same arity as f. The set of tuple symbols is denoted
as F#. The notations and definitions above with terms over F ∪V are naturally
extended to terms over (F∪F#)∪V . Elements of F∪F# are denoted as f, g, . . .
If t = f(t1, . . . , tm) ∈ T (F ,V), we let t# denote the term f#(t1, . . . , tm), and we
call t# an F#-term. An F#-rule is a rule whose left-hand and right-hand sides
are F#-terms. The set of dependency pairs of R is

{l#→ t# | l→ r ∈ R, t is a subterm of r, root(t) ∈ DR} .

A sequence s1→ t1, . . . , sn→ tn of dependency pairs of R is an R-chain if there
exists a substitution σ such that tiσ

∗
→
R

si+1σ holds for every two consecutive

pairs si→ ti and si+1→ ti+1 in the sequence.

Theorem 1 ([3]). R is non-terminating if and only if there exists an infinite
R-chain.

The dependency graph of R is the graph whose nodes are the dependency
pairs of R and there is an arc from s→ t to u→ v if and only if s→ t, u→ v
is an R-chain. This graph is not computable in general since it is undecidable
whether two dependency pairs of R form an R-chain. Hence, for automation,
one constructs an estimated graph containing all the arcs of the real graph. This
is done by computing connectable terms, which form a superset of those terms
s, t where sσ

∗
→
R

tσ holds for some substitution σ. The approximation uses the

transformations cap and ren where, for any t ∈ T (F ∪ F#,V), cap(t) (resp.
ren(t)) results from replacing all subterms of t with defined root symbol (resp.
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all variables in t) by different new variables not previously met. More formally:

cap(x) = x if x ∈ V

cap(f(t1, . . . , tm)) =

{
a new variable if f ∈ DR

f(cap(t1), . . . ,cap(tm)) if f 6∈ DR

ren(x) = a new variable if x ∈ V

ren(f(t1, . . . , tm)) = f(ren(t1), . . . ,ren(tm))

A term s is connectable to a term t if ren(cap(s)) unifies with t. An F#-rule
l→ r is connectable to an F#-rule s→ t if r is connectable to s. The estimated
dependency graph of R is denoted as DG(R). Its nodes are the dependency pairs
of R and there is an arc from N to N ′ iff N is connectable to N ′.

If Y is an operator from a set E to itself, then for any e ∈ E we let

(Y ↑ 0)(e) = e

(Y ↑ n+ 1)(e) = Y
(
(Y ↑ n)(e)

)
∀n ∈ N .

Finite sequences are written as [e1, . . . , en]. We let :: denote the concate-
nation operator over finite sequences. A path in DG(R) is a finite sequence
[N1, N2, . . . , Nn] of nodes where, for each 1 ≤ i < n, there is an arc from Ni

to Ni+1. When there is also an arc from Nn to N1, the path is called a cycle.
It is called a simple cycle if, moreover, there is no repetition of nodes (modulo
variable renaming). We let SCC (R) denote the set of strongly connected com-
ponents of DG(R) that contain at least one arc. Hence, a strongly connected
component consisting of a unique node is in SCC (R) only if there is an arc from
the node to itself.

Example 4. Let R be the TRS of Ex. 1. We have SCC (R) = {C} where C
consists of the node N = f#(s(0), s(1), x)→ f#(x, x, x) and of the arc (N,N).

Example 5. Let R′ = {f(0)→ f(1), f(2)→ f(0), 1→ 0}. We have SCC (R′) =
{C′} where C′ consists of the nodes N1 = f#(0)→ f#(1) and N2 = f#(2)→ f#(0)
and of the arcs {N1, N2}× {N1, N2} \ {(N2, N2)}. The strongly connected com-
ponent of DG(R′) which consists of the unique node f#(0)→ 1# does not belong
to SCC (R′) because it has no arc.

3 Guided unfoldings

In the sequel of this paper, we let R denote a TRS over F ∪ V .
While the method sketched in Ex. 2 can be applied directly to the TRS R

under analysis, we use a refinement based on the estimated dependency graph
of R. The cycles in DG(R) are over-approximations of the infinite R-chains i.e.,
any infinite R-chain corresponds to a cycle in the graph but some cycles in the
graph may not correspond to any R-chain. Moreover, by Theorem 1, if we find
an infinite R-chain then we have proved that R is non-terminating. Hence, we
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concentrate on the cycles in DG(R). We try to solve them i.e., to find out if
they correspond to any infinite R-chain. This is done by iteratively unfolding
the F#-rules of the cycles. If the semi-unification test succeeds on one of the
generated unfolded rules, then we have found a loop.

Definition 1 (Syntactic loop). A syntactic loop in R is a finite sequence
[N1, . . . , Nn] of distinct (modulo variable renaming) F#-rules where, for each
1 ≤ i < n, Ni is connectable to Ni+1 and Nn is connectable to N1. We identify
syntactic loops consisting of the same (modulo variable renaming) elements, not
necessarily in the same order.

Note that the simple cycles in DG(R) are syntactic loops. For any C ∈
SCC (R), we let s-cycles(C) denote the set of simple cycles in C. We also let

s-cycles(R) = ∪C∈SCC (R) s-cycles(C)

be the set of simple cycles in R. The rules of any simple cycle in R are assumed
to be pairwise variable disjoint.

Example 6 (Ex. 4 and 5 continued). We have

s-cycles(R) = {[N ]} and s-cycles(R′) = {[N1], [N1, N2]}

with, in s-cycles(R′), [N1, N2] = [N2, N1].

The operators we use for unfolding an F#-rule are defined as follows. They
only unfold non-variable subterms. Moreover, they use narrowing, see (2) in
Def. 2-3: there, l′→ r′ ≪ R means that l′→ r′ is a new occurrence of a rule of
R that is renamed apart i.e., contains new variables not previously met.

Definition 2 (Forward guided unfoldings). Let l→ r be an F#-rule, s be
an F#-term and p be the position of a disagreement pair of r and s. The forward
unfoldings of l→ r at position p, guided by s and w.r.t. R are

FR(l→ r, s, p) =

{

U

∣
∣
∣
∣

q ∈ NPos(r, p), q ≤ p
θ ∈ mgu(r|q , s|q), U = (l→ r)θ

}(1)

∪

{

U

∣
∣
∣
∣

q ∈ NPos(r, p), l′→ r′ ≪R
θ ∈ mgu(r|q , l′), U = (l→ r[q← r′])θ

}(2)

.

Definition 3 (Backward guided unfoldings). Let s→ t be an F#-rule, r
be an F#-term and p be the position of a disagreement pair of r and s. The
backward unfoldings of s→ t at position p, guided by r and w.r.t. R are

BR(s→ t, r, p) =

{

U

∣
∣
∣
∣

q ∈ NPos(s, p), q ≤ p
θ ∈ mgu(r|q , s|q), U = (s→ t)θ

}(1)

∪

{

U

∣
∣
∣
∣

q ∈ NPos(s, p), l′→ r′ ≪R
θ ∈ mgu(s|q, r′), U = (s[q← l′]→ t)θ

}(2)

.
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Example 7 (Ex. 4 and 6 continued). [N ] is a simple cycle in R with

N = f#(s(0), s(1), x)
︸ ︷︷ ︸

s

→ f#(x, x, x)
︸ ︷︷ ︸

t

.

Let r = t. Then p = 1 is a disagreement pair position of r and s. Moreover,
q = 1.1 ∈ NPos(s, p) because p ≤ q and s|q = 0 is not a variable. Let l′→ r′ =
h→ 0 ∈ R. We have id ∈ mgu(s|q, r′). Hence, by (2) in Def. 3, we have

U1 = f#(s(h), s(1), x)
︸ ︷︷ ︸

s1

→ f#(x, x, x)
︸ ︷︷ ︸

t1

∈ BR(N, r, p) .

Let r1 = t1. Then, p = 1 is a disagreement pair position of r1 and s1. More-
over, p ∈ NPos(s1, p) with s1|p = s(h), p ≤ p and r1|p = x. As {x/s(h)} ∈
mgu(r1|p, s1|p), by (1) in Def. 3 we have

U ′
1 = f#(s(h), s(1), s(h))

︸ ︷︷ ︸

s′
1

→ f#(s(h), s(h), s(h))
︸ ︷︷ ︸

t′
1

∈ BR(U1, r1, p) .

Let r′1 = t′1. Then, p
′ = 2.1 is a disagreement pair position of r′1 and s′1 with

p′ ∈ NPos(s′1, p
′). Let l′′→ r′′ = h→ 1 ∈ R. We have id ∈ mgu(s′1|p′ , r′′). Hence,

by (2) in Def. 3, we have

U
′′

1 = f#(s(h), s(h), s(h))→ f#(s(h), s(h), s(h)) ∈ BR(U ′
1, r

′
1, p

′) .

We choose to guide the unfoldings using the leftmost disagreement pair of
the left-hand and right-hand sides of rules.

Definition 4 (Disagreement). The minimal disagreement position of terms
s and t is denoted as minpos(s, t). It is defined as

minpos(s, t) = min

{

p

∣
∣
∣
∣

p ∈ Pos(s) ∩ Pos(t)
〈s|p, t|p〉 is a disagreement pair of s and t

}

.

So, minpos(s, t) is undefined if there is no disagreement pair of s and t.

Example 8. We have minpos(f#(x, x, x), f#(s(0), s(1), x)) = 1 because

〈f#(x, x, x)|1, f#(s(0), s(1), x)|1〉 = 〈x, s(0)〉

is the leftmost disagreement pair of the terms f#(x, x, x) and f#(s(0), s(1), x).

Our approach consists of iteratively unfolding syntactic loops using the fol-
lowing operator.

7



Definition 5 (Guided unfoldings). Let X be a set of syntactic loops of R.
The guided unfoldings of X w.r.t. R are defined as

GUR(X) =

{

[U ] ::L

∣
∣
∣
∣

[l→ r, s→ t] ::L ∈ X, θ ∈ mgu(r, s)
U = (l→ t)θ, [U ] ::L is a syntactic loop

}(1)

∪






[U, s→ t] ::L

∣
∣
∣
∣
∣
∣

[l→ r, s→ t] ::L ∈ X, mgu(r, s) = ∅
p = minpos(r, s), U ∈ FR(l→ r, s, p)
[U, s→ t] ::L is a syntactic loop







(2)

∪






[l→ r, U ] ::L

∣
∣
∣
∣
∣
∣

[l→ r, s→ t] ::L ∈ X, mgu(r, s) = ∅
p = minpos(r, s), U ∈ BR(s→ t, r, p)
[l→ r, U ] ::L is a syntactic loop







(3)

∪






[U ]

∣
∣
∣
∣
∣
∣

[l→ r] ∈ X, p = minpos(r, l)
U ∈ FR(l→ r, l, p) ∪BR(l→ r, r, p)
[U ] is a syntactic loop







(4)

.

So, the idea is to walk through the syntactic loops, from the first rule on the left
to the last rule on the right1. Whenever the right-hand side of the first rule unifies
with the left-hand side of the second rule, then the first and second rules are
merged (case (1) in Def. 5), meaning that we succeeded in passing the first rule
and in reaching (connecting to) the second one. When the right-hand side of the
first rule does not unify with the left-hand side of the second rule, then we cannot
connect the first rule to the second one yet. We use the operators FR and BR

to try to connect to the second rule (cases (2) and (3) in Def. 5). Once we have
reached the last rule of a syntactic loop, then we have computed a compressed
form of the loop. We keep on unfolding this compressed form (case (4) in Def. 5),
which corresponds to a walk through the entire loop, forwards or backwards, in
one go. Note that after unfolding a rule, we might get a sequence which is not
a syntactic loop: the newly generated rule might be identical to another rule in
the sequence or it might not be connectable to its predecessor or successor in
the sequence. Therefore, (1)–(4) in Def. 5 require that the generated sequence is
a syntactic loop.

The guided unfolding semantics is defined as follows, in the style of [1,8].

Definition 6 (Guided unfolding semantics). The guided unfolding seman-
tics of R is the limit of the unfolding process described in Def. 5, starting from
the simple cycles in R:

gunf (R) =
⋃

n∈N

(GUR ↑ n)(s-cycles(R)) .

Example 9. By Ex. 7 and (4) in Def. 5, we have [U
′′

1 ] ∈ (GUR ↑ 3)(s-cycles(R))
hence [U

′′

1 ] ∈ gunf (R).
1 Going from left to right is an arbitrary (although natural) choice here. There might
exist clever strategies, guided for instance by the form of the disagreement pairs, but
we have not investigated this for the moment.
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Example 10. Let R = {f(0)→ g(1), g(1)→ f(0)}. Then, SCC (R) = {C} where
C consists of the nodes N1 = f#(0)→ g#(1) and N2 = g#(1)→ f#(0) and of
the arcs (N1, N2) and (N2, N1). Moreover, s-cycles(R) = {[N1, N2]}. As id ∈
mgu(g#(1), g#(1)) and (f#(0)→ f#(0))id = f#(0)→ f#(0), by (1) in Def. 5 we
have [f#(0)→ f#(0)] ∈ (GUR ↑ 1)(s-cycles(R)) so [f#(0)→ f#(0)] ∈ gunf (R).

Proposition 1. For any n ∈ N and [s#→ t#] ∈
⋃

k≤n(GUR ↑ k)(s-cycles(R))

there exists some context C such that s
+
→
R

C[t].

Proof. For some context C, we have s→C[t] ∈
⋃

k≤n(UR ↑ k)(R) where UR

is the unfolding operator defined in [8]. Hence, by Prop. 3.12 of [8], we have

s
+
→
R

C[t].

4 Inferring terms that loop

As in [8], we use semi-unification [7] for detecting loops. A polynomial-time
algorithm for semi-unification can be found in [6].

Theorem 2. If for [s#→ t#] ∈ gunf (R) there exist some substitutions θ1 and
θ2 such that sθ1θ2 = tθ1, then the term sθ1 loops w.r.t. R.

Proof. By Prop. 1, s
+
→
R

C[t] for some context C. Since →
R

is stable, we have

sθ1
+
→
R

C[t]θ1 i.e., sθ1
+
→
R

Cθ1[tθ1] i.e., sθ1
+
→
R
Cθ1[sθ1θ2] .

Hence, sθ1 loops w.r.t. R.

Example 11 (Ex. 9 continued). We have

[f#(s(h), s(h), s(h))→ f#(s(h), s(h), s(h))
︸ ︷︷ ︸

U
′′

1

] ∈ gunf (R)

with f(s(h), s(h), s(h))θ1θ2 = f(s(h), s(h), s(h))θ1 for θ1 = θ2 = id . Consequently,
f(s(h), s(h), s(h))θ1 = f(s(h), s(h), s(h)) loops w.r.t. R.

Example 12 (Ex. 10 continued). [f#(0)→ f#(0)] ∈ gunf (R) with f(0)θ1θ2 =
f(0)θ1 for θ1 = θ2 = id . Hence, f(0)θ1 = f(0) loops w.r.t. R.

5 Experiments

We have implemented the technique of this paper in our analyser NTI2 (Non-
Termination Inference) and we have run it on a set of selected rewrite systems
built as follows. We have extracted from the directory TRS_Standard of the

2 http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html
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TPBD [10] all the valid rewrite systems3 that are proved looping by AProVE [2,5].
We ended up with a set of 171 rewrite systems, some characteristics of which
are reported in Table 1. Note that the complete set of simple cycles of a TRS
may be really huge, hence NTI only computes a subset of it. The simple cycle
characteristics reported in Table 1 relate to the subsets computed by NTI.

Min Max Average

TRS size 1 [17] 104 [1] 10.98

Number of SCCs 1 [100] 12 [1] 1.94

SCC size 1 [95] 192 [1] 4.47

Number of simple cycles 1 [47] 185 [1] 8.54

Simple cycle size 1 [156] 9 [2] 2.25

Number of function symbols 1 [4] 66 [1] 9.01

Function symbol arity 0 [151] 5 [2] 1.07

Number of defined function symbols 1 [28] 58 [1] 5.16

Defined function symbol arity 0 [73] 5 [2] 1.38

Table 1. Some characteristics of the 171 analysed TRSs. Sizes are in number of rules.
In square brackets, we report the number of TRSs with the corresponding min or max.

We have compared our new approach to that of [8], which is also imple-
mented in NTI. The results are promising (see Table 2). We get a larger number
of successful proofs with better times. However, the results regarding the num-
ber of generated unfolded rules are worse. This may come from the fact that in
the new approach we did not implement any mechanism for eliminating useless
unfolded rules (unlike in the approach of [8]). Another point to note is that the
implementation of the new approach does not unfold variable subterms (in com-
pliance with Def. 2 and Def. 3) and does not perform several analyses in parallel,
unlike the implementation of [8] which unfolds variable subterms and performs
three analyses in parallel (one with forward unfoldings only, one with backward
unfoldings only and one with forward and backward unfoldings together).

AProVE is able to prove loopingness of all the 171 rewrite systems of our
set. In comparison, our approach succeeds on 152 systems only. Similarly to
our approach, AProVE handles the SCCs of the estimated dependency graph
independently, but it performs both a termination and a non-termination anal-
ysis on each SCC. Hence, when an SCC is proved terminating, then its non-
termination analysis is stopped, and vice-versa. On the contrary, NTI is a pure
non-termination analyser i.e., it only performs non-termination analyses. If an
SCC is terminating, it cannot prove it and keeps on trying a non-termination
proof, unnecessarily generating unfolded rules at the expense of the analysis
of the other SCCs. Hence, in our opinion, a comparison of our approach with

3 Surprisingly, the subdirectory Transformed CSR 04 contains 60 files where an invalid
rule i.e., a pair l→ r with Var(r) 6⊆ Var(l), occurs.
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NTI’08 NTI’18

Success 150 152

Don’t know 0 2

Time out 21 17

Total time 2862.34s 2144.09s

Total number of

generated rules
10 845 546 11 219 422

Average time

for a success
2.28s 0.51s

Average number of

generated rules

for a success

7206 8298

Table 2. Analysis results on our selected set of 171 rewrite systems. The time limit
fixed for a proof is 120s. Time out corresponds to a situation where the computation
did not stop within the time limit. Don’t know corresponds to a situation where
the computation stopped within the time limit with no positive answer (typically,
this means that no more unfolded rule were generated at some point i.e., (GUR ↑
n)(s-cycles(R)) = ∅ for some n, and no generated rule led to success). NTI’08 refers to
the technique of [8], NTI’18 to the technique presented in this paper. We used an Intel
2-core i5 at 2 GHz with 8 GB of RAM.

AProVE does not make sense (we do not know how to turn off the termination
analyser of AProVE in order to only compare its non-termination analyser with
ours).

6 Conclusion

We have reconsidered the unfolding-based technique introduced in [8] for detect-
ing loops in standard term rewriting. We have improved it by guiding the un-
foldings, using disagreement pairs. This results in a depth-first search for loops,
whereas the technique of [8] is breadth-first. Another difference is that the new
approach unfolds the dependency pairs, whereas [8] directly works with the rules
of the TRS under analysis. Moreover, the new approach is modular, in the sense
that it considers the SCCs of the estimated dependency graph independently;
in [8], no SCC is computed.

We have implemented the new approach in our tool NTI and compared it
to [8] on a set of 171 rewrite systems. The results we get are promising (bet-
ter times, more successful proofs) but the number of generated rules is still too
important (it is larger than with the approach of [8]). We plan to add an elimina-
tion mechanism to the new technique, similarly to [8], to address this problem.
Another possibility that we are considering is to select the rules which are usable
for unfolding an element of a syntactic loop; this would avoid the generation of
useless rules, whereas an elimination mechanism would require to generate the
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rule first and then to eliminate it afterwards. It might also be interesting to in-
vestigate the idea of running an existing termination analyser on each SCC of
the estimated dependency graph, either in parallel with NTI (once an analyser
succeeds, the other is stopped) or sequentially (first run the termination analyser
for a portion of the fixed time limit, then run NTI only on those SCCs whose
termination could not be proved). Several efficient and powerful termination
analysers have been implemented so far [9] and such a technique would avoid
the generation of useless unfolded rules. A final idea to improve our approach
would be to consider other depth-first strategies. In this paper, we proceed from
left to right i.e., we always select the leftmost disagreement pairs. Instead of
keeping the strategy so fixed, one could guide it more efficiently using specific
properties of the disagreement pairs, other than their position.
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