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Should we Reload Time Series Classification Performance Evaluation ? (a position paper)

Since the introduction and the public availability of the ucr time series benchmark data sets, numerous Time Series Classification (TSC) methods has been designed, evaluated and compared to each others. We suggest a critical view of TSC performance evaluation protocols put in place in recent TSC literature. The main goal of this "position" paper is to stimulate discussion and reflexion about performance evaluation in TSC literature.

Introduction

The need for time series data mining benchmarks [START_REF] Keogh | On the need for time series data mining benchmarks: A survey and empirical demonstration[END_REF] has been fulfilled: with, firstly, the ucr Time Series Classification Archive [START_REF] Chen | The UCR time series classification archive[END_REF] and then the uea & ucr Time Series Classification Repository [START_REF] Bagnall | The UEA & UCR time series classification repository[END_REF], the research community now have more than 85 data sets from various application domains to evaluate newly introduced TSC methods and to compare them to existing ones. The public availability and the wide di↵usion of the benchmark data had a strong and positive impact on the research community which has been prolific in terms of publications of TSC methods; as an example, the recent experimental evaluation in [START_REF] Bagnall | The great time series classification bake o↵: a review and experimental evaluation of recent algorithmic advances[END_REF] involves 18 recently proposed algorithms while in the same year, in 2017, two contenders, BoPF [START_REF] Li | Linear time complexity time series classification with bag-of-patternfeatures[END_REF] and weasel [START_REF] Schäfer | Fast and accurate time series classification with WEASEL[END_REF] have been presented in top data mining conferences.

In most of the research papers, the experimental evaluation section starts with "Each UCR dataset provides a train and test split set which we use unchanged to make our results comparable the prior publications" 3 . And this is where the reflexion we suggest begins. In the following, we will consider accuracy as the measure of predictive performance since it is the most widely used in TSC literature.

Discussion & reflexion

About train/test experiment. While in transactional data classification, resampling strategies (mainly bootstrap and stratified k-fold cross-validation) are the norm to estimate the expected performance of classifiers and to compare them [START_REF] Salzberg | On comparing classifiers: Pitfalls to avoid and a recommended approach[END_REF][START_REF] Delgado | Do we need hundreds of classifiers to solve real world classification problems[END_REF], there is a singularity concerning predictive performance evaluation in TSC literature: the vast majority of research work restrains predictive performance evaluation to a single train/test split experiment [START_REF] Bagnall | The UEA & UCR time series classification repository[END_REF], also called hold-out method or test sample estimation [START_REF] Kohavi | A study of cross-validation and bootstrap for accuracy estimation and model selection[END_REF].

Unless disposing of a large and representative data set of the application domain, a single train/test experiment is generally ine↵ective in providing predictive performance estimation and valuable comparison between TS classifiers without random subsamplings (i.e., repeated hold out experiments). Indeed, different samplings may lead to results with strong variations [START_REF] Kohavi | A study of cross-validation and bootstrap for accuracy estimation and model selection[END_REF]. Thus, a classifier C A may show better predictive performance than another classifier C B just because of this particular split. And, in such cases, subsequent statistical tests based on single train/test accuracy results (such as now commonly used posthoc Nemenyi test [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF]) do not help more in comparing classifiers performance over several data sets since other train/test splits could have led to di↵erent accuracy and mean rank results and thus potentially di↵erent conclusions.

Moreover, unless disposing of tens of thousands instances, it is common to keep more instances in the training set than in the test hold out, generally around class-stratified ratio of 2/3 for training against the rest i.e., 1/3 for testing. The TSC repository [START_REF] Bagnall | The UEA & UCR time series classification repository[END_REF] provides various predefined train/test split ratios, going from 1.6% to 81% of the whole data set for training set (notice that 35 of the 85 TSC data sets show a train/test split ratio below 34%). In addition to small -if not very small-training sets, the train/test splits are not always classstratified; it results in very (too) few representative instances of some class labels (especially in multi-class problems). We are aware that, in some application domains, "labelled data is expensive to collect" [START_REF] Bagnall | The great time series classification bake o↵: a review and experimental evaluation of recent algorithmic advances[END_REF], however, considering the whole available and already-labelled data, splitting for such small non-stratified training sets is also questionable. Here are some singularities that arise from some data sets drawn from the TSC archive:

- Generally speaking, in addition to the weakness of single train/test experiments for performance evaluation, choosing to split such way, without classstratification in small training sets, results in "unnecessary di cult" TSC problems: indeed, the obtained training set is not always representative of the whole available data set and as explained above, it could lead to class distribution change between training and test sets (also known as prior probability shift [START_REF] Moreno-Torres | A unifying view on dataset shift in classification[END_REF]).

In such environments, intuitively, simple 1-Nearest Neighbor lazy learners [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF] and ensemble methods that embed several weasel and ST [START_REF] Hills | Classification of time series by shapelet transformation[END_REF][START_REF] Bostrom | Binary shapelet transform for multiclass time series classification[END_REF] score the highest mean ranks when considering data sets with training set size greater than 500 while CoTE takes advantage when adding data with smaller training size. We also observe that the mean rank of ST increases as we consider more and more data sets with smaller training size. Notice that, it has to be balanced against the fact that as the number of data sets decreases the critical di↵erence (CD) value increases, making more di cult to state significant di↵erences of performance between contenders. Another illustrative example is about snb [START_REF] Boullé | Towards automatic feature construction for supervised classification[END_REF] (an improved Naïve Bayes classifier benefiting from multiple representations) which is competitive with weasel, CoTE, boss and st when not considering too small (< 200) training set size -confirming the importance of the size of the training set on the predictive performance of some classifiers. Aside from [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF], we may regret the lack of experimental studies about the learning curves [START_REF] Perlich | Tree induction vs. logistic regression: A learning-curve analysis[END_REF][START_REF] Ting | Defying the gravity of learning curve: a characteristic of nearest neighbour anomaly detectors[END_REF] of TSC algorithms.

About resampling strategies.

As far as we know, very few attempts of resampling strategies for TSC performance evaluation have been led, e.g., :

-Grabocka et al. [START_REF] Grabocka | Invariant time-series classification[END_REF] provides some results by 5-folds cross validation on 35 ucr data sets. It allows to identify easy data sets in the TSC archive [START_REF] Chen | The UCR time series classification archive[END_REF]. Indeed, a default SVM classifier with polynomial kernel scores above 95% accuracy (often near perfect) on 18 data sets.

-Wang et al. [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF], focusing on 1-NN with various distance measures, provides k-folds stratified cross-validation results. However, the k varies from 2 to 30 depending on the benchmark data set and the cross-validation method at use is unconventional: when splitting the data set T into k folds, the model is learnt on fold T k and tested on T \ T k -while conventional k-folds cross validation being the opposite: learning the model on T \T k and testing on T k . This unconventional cross-validation leads to the same problems explained above (with 1/30, i.e., 3% of the whole data set used for training).

In the same paper, the authors also noticed the importance of the e↵ect of the training data set size on 1-NN classifier accuracy : DTW-1-NN is better than ED-1-NN with small training data set, but providing that we have enough training instances (a few hundred/thousand depending on the simulated data set), the two classifiers show similar predictive performance.

-Bagnall et al. [START_REF] Bagnall | The great time series classification bake o↵: a review and experimental evaluation of recent algorithmic advances[END_REF] performs 100 resampling experiments on each of the 85 TSC data sets -followed by Nemenyi's statistical post-hoc test. However, the multiple resamplings fit the original size of train/test split provided by [START_REF] Bagnall | The UEA & UCR time series classification repository[END_REF] -which leads to the same problem raised above about training size and class distribution change. This resampling strategy gives, all the same, a better idea of the performance of recent classifiers on data with various sizes of training sets, although the train/test split is still questionable. Indeed, if instances from original test set are authorized to be in training set due to resampling, why not use 10-CV or 10⇥10 CV, as in transactional data classification literature5 ?

The cross-validation (CV) method is not unknown to the TSC community; indeed, some algorithms, like e.g., weasel or DTW-CV used cross-validation on training set to set hyper-parameters (even if the training set is very small), then a single train/test split is performed to evaluate the performance of the "best hyper-parametered" model on a single hold out test set. Again, why not use CV method to evaluate and compare TSC algorithms ?

About (repeated) 10-folds CV, statistical tests and beyond.

While 10-folds CV with subsequent statistical tests [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF] is now the gold standard for predictive performance evaluation and comparisons between classifiers on transactional benchmark data sets, recently, Vanwinckelen & Blockeel [START_REF] Vanwinckelen | On estimating model accuracy with repeated crossvalidation[END_REF][START_REF] Vanwinckelen | Look before you leap: Some insights into learner evaluation with cross-validation[END_REF] warns the Machine Learning community about pitfalls hidden in such comparisons. The take away messages are:

-"Our experiments show that when using cross-validation for choosing between two models, the best performing model is not always chosen". -"This discussion leads us to question the usefulness of statistical testing in the context of evaluating predictive models with cross-validation".

On the other hand, after almost a decade of the "10-CV + statistical tests" combination [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF] to evaluate learner's predictive performance, J. Demsar et al. [START_REF] Benavoli | Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis[END_REF][START_REF] Corani | Statistical comparison of classifiers through bayesian hierarchical modelling[END_REF] "discourage the use of frequentist null hypothesis significance tests (NHST) in machine learning and, in particular, for comparison of the performance of classifiers" and encourages the community to embrace Bayesian analysis using 10⇥10-CV for comparing classifiers. This is perhaps a change point for performance evaluation habits in the Machine Learning community. Notice that Bayesian analysis of performance is more conservative than NHST; that is, it is "more di cult" for a classifier C A to be better than a classifier C B , considering Bayesian analysis.

About the evaluation measure.

As recalled in the introduction, the vast majority of recently proposed TSC algorithms are evaluated and compared with regards to the accuracy measure, i.e., the number of correctly classified time series. Accuracy measure is suitable for roughly balanced 2-class data sets. However, for unbalanced and/or multiclass data sets, accuracy measure is inappropriate for evaluation since high accuracy results due to a bias towards the majority class could hide severely bad predictive performance on the minor class or on other classes in multiclass settings. Often, ROC or Precision/Recall curve analysis or lift curve and cumulative gain charts are prefered for unbalanced settings. The TSC archive [START_REF] Bagnall | The UEA & UCR time series classification repository[END_REF] contains some 2-class unbalanced problems, e.g., Earthquakes, ToeSegmentation2 and Wafer with respectively 20.2%, 25.3% and 10.6% unbalanced ratio (i.e., the proportion of the minor class). The archive also contains many multiclass problems with severe unbalanced ratios, e.g., ECG5000 and Worms with respectively 0.5% and 9.7% unbalanced ratio. Learning in the presence of class imbalance or in multiclass settings is still an ongoing machine learning research topic [START_REF]Proceedings of the IJCAI 2017 Workshop on Learning in the Presence of Class Imbalance and Concept Drift (LPCICD'17)[END_REF]. Again, the presence of such data sets in the benchmark repository, when averaging ranks of classifiers based on accuracy results, could lead to flawed conclusions on the performance evaluation.

Conclusion

The still ongoing public release of benchmark TSC data sets to the data mining community through the ucr & uea repository has certainly been the best catalyst for the development of new TSC algorithms and methods. In this discussion paper, we briefly review the habitual protocols at use in TSC algorithms performance evaluation, discuss the pros and cons of experimental protocols and try to warn the community about the pitfalls and hidden problems of actual performance evaluation protocols in TSC literature. We agree that the core of this discussion paper needs more in-depth development and experimental arguments but we believe that interesting discussions on this important topic deserve to be launched and continued during the 3 rd ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data.

  DiatomSizeReduction: a 4-class problem, with a train/test split ratio about 5% (16 instances for training, 306 for testing) and a class distribution (1,6,5,4) for training against (33,92,94,87) for testing. The class distribution is not respected from train to test set. There are relatively 73% more instances of class c 1 in the test set than in the training set. -SonyAIRobotSurface1: a 2-class problem, with a train/test split ratio about 3.22% (20 instances for training, 601 for testing) and a class distribution (6,14) for training against (343,258) for testing. The class distribution is not respected from train to test set. There are relatively 90% more instances of class c 1 in the test set than in the training set; and 38% less instances of class c 2 in the test set than in the training set. -. . . several additional similar cases of data sets can be found in commonly used benchmark [5] : either the number of training examples is very small w.r.t the whole available data, either there is class distribution change between training set and test set (sometimes both singularities arise).

Table 1 .

 1 1-NN classifiers (with various distance measures or on various data representations)[START_REF] Bagnall | Transformation based ensembles for time series classification[END_REF][START_REF] Bagnall | Time-series classification with COTE: the collective of transformation-based ensembles[END_REF][START_REF] Lines | Time series classification with ensembles of elastic distance measures[END_REF] still obtain "good" accuracy results since it is still possible to find a nearest neighbor of a test instance in very few training instances of a minor class. However, eager classifiers based on empirically observed per-class frequencies (such as Naïve Bayes or Decision Trees) often fail in characterizing the minor classes with very few representative instances.If the TSC archive[START_REF] Bagnall | The UEA & UCR time series classification repository[END_REF] o↵ers a wide variety of data sets, the original train/test splits also involves hidden di cult well-known problems in the Machine Learning community: e.g., learning from few examples or in class distribution change environment. Unfortunately, averaging ranks over all data sets to produce critical di↵erence diagram presents a risk of hiding the reasons why a particular classifier shows better performance than another. As an example4 , in Table1, we report performance comparisons of 11 recent classifiers like in recent literature (single train/test split following by significance testing). We provide several statistical tests by integrating step by step data sets which involves smaller size of training set. Average ranks of 11 recent classifiers depending on the data sets taken into account from[START_REF] Bagnall | The UEA & UCR time series classification repository[END_REF] (i.e., depending on the training set size). Accuracy results are taken from Schäfer & Leser paper on WEASEL[START_REF] Schäfer | Fast and accurate time series classification with WEASEL[END_REF]. Post-hoc Nemenyi's statistical test considering training set with size 1000 (only 10 data sets), then > 500 (only 22 data sets), . . . , until considering All 85 data sets from[START_REF] Bagnall | The UEA & UCR time series classification repository[END_REF]. Underlined rank is the best per line and bold results on the same line indicates that there is no statistically significant di↵erence of performance between bold results according to Nemenyi's test, considering the current benchmark datasets.

	Min. size #DB	CD	WEASEL DTWCV DTW BOSS LS TSBF ST	EE CoTE SNB BoPF
	1000	10 4.77403	3.250	8.300 8.600 5.700 6.050 7.700 3.050 6.250 4.100 3.400 9.600
	> 500	22 3.21865	2.932	7.659 9.023 5.705 6.909 6.841 4.068 6.273 3.636 4.000 8.955
	> 300	42 2.32949	3.560	7.929 8.893 5.857 6.845 6.298 4.500 6.060 3.369 4.821 7.869
	> 200	48 2.17903	3.594	7.917 8.885 5.781 6.885 6.271 4.625 5.865 3.219 5.010 7.948
	> 100	57 1.99962	3.737	7.868 8.860 5.474 6.623 6.237 4.544 5.930 3.298 5.535 7.895
	All	85 1.63748	3.847	7.806 8.647 5.382 6.135 6.388 4.847 5.871 3.412 6.429 7.235

quoted from weasel paper[START_REF] Schäfer | Fast and accurate time series classification with WEASEL[END_REF].

We did not integrate recently introduced hive-cote[START_REF] Lines | HIVE-COTE: the hierarchical vote collective of transformation-based ensembles for time series classification[END_REF] accuracy results since they are available under 100 resamples protocol.

However, even with k-folds CV, a particular attention must be given to the setting of k for the 17 small data sets, with less than 200 instances, from the TSC archive.
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