, Proceedings of the IJCAI 2017 Workshop on Learning in the Presence of Class Imbalance and Concept Drift (LPCICD'17, 2017.

A. Bagnall, L. M. Davis, J. Hills, and J. Lines, Transformation based ensembles for time series classification, Proceedings of the Twelfth SIAM International Conference on Data Mining, pp.307-318, 2012.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. J. Keogh, The great time series classification bake o?: a review and experimental evaluation of recent algorithmic advances, Data Min. Knowl. Discov, vol.31, issue.3, pp.606-660, 2017.

A. Bagnall, J. Lines, J. Hills, and A. Bostrom, Time-series classification with COTE: the collective of transformation-based ensembles, IEEE Trans. Knowl. Data Eng, vol.27, issue.9, pp.2522-2535, 2015.

A. Bagnall, J. Lines, W. Vickers, and E. Keogh, The UEA & UCR time series classification repository

A. Benavoli, G. Corani, J. Demsar, and M. Za?alon, Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis, Journal of Machine Learning Research, vol.18, p.36, 2017.

A. Bostrom and A. Bagnall, Binary shapelet transform for multiclass time series classification, Big Data Analytics and Knowledge Discovery-17th International Conference, pp.257-269, 2015.

M. Boullé, Towards automatic feature construction for supervised classification, Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD, pp.181-196, 2014.

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall et al., The UCR time series classification archive, 2015.

G. Corani, A. Benavoli, J. Demsar, F. Mangili, and M. Za?alon, Statistical comparison of classifiers through bayesian hierarchical modelling, Machine Learning, vol.106, issue.11, pp.1817-1837, 2017.

M. F. Delgado, E. Cernadas, S. Barro, and D. G. Amorim, Do we need hundreds of classifiers to solve real world classification problems, Journal of Machine Learning Research, vol.15, issue.1, pp.3133-3181, 2014.

J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, vol.7, pp.1-30, 2006.

J. Grabocka, A. Nanopoulos, and L. Schmidt-thieme, Invariant time-series classification, Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2012, pp.725-740, 2012.

J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, Classification of time series by shapelet transformation, Data Min. Knowl. Discov, vol.28, issue.4, pp.851-881, 2014.

E. J. Keogh and S. Kasetty, On the need for time series data mining benchmarks: A survey and empirical demonstration, Data Min. Knowl. Discov, vol.7, issue.4, pp.349-371, 2003.

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol.95, pp.1137-1145, 1995.

X. Li and J. Lin, Linear time complexity time series classification with bag-of-patternfeatures, 2017 IEEE International Conference on Data Mining, ICDM 2017, pp.277-286, 2017.

J. Lines and A. Bagnall, Time series classification with ensembles of elastic distance measures, Data Min. Knowl. Discov, vol.29, issue.3, pp.565-592, 2015.

J. Lines, S. Taylor, and A. J. Bagnall, HIVE-COTE: the hierarchical vote collective of transformation-based ensembles for time series classification, IEEE 16th International Conference on Data Mining, ICDM 2016, pp.1041-1046, 2016.

J. G. Moreno-torres, T. Raeder, R. Alaíz-rodríguez, N. V. Chawla, and F. Herrera, A unifying view on dataset shift in classification, Pattern Recognition, vol.45, issue.1, pp.521-530, 2012.

C. Perlich, F. J. Provost, and J. S. Simono?, Tree induction vs. logistic regression: A learning-curve analysis, Journal of Machine Learning Research, vol.4, pp.211-255, 2003.

S. Salzberg, On comparing classifiers: Pitfalls to avoid and a recommended approach, Data Mining & Knowledge Discovery, vol.1, issue.3, pp.317-328, 1997.

P. Schäfer and U. Leser, Fast and accurate time series classification with WEASEL, Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp.637-646, 2017.

K. M. Ting, T. Washio, J. R. Wells, and S. Aryal, Defying the gravity of learning curve: a characteristic of nearest neighbour anomaly detectors, Machine Learning, vol.106, issue.1, pp.55-91, 2017.

G. Vanwinckelen and H. Blockeel, On estimating model accuracy with repeated crossvalidation, Proceedings BeneLearn'2012, 2012.

G. Vanwinckelen and H. Blockeel, Look before you leap: Some insights into learner evaluation with cross-validation, 1st ECML/PKDD Workshop on Statistically Sound Data Mining, SSDM 2014, held at ECML/PKDD 2014, pp.3-20, 2014.

X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann et al., Experimental comparison of representation methods and distance measures for time series data, Data Min. Knowl. Discov, vol.26, issue.2, pp.275-309, 2013.