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This work presents the development and physical analysis
of a sweat transport model that couples the fluctuations in
air and vapour concentrations, and temperature, in a one-
dimensional porous clothing assembly. The clothing is exposed
to inherent time-varying conditions due to variations in the
body temperature and ambient conditions. These fluctuations
are governed by a coupled system of nonlinear relaxation–
transport–diffusion PDEs of Petrovskii parabolic type.
A condition for the well-posedness of the resulting system
of equations is derived. It is shown that the energy of the
diffusion part of the system is exponentially decreasing.
The boundedness and stability of the system of equations is
thus confirmed. The variational formulation of the system is
derived, and the existence and uniqueness of a weak solution
is demonstrated analytically. This system is shown to conserve
positivity. The difficulty of obtaining an analytical solution
due to the complexity of the problem, urges for a numerical
approach. A comparison of three cases is made using the
Crank–Nicolson finite difference method (FDM). Numerical
experiments show the existence of singular coefficient matrices
at the site of phase change. Furthermore, the steady-state
profiles of temperature, air and vapour concentrations
influence the attenuation of fluctuations. Numerical results
verify the analytical findings of this work.

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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1. Introduction
Porous media has been a vital subject of research in recent years with applications spanning from
scientific to engineering fields. One such area of interest is the movement of sweat in the form of
vapour and air through textile fabrics. The behaviour of clothing systems under various environmental
conditions is of utter importance. Clothing does not solely cover the human body, but also protects
and provides thermal comfort to the body. It is necessary to choose the appropriate textile to suit the
external environment. Various structural properties including the choice between hygroscopic and non-
hygroscopic fabric plays a major role in the dissemination of sweat through the clothing system. Studies
of the transport structure in fibrous porous textiles have been published from the 1930s. Over the years,
many numerical models have been presented with improved modelling and more realistic features.

Henry [1,2] studied the diffusion of moisture in cotton bales for the first time. A linear coupled system
of equations with respect to vapour and temperature was formulated. To keep the equations simple,
some unrealistic assumptions were made. The diffusion constant was kept independent of the vapour
concentration and temperature. It was not until the 1980s that significant progress was made in this
field in terms of theoretical modelling and numerical analysis. The analysis of the convection–diffusion
mechanism together with phase change in a porous slab was conducted by Ogniewicz & Tien [3]. Limited
to a one-dimensional steady-state formulation, the humidity conditions were varied on both sides of the
slab. A quasi-steady state model introduced by Motakef & El-Masri [4] was later extended by Shapiro &
Motakef [5] to incorporate time dependence on heat and moisture transport. However, the application
of this model was restricted to the choice of a larger advection time scale compared to that of diffusion.
Further development was noticed in the works of Farnworth [6], Vafai & Tien [7] and Fan et al. [8].

A sweating guarded hot plate was used to conduct experiments on the distribution of temperature
and water content in a three-layer clothing assembly comprising an inner fibrous batting sandwiched
between an inner and outer thin covering fabric [9]. The experimental values obtained with a polyester
batting have been used in this paper. This paper focuses on the work Huang et al. [10]. A more realistic
model was presented where vapour and air motion are treated as separate components. An analysis
of the time scale was conducted to understand the occurrence of convection, conduction, phase change
and diffusion. Owing to a much shorter time scale compared to that observed during experiments, a
quasi-steady system of equations for the vapour and air concentrations were chosen.

However, in reality air and vapour do not have such a smooth profile as shown in the numerical
experiments of Huang et al. [10]. There always exists some fluctuation in the body temperature and
external environment which, in turn, influences the concentration of vapour and air in the clothing.
The main aim of this paper is to add an unsteadiness in terms of fluctuations to the air and vapour
concentrations in the batting. Such a study provides an insight on the mechanism of relaxation, advection
and diffusion with respect to air and vapour concentrations. The variables at steady state can be
linearized to simplify the existing system of equations. A qualitative analysis is made on the nature of
the solution to this problem. Theoretical analysis on the system of equations for the transfer of heat and
moisture in porous fabrics can be found in Wang & Sun [11] and Kelly [12]. To the best of our knowledge,
to date the system has not been treated with fluctuations. In this work, a qualitative analysis of the
resulting coupled nonlinear equations with fluctuations is carried out. Each of the processes of relaxation,
transport and diffusion, respectively, is influenced by fluctuations in both water vapour concentration
(ĉ1) and air concentration (ĉ2). It is observed that the cross effect of the fluctuating variables on each
other plays a significant role in the model. The coefficients of the matrices in the resulting relaxation–
advection–diffusion equation have been found to influence the solution qualitatively, but at the same
time add to the difficulty of the qualitative analysis. The existence of a positive and unique solution
eliminates the need of a numerical approach to validate the new system of equations. However, the
numerics are considered owing to the difficulty of finding an analytic solution. Varying situations at
the inner and external environments are taken into consideration to understand the importance of the
linearized profile taken for vapour and air concentration at steady state. The behaviour of the system
of equations under different environmental conditions is tested using a semi-implicit finite difference
scheme.

2. Mathematical description
Figure 1 shows the clothing assembly used in the experiments of Fan et al. [9]. Here, the batting of this
assembly is studied under different internal and external conditions. Heat moves by convection in gas
and by conduction in all phases. The vapour/air mixture is transferred through the porous textile media
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Figure 1. Schematic diagram of the clothing assembly.

by convection and diffusion. Finally, phase change is induced by absorption of the fibre, evaporation
and condensation. The direction of the above-mentioned processes depends on the internal and external
environments.

These processes are governed by the equations (2.1)–(2.4), which model heat and mass transfer
through porous media. They are acquired from the balance of mass, balance of energy and Fick’s law.
These equations proposed in Huang et al. [10] are employed as an initial scenario in this work.

ε
∂Cv

∂t
+ ε

∂

∂x
(ugCv) = Dgε

τc

∂

∂x

(
C

∂

∂x

(
Cv

C

))
− Γ , (2.1)

ε
∂Ca

∂t
+ ε

∂
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, (2.2)
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∂t

+ εCvg
∂

∂x
(ugT) = κ

∂

∂x

(
∂T
∂x

)
+ λTMΓ (2.3)

and ρ(1 − ε′)
∂W̃
∂t

+ ρw
∂uw

∂x
= ρ(1 − ε′)Dl

∂

∂x

(
∂W̃
∂x

)
+ MΓce, (2.4)

where C, Cv and Ca are the total, vapour and air concentrations (mol m−3), respectively, T is the
temperature (K) and W̃ is the percentage liquid content on the fibre surface. Dg and Dl are the gas and
liquid diffusion coefficients (m2 s−1), and ug and uw represent the vapour–air mixture and water velocity
(m s−1) given by Darcy’s Law, respectively. Cvt and Cvg are the effective volumetric heat capacity of the
batting and volumetric heat capacity of the gas mixture (J (m−3 K−1)). Γ = Γs + Γce (kg (s−1 m−3)) is the
phase change due to absorption, condensation and evaporation, and λT (J kg−1) is the latent heat of phase
change. ρ and ρw are the densities for fibre and water (kg m−3). κ (W (m−1 K−1)) is the effective thermal
conductivity, τc is the effective tortuosity of the batting and M (kg mol−1) is the molecular weight of
water. The relationship between the porosity with water content, ε, and without water content, ε′, is
given by ε = ε′ − (ρ/ρw)W̃(1 − ε′).

A few assumptions are made based on the nature of the problem under investigation and these are
described in the next subsection.

2.1. Assumptions
As the textile fabric being used in the batting is polyester, which is non-hygroscopic, the liquid absorption
by the fibre can be neglected. The resulting non-dimensional equations are as follows:

(c1)τ − vG(c1(cθ )ξ )ξ = δG

(
c
( c1

c

)
ξ

)
ξ

− βG

ε
S, (2.5)

(c2)τ − vG(c2(cθ )ξ )ξ = δG

(
c
( c2

c

)
ξ

)
ξ

(2.6)

and (θ )τ − vTε

cvt
(θ (cθ )ξ )ξ = δTκT

cvt
θξξ + βT

cvt
S, (2.7)
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Table 1. Non-dimensional values of parameters for a 10-layer polyester batting.

parameter value parameter value

vG 1.58 × 101 vT 1.40 × 10−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δG 8.60 × 10−3 δT 3.18 × 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βG 3.30 × 101 βT 6.4 × 10−3(T ≥ 273)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3 × 10−3(T < 273)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε = ε′ 0.993 ρfw 1.39
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 1.4258 × 101 ps0 0.228
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θc 1.009 cvt 1.0261 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κT 0.2553 φ 2.889952067 × 101
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where θ , c, c1 and c2 are the non-dimensionalized terms for temperature, total concentration, vapour and
air concentration, respectively, for 0 ≤ ξ ≤ 1. ξ and τ are, respectively, the non-dimensionalized spatial
and temporal components. In addition, c = c1 + φc2, where the constant φ comes from the scalings used
to non-dimensionalize Cv and Ca. The non-dimensionalization technique has been detailed in Huang
et al. [10], and the values of the parameters can be found in table 1.

Note that

S = A
c1θ − ps(θ )√

θ
, (2.8)

with

A = (1 − ε′) (2.9)

and

ps(θ ) =
{

0.675ps0(exp(1.37α(θ − 1)) − 0.0538) for θ < θc,

ps0(exp(α(θ − 1)) − 0.412) for θ ≥ θc.
(2.10)

Looking at the advection coefficient of temperature vT/cvt which is approximately of order 10−6

whereas that of both concentrations (vapour and air) vG = 15.8, the dynamical evolution of θ is
completely different from that of c1 and c2. The time scale for the evolution of air and vapour
concentration is not comparable to the temperature time scale. Thus, it can be deduced that θ does not
vary about the steady state. The fluctuations in temperature are very small compared to those of air and
vapour concentration. As a result, a stationary temperature is maintained within the polyester batting.

2.2. Fluctuations
The human body and environment are subject to changes in temperature, air movement and humidity
among others throughout the day. Even in a healthy person, the body temperature oscillates according
to the time of the day and depending on their exposure [13]. The core temperature fluctuates by
approximately 0.6◦C and is lowest at approximately 03.00, and highest at approximately 06.00 [14]. These
fluctuations in temperature, in turn, cause fluctuations in air and vapour concentrations.

To take into account the fluctuations in c1 and c2, c1(ξ , τ ) and c2(ξ , τ ) are rewritten as

c1(ξ , τ ) = c̄1(ξ ) + ĉ1(ξ , τ ) (2.11)

and

c2(ξ , τ ) = c̄2(ξ ) + ĉ2(ξ , τ ), (2.12)

respectively. c̄1 and c̄2 are the solutions at the steady state, and ĉ1 and ĉ2 are the fluctuations. It is assumed
that ĉ1 � c̄1 and ĉ2 � c̄2.

Different situations are analysed with the aim of realizing the importance of environmental factors in
the evolution of air and vapour concentration in the 10-layer polyester batting.
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3. Methodology
Incorporating (2.11) and (2.12) in (2.5) and (2.6) gives the type of phenomena to be studied. The resulting
system of equations is a nonlinear relaxation–transport–diffusion partial differential equation. The name
Petrovskii parabolic has been given to such types of PDEs [15]. This equation governs the processes
involved in the evolution of air and vapour in the porous batting. To study and understand the relaxation,
transport and diffusion phenomena, the resulting equation is linearized about the steady-state values.
The interactions between the different phenomena and between air and vapour are thus studied in
equation (3.1). The presence of the total concentration at steady state, c̄, in most of the coefficient terms
of (3.1) indicates a strong coupling between the evolution of the fluctuations in concentration of air and
vapour in the batting. Equation (3.1) indicates that the steady state plays a vital role in the evolution of
ĉ1 and ĉ2. (

ĉ1
ĉ2

)
τ

= r

(
ĉ1
ĉ2

)
+ t

(
ĉ1
ĉ2

)
ξ

+ d

(
ĉ1
ĉ2

)
ξξ

, (3.1)

where

r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vG(c̄1,ξ θ̄ξ + c̄θ̄ξξ + c̄1θ̄ξξ + c̄ξξ θ̄

+ 2c̄ξ θ̄ξ ) + δG

(
c̄1c̄ξξ

c̄2 + c̄1,ξ c̄ξ

c̄2

−
2c̄1c̄2

ξ

c̄3 − c̄ξξ

c̄
+

c̄2
ξ

c̄2

)
− βG

ε
A

√
θ̄

vGφ(c̄1,ξ θ̄ξ + c̄1θ̄ξξ )

+ δGφ

(
c̄1c̄ξξ

c̄2 + c̄1,ξ c̄ξ

c̄2 −
2c̄1c̄2

ξ

c̄3

)

vG(c̄2,ξ θ̄ξ + c̄2θ̄ξξ )

+ δG

(
c̄2c̄ξξ

c̄2 + c̄2,ξ c̄ξ

c̄2 −
2c̄2c̄2

ξ

c̄3

)
vG(φc̄2,ξ θ̄ξ + c̄θ̄ξξ + φc̄2θ̄ξξ + c̄ξξ θ̄

+ 2c̄ξ θ̄ξ ) + δG

(
φ

c̄2c̄ξξ

c̄2 + φ
c̄2,ξ c̄ξ

c̄2

−
2φc̄2c̄2

ξ

c̄3 − c̄ξξ

c̄
+

c̄2
ξ

c̄2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vG(c̄θ̄ξ + c̄ξ θ̄ + c̄1,ξ θ̄ + 2c̄1θ̄ξ )

+ δG

(
2

c̄1c̄ξ

c̄2 − c̄ξ

c̄
− c̄1,ξ

c̄

) vGφ(c̄1,ξ θ̄ + 2c̄1θ̄ξ )

+ δGφ

(
2

c̄1c̄ξ

c̄2 − c̄1,ξ

c̄

)
vG(c̄2,ξ θ̄ + 2c̄2θ̄ξ )

+ δG

(
2

c̄2c̄ξ

c̄2 − c̄2,ξ

c̄

) vG(c̄θ̄ξ + c̄ξ θ̄ + φc̄2,ξ θ̄ + 2φc̄2θ̄ξ )

+ δG

(
2φ

c̄2c̄ξ

c̄2 − c̄ξ

c̄
− φ

c̄2,ξ

c̄

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and d =

⎛
⎜⎜⎜⎝

vGc̄1θ̄ + δG

(
− c̄1

c̄
+ 1

)
vGφc̄1θ̄ + δGφ

(
− c̄1

c̄

)

vGc̄2θ̄ + δG

(
− c̄2

c̄

)
vGφc̄2θ̄ + δG

(
−φc̄2

c̄
+ 1

)
⎞
⎟⎟⎟⎠

are the relaxation, transport and diffusion matrices, respectively.
To study the evolution of the fluctuated concentrations of each of the components, the following

quantities are introduced:

ĉ = ĉ1 + φĉ2,

where ĉ is the fluctuation in the total concentration, ĉ1 is the fluctuation in vapour concentration and
ĉ2 is the fluctuation in air concentration. After some algebra and simplification, the equation for total
fluctuated concentration is given by

∂ ĉ
∂τ

= vG
∂

∂ξ
((ĉθ̄ )ξ c̄ + (c̄θ̄ )ξ ĉ) − βG

ε
A
√

θ̄ ĉ1. (3.2)

3.1. Boundary conditions
The boundary conditions depend on the setting of the problem. A profile at steady state is accompanied
by its own set of boundary conditions depending on the conditions of the surroundings. As far as the
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fluctuations are concerned, Neumann boundary conditions are used. Here, care is taken to prevent the
accumulation of fluctuations in the system. Hence, at the inner boundary (ξ = 0),

∂ ĉ1

∂ξ
(0, τ ) = 0 and

∂ ĉ2

∂ξ
(0, τ ) = 0, (3.3)

and at the outer boundary (ξ = 1),

∂ ĉ1

∂ξ
(1, τ ) = 0 and

∂ ĉ2

∂ξ
(1, τ ) = 0 (3.4)

are taken.

3.2. Theoretical analysis
It can be observed that the evolution involves relaxation, transport and diffusion. According to
definition 3.1, the system of equations (3.1) is well-posed provided the diffusion matrix, d, is positive
definite.

Definition 3.1 [15]. Let

vτ (τ , ξ ) = R(ξ )v(τ , ξ ) + T(ξ )vξ (τ , ξ ) + D(ξ )vξξ (τ , ξ ) (3.5)

represent the Petrovskii parabolic equation (3.1). The initial value problem for the system (3.5) is well-
posed if for any time T ≥ 0, there is a constant KT such that any solution v(ξ , τ ) = ( ĉ1

ĉ2
)τ satisfies

∫∞

−∞
|v(ξ , τ )|2 dξ ≤ KT

∫∞

−∞
|v(ξ , 0)|2 dξ , (3.6)

for 0 ≤ τ ≤ T.

Boundary conditions are said to be well-posed if the solution of the partial differential equation
depends continuously on the boundary data [15]. Neumann boundary conditions are known to satisfy
these criteria.

Let D be the diffusion matrix in (3.1). For the problem to be well-posed, the matrix

Dsym =

⎛
⎜⎜⎝

vGc̄1θ̄ + δG − δG
c̄1

c̄
1
2

(
vGφc̄1θ̄ − δGφ

c̄1

c̄
+ vGc̄2θ̄ − δG

c̄2

c̄

)
1
2

(
vGφc̄1θ̄ − δGφ

c̄1

c̄
+ vGc̄2θ̄ − δG

c̄2

c̄

)
vGφc̄2θ̄ + δG − δGφ

c̄2

c̄

⎞
⎟⎟⎠ , (3.7)

where Dsym = 1
2 (D + DT) should be positive definite. Therefore, the well-posedness of the problem

heavily depends on the values of c̄, c̄1, c̄2 and θ̄ .

Theorem 3.2. The system (3.1) is well-posed if

vGδGc̄θ̄ >

(
vGθ̄ − δG/c̄

)2 (c̄1φ − c̄2)2

4
.

Proof. Firstly, the trace of (3.7) which is given by the sum of its diagonal elements is calculated.

Tr(Dsym) =
2∑

i=1

Dsymii

=
(

vGc̄1θ̄ + δG − δG
c̄1

c̄

)
+
(

vGφc̄2θ̄ + δG − δGφ
c̄2

c̄

)

= vGc̄1θ̄ + δG

> 0. (3.8)

From (3.8), it can be deduced that Dsym is semi-positive definite. Hence, it is important to prove that its
determinant is positive to ensure the positive definiteness of (3.7) and thus the well-posedness of (3.1).
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The determinant of Dsym is given by

Det(Dsym) = − 1
4c̄2 (vG

2φ2θ̄2c̄2c̄2
1 − 2vG

2φθ̄2c̄2c̄1c̄2 + vG
2θ̄2c̄2c̄2

2

− 2vGδGφ2θ̄ c̄c̄2
1 − 4vGδGφθ̄ c̄2c̄2 + 4vGδGφθ̄ c̄c̄1c̄2

− 4vGδGθ̄ c̄2c̄1 − 2vGδGθ̄ c̄c̄2
2 + δG

2φ2c̄2
1 + 4δG

2φc̄c̄2

− 2δG
2φc̄1c̄2 − 4δG

2c̄2 + 4δG
2c̄c̄1 + δG

2c̄2
2). (3.9)

Upon simplifying (3.9), the following is obtained:

Det(Dsym) = −1
4

(
vGθ̄ − δG

c̄

)2
(φc̄1 − c̄2)2 + vGδGc̄θ̄ , (3.10)

where vG > 0, δG > 0 and φ > 0. The only varying terms will be the concentrations and temperature at
steady state.

Clearly, from (3.10) for Det(Dsym) > 0,

vGδGc̄θ̄ >
1
4

(
vGθ̄ − δG

c̄

)2
(c̄1φ − c̄2)2,

which proves the Theorem. �

By definition, a well-posed problem is one where a solution exists, the solution is unique and the
solution depends continuously on the data. However, this is rarely achieved in applied mathematical
problems [16]. The problem is influenced by experimental values which are only measured at a discrete
number of points. Therefore, the problem cannot depend continuously on the data, and hence becomes
ill-posed. A suitable choice of initial and boundary conditions can remedy the ill-posed nature of the
problem.

Next, the three main phenomena involved in the evolution of air and vapour concentration,
that is, relaxation, transport and diffusion, are discussed. These processes are examined using the
principle of superposition. If the sum of these three functions is a solution of a linear PDE, then
by the principle of superposition, each of the functions is individually also a solution of the PDE
(http://www.owlnet.rice.edu/∼ceng501/Chap7.pdf (accessed 11 May 2017)).

3.3. Relaxation, transport and diffusion
The relaxation effect of ĉ1 on ĉ1τ and ĉ2 on ĉ2τ is governed by the equations below:

∂ ĉ1

∂τ
= r11ĉ1 (3.11)

and
∂ ĉ2

∂τ
= r22ĉ2, (3.12)

and the solutions are
ĉ1 = a1 exp(r11τ ) and ĉ2 = a2 exp(r22τ ),

where a1 and a2 are constants, respectively.
Irrespective of the signs of the constants a1 and a2, if r11 < 0 and r22 < 0, (3.11) and (3.12) bring about

natural relaxation. ĉ1 and ĉ2 tend towards zero, as required. When r11 > 0 and r22 > 0, the solution ĉ1 can
increase infinitely and thus become unbounded. However, diffusion present in the system given by (3.1)
damps the increasing relaxation term, as shown later.

The cross effect of ĉ2 on the evolution of ĉ1, and vice versa, is now studied. Consider the following
equations:

∂ ĉ1

∂τ
= r12ĉ2 (3.13)

and
∂ ĉ2

∂τ
= r21ĉ1. (3.14)

With r12 < 0 and r21 < 0, it is indicated that an increase in ĉ2 results in a decrease in ĉ1τ , whereas
decreasing ĉ2 increases ĉ1τ . A similar observation is true for (3.14). On the other hand, if r12 > 0 and
r21 > 0, an increase or decrease on the r.h.s. of (3.13) and (3.14) directly increases or decreases, respectively,
ĉ1 and ĉ2.
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A relaxing system causes the fluctuations to die out with time. In this situation, the wearer experiences

better comfort due to the presence of a steady amount of vapour and air in the batting. Increasing
amplitude of fluctuations mean the presence of more air/vapour in the fabric, which results in
discomfort.

The following equations:
∂ ĉ1

∂τ
= t11

∂ ĉ1

∂ξ
(3.15)

and
∂ ĉ2

∂τ
= t22

∂ ĉ2

∂ξ
(3.16)

are pure advection equations. They do not cause any amplification or decay of the solution. These
equations solely transport the fluctuations towards or away from the skin, depending on the signs of
the coefficients. t11 > 0 and t22 > 0 take the fluctuations near the external environment, and if t11 < 0 and
t22 < 0, then fluctuations are advected closer to the human body.

ĉ1 and ĉ2 have a mutual influence on the transportation of each other. This can be seen in (3.17) and
(3.18):

∂ ĉ1

∂τ
= t12

∂ ĉ2

∂ξ
(3.17)

and
∂ ĉ2

∂τ
= t21

∂ ĉ1

∂ξ
. (3.18)

Equations (3.17) and (3.18) give

∂2ĉ1

∂τ 2 = t12t21
∂2ĉ1

∂ξ2 . (3.19)

Equation (3.19) indicates that, for t12t21 > 0, diffusion is added to the advection of ĉ1; otherwise anti-
diffusion is included. The same findings hold for ĉ2.

The pure diffusion equations are as follows:

∂ ĉ1

∂τ
= d11

∂2ĉ1

∂ξ2 (3.20)

and
∂ ĉ2

∂τ
= d22

∂2ĉ2

∂ξ2 . (3.21)

Positive diffusion coefficients dissipate the fluctuations whereas negative coefficients act as anti-
diffusion terms. It can be seen in the following equations that ĉ1 is affected by the diffusive nature of
ĉ2 and vice versa. The concerned equations are

∂ ĉ1

∂τ
= d12

∂2ĉ2

∂ξ2 (3.22)

and
∂ ĉ2

∂τ
= d21

∂2ĉ1

∂ξ2 . (3.23)

Differentiating (3.22) with respect to τ , the following is obtained:

∂2ĉ1

∂τ 2 = d12

(
∂ ĉ2

∂τ

)
ξξ

. (3.24)

Equation (3.24) can be written as

∂2ĉ1

∂τ 2 = d12d21
∂4ĉ1

∂ξ4 . (3.25)

The last term in equation (3.25) adds or reduces the dissipation property of the system depending on the
terms d12 and d21. The same holds for the influence of ĉ1ξξ on ĉ2τ .

As pointed out earlier, this dissipative nature of the system has a major role in the boundedness of
the system. Positive diffusion coefficients for the problem in 0 ≤ ξ ≤ 1 can ensure that the system (3.1)
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remains bounded and stable. This can be seen through the energy estimate of the diffusion process.
Consider the following coupled diffusion equations:

ĉ1τ = d11�ĉ1 + d12�ĉ2 (3.26)

and
ĉ2τ = d21�ĉ1 + d22�ĉ2. (3.27)

The square of the L2-norm on ĉ1 is defined as

‖ĉ1‖2 =
∫ 1

0
ĉ2

1 dξ . (3.28)

From (3.26) and (3.28),

1
2

d
dτ

‖ĉ1‖2 = 1
2

d
dτ

∫ 1

0
ĉ2

1 dξ

=
∫ 1

0
ĉ1ĉ1τ dξ

= −d11‖∇ ĉ1‖2 − d12〈∇ ĉ1∇ ĉ2〉. (3.29)

Similarly, it is easily seen that

1
2

d
dτ

‖ĉ2‖2 = −d21〈∇ ĉ1∇ ĉ2〉 − d22‖∇ ĉ2‖2. (3.30)

The energy, E(τ ) is defined as follows:

E(τ ) = 1
2
‖ĉ1‖2 + λ

2
‖ĉ2‖2, (3.31)

where λ > 0 is a coupling parameter chosen so as to obtain the most appropriate stability result [17].
The energy equation for the coupled equations (3.26) and (3.27) is thus given by

dE
dτ

= −d11‖∇ ĉ1‖2 − λd22‖∇ ĉ2‖2 − (d12 + λd21)〈∇ ĉ1∇ ĉ2〉. (3.32)

Using the Poincaré inequality [17], (3.32) can be written as

dE
dτ

≤ −E(τ )(e1 + e2), (3.33)

where

e1 = max(d12, d21)
π2

2
and

e2 = max

(
π2(d12 + λd21)〈ĉ1ĉ2〉

E(τ )

)
.

The following result is thus obtained:
dE
dτ

≤ −ωE(τ ), (3.34)

that is,
E(τ ) ≤ E(0) exp(−ωτ ), (3.35)

where ω = e1 + e2 > 0. As a result, the diffusion equations are monotone decreasing.
Clearly, the role of these phenomena depend on the system (3.1) and the steady-state scenario.

3.4. Qualitative properties of the relaxation–diffusion system
Each phenomenon has a distinct role in the evolution of the fluctuations. However, the transport
phenomenon is the least dominant one. This can be seen through the Peclet number [18], which is very
small, as given in the following:

Pe = |vG|lτc

εδG
, (3.36)

where l is the mean diameter of the pores. The same is confirmed by the numerical experiments in §4. As
a result, the transport term will not affect the solution of (3.1) significantly. This permits the omission of
the advection term in the analysis conducted under this section.
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Consider the relaxation–diffusion equation⎧⎪⎪⎨

⎪⎪⎩
vτ − d−vξξ = r+v a.e in Ω×]0, τfinal[,

vξ = 0 a.e in ∂Ω×]0, τfinal[

v(ξ , 0) = v0(ξ ) a.e in ∂Ω ,

(3.37)

where v = ( ĉ1
ĉ2

), r+ = max(r(ξ )) for r(ξ ) ≤ 0 and d− = min(d(ξ )) for d(ξ ) ≥ 0. Let Ω denote the domain such
that 0 ≤ ξ ≤ 1 and τfinal be such that 0 < τ < τfinal.

Now, the variational formulation of the problem given by (3.37) is derived. The idea of a variational
formulation is to express (3.37) as a second-order ODE problem amenable to an existence and uniqueness
theory.

Multiplying (3.37) by a test function ν(ξ ), which does not depend on the time τ , and integrating with
respect to ξ considering the boundary conditions, the following equation is obtained:

∫
Ω

∂v(ξ , τ )
∂τ

ν(ξ ) dξ + d−
∫
Ω

∇v(ξ , τ ) · ∇ν(ξ ) dξ = r+
∫
Ω

v(ξ , τ )ν(ξ ) dξ . (3.38)

As neither Ω nor ν(ξ ) depend on τ , (3.38) can be rewritten as

d
dτ

∫
Ω

v(ξ , τ )ν(ξ ) dξ + d−
∫
Ω

∇v(ξ , τ ) · ∇ν(ξ ) dξ = r+
∫
Ω

v(ξ , τ )ν(ξ ) dξ . (3.39)

Owing to the fact that the variables ξ and τ have very distinct roles, they can be separated considering
the solution v(ξ , τ ) as a function of time that is evaluated on a functional space defined on Ω . Thus, if the
final time τfinal > 0, v(ξ , τ ) is defined by

v : ]0, τfinal[ → H1(Ω)

τ → v(τ )

and v(ξ , τ ) still takes the value v(τ )(ξ ).
Next, the scalar product L2(Ω) and bilinear a(ω, ν) are defined as

〈ω, ν〉L2(Ω) =
∫
Ω

ω(ξ )ν(ξ ) dξ (3.40)

and

a(ω, ν) =
∫
Ω

∇ω(ξ ) · ∇ν(ξ ) dξ . (3.41)

The variational formulation of (3.38), for ν(ξ ) ∈ H1(Ω), is given as follows:⎧⎨
⎩

d
dτ

〈v(τ ), ν〉L2(Ω) + d− a(v(τ ), ν) = r+〈v(τ ), ν〉L2(Ω), ∀ν ∈ H1(Ω), 0 < τ < τfinal

v(τ = 0) = v0.
(3.42)

In the section that follows, it is established that the solution of (3.42) exists and is unique.

3.4.1. Existence and uniqueness

Theorem 3.3 [19]. Let H1(Ω) and L2(Ω) be two real Hilbert spaces with infinite dimension. Suppose that
H1(Ω) ⊂ L2(Ω) with a compact injection and that H1(Ω) is dense in L2(Ω). Let a(·, ·) be continuous symmetric
bilinear and coercive in H1(Ω). Then the eigenvalues of a(v, ν) = λ̃〈v, ν〉L2(Ω), ∀ν ∈ H1(Ω) and λ̃ ∈ R form an
increasing positive real sequence (λ̃h)h≥1 which tends to infinity. There exists a Hilbert’s basis of L2(Ω) (vh)h≥1 of
associated eigenvectors, that is,

vh ∈ H1(Ω), and a(vh, ν) = λ̃h〈vh, ν〉L2(Ω) ∀ν ∈ H1(Ω).

Proposition 3.4. Let H1(Ω) and L2(Ω) be Hilbert spaces such that H1(Ω) ⊂ L2(Ω) with a compact
injection and H1(Ω) is dense in L2(Ω). Let a(ω, ν) be continuous symmetric bilinear and coercive in H1(Ω).
Given that τfinal > 0 and v0 ∈ L2(Ω), the problem (3.42) has a unique solution v ∈ C([0, τfinal]; L2(Ω)) ∩
L2(]0, τfinal[; H1(Ω)).

Proof. The first part of the proof assumes the existence of a solution v. An explicit form of v in
terms of a series is obtained from the spectral decomposition of H1(Ω) and L2(Ω), which proves the
uniqueness of the solution v. The next part shows that this series converges in L2(]0, τfinal[; H1(Ω)) and
C([0, τfinal]; L2(Ω)), and the sum is a solution of (3.42).
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Let v ∈ C([0, τfinal]; L2(Ω)) ∩ L2(]0, τfinal[; H1(Ω)) be a solution of (3.42). Define

αh(τ ) = 〈v(τ ), vh〉L2(Ω), α0
h = 〈v0, vh〉L2(Ω), for αh(τ ) ∈ C([0, τfinal]). (3.43)

As (vh)h≥1 is a Hilbert’s basis in L2(Ω),

v(τ ) =
+∞∑
h=1

αh(τ )vh. (3.44)

Taking ν = vh in (3.42) and by theorem 3.3, the following is obtained:

⎧⎨
⎩

dαh

dτ
+ d−λ̄hαh = r+αh in ]0, τfinal[

αh(τ = 0) = α0
h .

(3.45)

The unique solution of (3.45) given by

αh(τ ) = α0
h exp(−(d−λ̄h − r+)τ ) for τ > 0 (3.46)

is an explicit formula for the solution v.
It remains to show that the series

+∞∑
i=1

(α0
i exp(−(d−λ̄i − r+)τ ))vi (3.47)

converges in C([0, τfinal]; L2(Ω)) ∩ L2(]0, τfinal[; H1(Ω)), and that its sum, v(τ ), is a solution of (3.42).
Consider the partial sum of order h of the series (3.47)

ϕh(τ ) =
h∑

i=1

(α0
i exp(−(d−λ̄i − r+)τ ))vi. (3.48)

We have ϕh ∈ C([0, τfinal]; L2(Ω)) because each αi(τ ) is continuous.
For m > h, using the orthonormal property of the eigenfunction vi, the following results:

‖ϕm(τ ) − ϕh(τ )‖L2(Ω) =
∥∥∥∥∥∥

m∑
i=h+1

α0
i exp(−(d−λ̄i − r+)τ )vi

∥∥∥∥∥∥
L2(Ω)

≤
⎛
⎝ m∑

i=h+1

|α0
i |2 exp(−2(d−λ̄i − r+)τ )vi

⎞
⎠

1/2

≤
⎛
⎝ m∑

i=h+1

|α0
i |2
⎞
⎠

1/2

, (3.49)

provided d−λ̄i − r+ ≥ 0 and because the eigenvalues (λ̄i) have a strictly positive increasing sequence.
As v0 ∈ L2(Ω),

‖v0‖2
L2(Ω) =

+∞∑
i=1

|α0
i |2 < +∞ (3.50)

leads to the fact that the series ϕh(τ ) is Cauchy in L2(Ω). Additionally, it can be deduced that ϕh verifies

lim
h,m→+∞

(
sup

0≤τ≤τfinal

‖ϕm(τ ) − ϕh(τ )‖L2(Ω)

)
= 0, (3.51)

that is, it is Cauchy in C([0, τfinal]; L2(Ω)).
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Figure 2. Least squares approximation of the parameters at steady state given by Huang et al. [10].

Table 2. Analysing the signs of the elements in the coefficient matrices in Case 1.

influence of ĉ1 on the influence of ĉ2 on the influence of ĉ1 on influence of ĉ2 on

process evolution of ĉ1 evolution of ĉ1 the evolution of ĉ2 the evolution of ĉ2
relaxation r11 > 0 (ξ ≤ 0.4)

r11 < 0 (ξ > 0.4)
r12 < 0 (ξ ≤ 0.2)
r12 > 0 (ξ > 0.2)

r21 < 0 r22 < 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

transport t11 < 0 t12 < 0 t21 < 0 t22 < 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diffusion d11 > 0 d12 > 0 d21 > 0 d22 > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Next, for m > h,

‖ϕm(τ ) − ϕh(τ )‖2
H1(Ω) = a(ϕm(τ ) − ϕh(τ ), ϕm(τ ) − ϕh(τ ))

=
m∑

i=h+1

λ̄i|αi(τ )|2

≤ 2
m∑

i=h+1

λ̄i|α0
i |2 exp(−2(d−λ̄i − r+)τ ). (3.52)

Hence, ∫ τfinal

0
‖ϕm(τ ) − ϕh(τ )‖2

H1(Ω) dτ ≤
m∑

i=h+1

|α0
i |2, (3.53)

provided d−λ̄i − r+ ≥ 0. This implies that the series ϕh satisfies

lim
h,m→+∞

∫ τfinal

0
‖ϕm(τ ) − ϕh(τ )‖2

H1(Ω) dτ = 0, (3.54)

which means that it is Cauchy in L2(]0, τfinal[; H1(Ω)).
As both C([0, τfinal]; L2(Ω)) and L2(]0, τfinal[; H1(Ω)) are complete spaces, the Cauchy series ϕh

converges and its limit v is defined as

lim
h→+∞

ϕh = v in C([0, τfinal]; L2(Ω)) ∩ L2(]0, τfinal[; H1(Ω)). (3.55)

The fact that ϕh(0) converges to v0 in L2(Ω), the desired initial condition v(0) = v0 can be deduced. Clearly,
v(τ ) being the sum of the series (3.47) implies that it also satisfies the variational formulation (3.42) for
every test function ν = vh. As a result, v(τ ) is a solution of (3.42). �

The positivity of the solution is given by proposition 3.5, which can be stated as follows.
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Figure 3. Condition number and determinant of the relaxation matrix in Case 1.
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Figure 4. Relaxation of ĉ1 in Case 1.

3.4.2. Positivity

Proposition 3.5. Let Ω be an open bounded space in R
N , and τfinal > 0. Let v0 ∈ L2(Ω) and v ∈

C([0, τfinal]; L2(Ω)) ∩ L2(]0, τfinal[; H1(Ω)) be a unique solution of (3.37). If v0 ≥ 0 almost everywhere in Ω , then
v ≥ 0 a.e in ]0, τfinal[×Ω .

Proof. Let v− = min(v, 0) belonging to L2(]0, τfinal[; H1(Ω)). Then, for 0 < τ < τfinal,

∇v− = 1v<0∇v a.e in Ω (3.56)

and ∫
Ω

∇v(τ ) · ∇v−(τ ) dξ =
∫
Ω

|∇v−(τ )|2 dξ , (3.57)

where the function 1v<0(ξ ) = 1 at v(ξ ) < 0, and 0 elsewhere.
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Figure 5. Relaxation of ĉ2 in Case 1.
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Figure 6. Relaxation effect of ĉ1 and ĉ2 on each other in Case 1.

Similarly,
∫
Ω

∂v(τ )
∂τ

v−(τ ) dξ = 1
2

d
dτ

(∫
Ω

|∇v−(τ )|2 dξ

)
. (3.58)

Taking ν = v− in the variational formulation (3.42), and using the identities (3.57) and (3.58) yields

1
2

d
dτ

∫
Ω

|v−|2 dξ + d−
∫
Ω

|∇v−|2 dξ = r+
∫
Ω

|v−|2 dξ . (3.59)

Integrating (3.59) with respect to time,

1
2

∫
Ω

|v−(τ )|2 dξ − 1
2

∫
Ω

|v−(0)|2 dξ + d−
∫ τ

0

∫
Ω

|∇v−|2 dξ dw = r+
∫ τ

0

∫
Ω

|v−|2 dξ dw. (3.60)
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Figure 7. Condition number and determinant of the transport matrix in Case 1.
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Figure 8. Advection of ĉ1 in Case 1 at τ = 0.001, 0.01, 0.025 and 0.0275.

As v−(0) = (v0)− = 0, for r+ < 0

1
2

∫
Ω

|v−(τ )|2 dξ + d−
∫ τ

0

∫
Ω

|∇v−|2dξ dw ≤ 0. (3.61)

Hence, v− = 0 a.e in ]0, τfinal[×Ω , provided d− > 0. �

3.4.3. Verification of variational formulation

The result from proposition 3.4 is applied to the original PDE (3.37). The aim is to prove that the
variational formulation can be solved for (3.37). This is done in proposition 3.8 below. Theorem 3.6 and
proposition 3.7, respectively, which are quoted below, will be useful in order to establish the proof for
proposition 3.8.
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Figure 9. Advection of ĉ2 in Case 1 at τ = 0.001, 0.0025, 0.005 and 0.01.
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Figure 10. Diffusion of ĉ1 in Case 1 at τ = 0.001, 0.005, 0.01 and 0.15.

Theorem 3.6 ((Trace Theorem) [19]). Suppose that Ω = R
N+. The trace operator γ0 is defined as

H1(Ω) ∩ C(Ω̄) → L2(∂Ω) ∩ C(∂Ω)

ν → γ0(ν) = ν|∂Ω .

This operator γ0 is extended by continuity in a continuous linear application of H1(Ω) in L2(∂Ω). There exists a
constant B > 0 such that ∀ ν ∈ H1(Ω),

‖ν‖L2(∂Ω) ≤ B‖ν‖H1(Ω).

Proposition 3.7 [19]. Let Ω be regular open bounded in R
N , and the final time τfinal > 0. For a given

regular initial condition v0 ∈ H1(Ω), the unique solution v ∈ C([0, τfinal]; L2(Ω)) ∩ L2(]0, τfinal[; H1(Ω)) of
(3.37) is considered. Then, this solution is more regular in the sense ∂v/∂τ ∈ L2(]0, τfinal[; L2(Ω)) and v ∈
C([0, τfinal]; H1(Ω)) ∩ L2(]0, τfinal[; H2(Ω)).
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Figure 11. Diffusion of ĉ2 in Case 1 at τ = 0.00001, 0.0001, 0.0005 and 0.005.
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Table 3. Analysing the signs of the elements in the coefficient matrices in Case 2.

influence of ĉ1 on the influence of ĉ2 on the influence of ĉ1 on the influence of ĉ2 on the

process evolution of ĉ1 evolution of ĉ1 evolution of ĉ2 evolution of ĉ2
relaxation r11 < 0 r12 < 0 (ξ < 0.1,

0.7< ξ ≤ 1.0)
r12 > 0 (0.1≤ ξ ≤ 0.7)

r21 < 0 r22 < 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

transport t11 < 0 (ξ ≤ 0.2) t11 >
0 (ξ > 0.2)

t12 > 0 t21 > 0 t22 > 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diffusion d11 > 0 d12 > 0 d21 > 0 d22 > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proposition 3.8. Let Ω be open bounded in R
N , τfinal > 0 and v0 ∈ L2(Ω). Then the parabolic PDE (3.37) has

a unique solution v ∈ C([0, τfinal]; L2(Ω)) ∩ L2(]0, τfinal[; H1(Ω)).
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Figure 13. Relaxation of ĉ1 in Case 2 at τ = 0.001, 0.01, 0.05, 0.5 and 1.0.

Proof. From proposition 3.4, the solution of variational formulation (3.42) of the PDE (3.37) admits a
unique solution. It suffices to show that the unique solution v ∈ C([0, τfinal]; L2(Ω)) ∩ L2(]0, τfinal[; H1(Ω))
of this variational formulation is in fact the solution of (3.37).

The boundary conditions are obtained by the application of the Trace theorem 3.6 for v(τ ) ∈ H1(Ω) for
almost all τ ∈]0, τfinal[. The initial condition is justified by the continuity on v(τ ) at τ = 0.

If the solution v is sufficiently regular, which is true by proposition 3.7, then by integration by parts
the variational formulation (3.42) is equivalent to

∫
Ω

(
∂v
∂τ

− d−�v − r+v
)

ν dξ = 0, (3.62)

∀ ν ∈ H1(Ω) and almost all τ ∈]0, τfinal[. Consequently, from (3.62) it can be deduced that

∂v
∂τ

− d−�v − r+v = 0 a.e in Ω×]0, τfinal[. (3.63)

�

In the following section, the properties of (3.1) are verified numerically under three distinct situations,
namely:

— Case 1. The environmental temperature and relative humidity are considered to be lower than
that of the human body.

— Case 2. The relative humidity is taken to be higher in the environment compared to that of the
body, while the same temperature profile as in Case 1 is maintained.

— Case 3. A constant temperature and relative humidity profile is taken from the internal to the
external environments.

4. Numerical discussion and results
The numerical solution of (3.1) is sought through the semi-implicit Crank–Nicolson finite difference
scheme. This numerical scheme gives second-order accuracy both in time and space, and is
unconditionally stable. The results presented in this section have been generated in MATLAB. Here, the
phenomena discussed under three distinct situations are illustrated. The non-dimensional τ is taken such
that 0 ≤ τ ≤ 1. A Gaussian profile

ĉ1(ξ , 0) = ĉ2(ξ , 0) = 0.001 exp

(
− (ξ − 0.5)2

0.01

)
(4.1)
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Figure 14. Relaxation of ĉ2 in Case 2 at τ = 0.001, 0.01, 0.05, 0.5 and 1.0.
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Figure 15. Condition number and determinant of the relaxation matrix in Case 2.

is chosen as an initial configuration. This choice is simply made to confirm the behaviour of the
fluctuations with respect to the different processes discussed in §3.3 and to compare the processes under
three distinct cases. The initial condition is given by the solid black line in this section.

4.1. Case 1
The steady-state profiles by Huang et al. [10] are interpolated by a least squares approximation and are
given in figure 2. In this interpolation, 11 points are used from ξ = 0 to ξ = 1, with �ξ = 0.1. The inner
layer is exposed to the human body in contact with sweat in the form of vapour at approximately 303 K
and higher humidity. The outer layer is in contact with cold moving air at approximately 253 K and lower
humidity. In addition, there is no air supply at the inner cover. The equations are thus given by

c̄(ξ ) = 2.4103ξ2 + 1.6746ξ + 25.0041, (4.2)
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Figure 16. Transport of ĉ1 in Case 2 at τ = 0.001, 0.0025, 0.005 and 0.01.
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Figure 17. Transport of ĉ2 in Case 2 at τ = 0.001, 0.0025, 0.005 and 0.01.

c̄1(ξ ) = 0.4231ξ2 − 1.3966ξ + 1.2825, (4.3)

c̄2(ξ ) = 0.06896ξ2 + 0.1062ξ + 0.8208 (4.4)

and θ̄ (ξ ) = −0.07331ξ2 − 0.08321ξ + 1.1196. (4.5)

The behaviour of each process under these conditions is summarized as follows:

4.1.1. Relaxation process

From table 2, r11 shifts from a positive to a negative value somewhere in the range 0.4 < ξ < 0.5. An
overshoot is also seen in the condition number, and the relaxation matrix is singular at that location as
shown in figure 3. This transition can be considered as a site of exchange between air and vapour. At
0.4 < ξ < 0.5, r11 shifts from a positive to a negative value, that is, vapour concentration starts relaxing.
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Figure 18. Condition number and determinant of the transport matrix in Case 2.
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Figure 19. Diffusion of ĉ1 in Case 2 at τ = 0.001, 0.005, 0.01 and 0.15.

The relaxation matrix becomes negative definite in this range and its determinant goes to zero. Figures 4
and 5 show the relaxation in the fluctuations of vapour and air in Case 1 at τ = 0.001, 0.01, 0.05, 0.1,
0.5 and 1.0. A faster relaxation is observed with ĉ2 when compared with ĉ1, because r22 < r11 < 0. The
fluctuations in air reach zero faster. The contribution of ĉ1 to the relaxation of ĉ2 is negligible because
|r22| � |r21|. On the other hand, as r12 > 0 for ξ ≥ 0.2, it reduces the relaxing capacity of ĉ1. The cross
effect of ĉ1 and ĉ2 on each other is illustrated in figure 6. A decreasing ĉ2 results in an increasing ĉ1 and
that is due to the values of r12 and r21, as explained by (3.13) and (3.14).

4.1.2. Transport process

The large condition number of the transport matrix can pose a problem while inverting the matrix.
However, the determinant suggests that the matrix is invertible at every point in the domain 0 ≤ ξ ≤ 1.
The condition number and determinant of this transport matrix can be seen in Figure 7.

t12 has a considerable effect on the advection of vapour. This is true because air motion provides
extra resistance to vapour as explained by Huang et al. [10]. However, |t21| � |t22| does not contribute
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Figure 20. Diffusion of ĉ2 in Case 2 at τ = 0.00001, 0.0001, 0.0005 and 0.005.
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Figure 21. Profiles at steady state for Case 3.

Table 4. Analysing the values of the elements in the coefficient matrices in Case 3.

influence of ĉ1 on the influence of ĉ2 on the influence of ĉ1 on the influence of ĉ2 on the

process evolution of ĉ1 evolution of ĉ1 evolution of ĉ2 evolution of ĉ2
relaxation r11 < 0 r12 = 0 r21 = 0 r22 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

transport t11 = 0 t12 = 0 t21 = 0 t22 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diffusion d11 > 0 d12 > 0 d21 > 0 d22 > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

much to the movement of air. From figures 8 and 9, the fluctuations in amplitude are due to the cross
influence air and vapour have on each another. Pure advection of ĉ1 and ĉ2 is represented by the dotted
curves. In such a case, the amplitude of the initial profile is preserved. A numerical method cannot be left
untouched by numerical errors. The action of relaxation and diffusion tend to camouflage the dispersive
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Figure 22. Relaxation of ĉ1 in Case 3 at τ = 0.001, 0.01, 0.05, 0.5 and 1.0.
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Figure 23. Diffusion of ĉ1 in Case 3 at τ = 0.001, 0.005, 0.01 and 0.15.

nature of the numerical schemes, in the sense that they damp the oscillations produced. Numerical
error, in terms of oscillations, can clearly be observed around 0.1 < ξ < 0.3 in figure 8 and 0.4 < ξ < 0.8 in
figure 9.

4.1.3. Diffusion process

As d11 ≈ d12, ĉ2 has an almost equal contribution in the diffusion of vapour. The bigger positive values
of d22 mean that air damps at a faster rate compared to vapour, as seen in figures 10 and 11. Some over
damping at 0.4 < ξ < 0.6 in figure 11 is a result of extra diffusion added by (3.25).

4.2. Case 2
A different scenario is taken, where the outer clothing layer is exposed to a higher level of humidity
compared to the inner layer. As a result, an inverted situation is taken for the vapour concentration at
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Figure 24. Diffusion of ĉ2 in Case 3 at τ = 0.001, 0.01, 0.05, 0.5 and 1.0.
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Figure 25. Relaxation–transport–diffusion phenomena of ĉ1 in Case 1.

steady state. The air concentration and temperature profiles of Case 1 are maintained. Figure 12 shows
the profiles at steady state for this case. Such a situation can exist in reality during a cold rainy day.
Table 3 summarizes the signs of the coefficient matrices for Case 2.

4.2.1. Relaxation process

Referring to (3.11) and (3.12), r11 < 0 and r22 < 0 mean that both air and vapour concentrations undergo
natural relaxation. Nevertheless, r22 < r11 < 0 results in air concentration relaxing faster than that of
vapour. Over relaxation may also occur due to the large relaxation coefficients of ĉ2. The positive values
of r12 in the range 0.1 ≤ ξ ≤ 0.7 reduce the relaxation of ĉ1. The above is observed in figures 13 and 14.
Clearly, ĉ1 does not relax to zero in this case as seen in figure 13. This is in fact logical because there will
always exist vapour in the batting. The high level of humidity outside and the production of sweat by
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Figure 26. Relaxation–transport–diffusion phenomena of ĉ2 in Case 1.
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Figure 27. Relaxation–transport–diffusion phenomena of ĉ1 in Case 2.

the body maintains a certain concentration of vapour in the batting, and hence fluctuations will always
exist.

In this case, the relaxation matrix is invertible at every point in the batting. However, at around ξ = 0.7
where the transition in r12 takes place, a peak is observed in the condition number and the determinant
reaches a minimum point as shown in figure 15.

4.2.2. Transport process

The transport process in Case 2 is very distinct from that of Case 1. Almost all elements are positive,
which implies advection in the opposite direction. Figures 16 and 17 show the evolution of ĉ1 and ĉ2
within the batting. Here, the fluctuations ĉ1 and ĉ2 travel to the l.h.s., that is, towards the body. Table 3
points out the negative values of t11 at ξ ≤ 0.2. Thus, ĉ1 has a tendency to move away from the body.
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Figure 28. Relaxation–transport–diffusion phenomena of ĉ2 in Case 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x
0

×10−3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t = 0.001

t = 0.005

t = 0.01

t = 0.05

t = 1.0

Figure 29. Relaxation–transport–diffusion phenomena of ĉ1 in Case 3.

However, as t12 > 0, ĉ2 has a dominant influence on the advection of ĉ1 which prevents this movement.
As the elements are almost of the same order, air and vapour fluctuations move at almost the same speed.

In this case, the transport process hints at an exchange site between air and vapour, which is shown
in figure 18. In the range 0.2 < ξ < 0.3, the determinant becomes zero, and this is where t11 shifts from
negative to positive. In the previous case, this phenomenon was noted in the relaxation process.

4.2.3. Diffusion process

The diffusion process is the least affected process by the change made at steady state. The trend of the
elements is similar to those in Case 1, d21 and d22 being unaffected by this change. The only difference
observed in table 3 is in the values corresponding to the evolution of ĉ1. All positive elements suggest
damping of the fluctuations as seen in figures 19 and 20. In this case, ĉ1 damps more as it approaches the

 on July 5, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


27

rsos.royalsocietypublishing.org
R.Soc.opensci.5:171954

.................................................

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
×10−3

t = 0.00005

t = 0.0001

t = 0.001

t = 0.01

t = 1.0

Figure 30. Relaxation–transport–diffusion phenomena of ĉ2 in Case 3.
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Figure 31. Evolution of ĉ1 at τ = 0.01 in Case 1.

outer environment because of the increasing values of d11 and d12 as ξ → 1.0. Again, ĉ2 damps quicker
than ĉ1.

This case is also dissipative in nature. The diffusion and relaxation offer enough damping to avoid
the growth of the fluctuations over time.

4.3. Case 3
The final situation considered is when the vapour and air concentrations, and temperature are constant
at steady state. That is, the internal and external environments are exposed to the same conditions. The
profiles of such a situation is given in figure 21. All processes are constant throughout the batting. The
coefficient matrices are given in table 4.
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Figure 32. Evolution of ĉ1 at τ = 0.05 in Case 1.
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Figure 33. Evolution of ĉ1 at τ = 0.1 in Case 1.

4.3.1. Relaxation process

The only non-zero element is r11. This is caused by the last term in the first element of the relaxation
coefficient, in (3.1). The value of −(βG/ε)A

√
θ̄ gives ĉ1 a slight relaxing power. In spite of this, very

little relaxation is observed in the fluctuations of vapour, as seen in figure 22. Evidently, no change
happens to ĉ2.

4.3.2. Transport process

In this case, the fluctuations do not travel to either side of the batting. The zero coefficient elements
suggest that ĉ1 and ĉ2 remain stationary.
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Figure 34. Evolution of ĉ1 at τ = 0.01 in Case 2.
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Figure 35. Evolution of ĉ1 at τ = 0.05 in Case 2.

4.3.3. Diffusion process

The only visible process in this situation is diffusion. A uniform damping takes place. ĉ2 has an equal
contribution in the diffusion of ĉ1τ because d11 ≈ d12. As observed in the earlier cases, air damps more
rapidly than vapour. This is seen in figures 23 and 24.

Next, the combined behaviour of all three processes in each of the three different cases is
investigated.

4.4. Relaxation–transport–diffusion process
The three physical processes in some way compensate for the numerical error produced by the
finite difference method, as no oscillation is noticed. The numerical results with respect to to vapour
concentration are obtained at τ = 0.001, 0.005, 0.01, 0.05 and 1.0. The evolution of air concentration is
approximated at τ = 0.00005, 0.0001, 0.001, 0.01 and 1.0.

From figures 25 and 26, advection to the r.h.s. is seen. Similarly, figures 27 and 28 show movement to
the l.h.s. In figures 29 and 30, a symmetric dissipation is observed because of the absence of the advection
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Figure 36. Evolution of ĉ1 at τ = 0.25 in Case 2.
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Figure 37. Evolution of ĉ2 at τ = 0.0001 in Case 1.

process in Case 3. Case 1 shows the fluctuations tending to zero over time. However, fluctuations in
vapour will always exist in Case 2. In Case 3, the fluctuations in vapour and air concentration do not
tend to zero.

In figures 31–39, the initial fluctuations are made to vary sinusoidally as follows:

ĉ1(ξ , 0) = 0.05 sin(50πξ ) and ĉ2(ξ , 0) = 0.005 sin(50πξ ).

Figures 31–33 show the evolution of vapour concentration in Case 1. As desired, the fluctuations die
out over time. The initial configuration is thus recovered.

Nevertheless, limτ→0 ĉ1 �= 0 in Case 2. Figures 34–36 show the fluctuations damping with time, but a
small amount of fluctuation will always exist in the batting.

The evolution of ĉ2 is similar in Case 1 and 2. Air concentration diffuses and relaxes very quickly
while being transported out of the polyester batting.

As observed in Cases 1–3, the steady state has an important influence on the relaxation, transport and
diffusion processes. The slightest change in profile of any one parameter at steady state influences the
evolution of ĉ1 and ĉ2 significantly.
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Figure 38. Evolution of ĉ2 at τ = 0.0005 in Case 1.
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Figure 39. Evolution of ĉ2 at τ = 0.001 in Case 1.

The relaxation, transport and diffusion processes provide useful insight on the choice of fabric with
respect to the environmental conditions. In this study, the three-layered clothing assembly is ideal
for the situation in Case 1. The 10-layer polyester batting damps fluctuations in both air and vapour
concentrations completely, hence giving the wearer a uniform feel. The clothing assembly also constantly
eliminates wetness in the fabric, as seen in figures 31–33, providing better comfort. In Case 2, the
relaxation and transport phenomena do not permit complete evacuation of sweat. In places of high
humidity, a fabric with higher vapour resistance at the cover layers should be chosen. An appropriate
clothing assembly should ensure a negative transport matrix in (3.1). A three-layered clothing assembly
is not appropriate in Case 3. With a constant temperature of 303K between the body and environment, a
thinner and hygroscopic garment will be preferable.

5. Conclusion
In this work, the model given in Huang et al. [10] is considered. The evolution of fluctuations in
vapour and air under the influence of heat in a 10-layer polyester batting, at steady state, is the site of
investigation. The processes of relaxation, transport and diffusion of the fluctuations of vapour and air
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concentrations at steady state are investigated. A complex nonlinear system of Petrovskii parabolic PDE
resulted from this formulation. To analyse the resulting PDE, the profiles at steady state were linearized.
The importance of these profiles was depicted in three cases where it was clearly noticed that a small
change made at steady state influenced the three phenomena significantly. It is shown that the system
has a positive and unique solution, and would always remain bounded due to its dissipative nature.
The semi-implicit Crank–Nicolson was chosen to solve the system of PDEs numerically. Numerical
investigation supported the arguments made for the three distinct cases, highlighting the importance of
the steady-state values in the evolution of the fluctuation of air and vapour concentration, respectively.
Ideally, a clothing assembly should filter out the fluctuations and advect the vapour away from the skin.
The fabric properties, which are incorporated in the values at steady state, determine its effectiveness
when exposed to various conditions. It is seen that the clothing assembly with negative relaxation,
negative transport and positive diffusion matrices is more capable of eliminating the fluctuations.

The fluctuations that are inherent to both the human and environmental conditions were the main
focus of this study, hence the one-dimensional setting used. However, in reality the fabric in a clothing
assembly may not be distributed uniformly and hence the heat and moisture transfer may not be isotropic
in the clothing. As a result, a three-dimensional model is more realistic. This limitation will be addressed
in future studies. In addition, the model is currently being extended in order to accommodate actual
fluctuations in the ambient temperature.
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