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Aim

Axiom of Choice
AC : Given an infinite family (Ai)i∈I of non-empty sets, the product∏
i∈I

Ai is non-empty.

We work in ZF, set theory without the Axiom of Choice.

We consider the Hahn-Banach axiom (HB), a weak form of the Axiom
of Choice. Remark : in ZF, HB is not provable and HB does not imply
AC (see Howard and Rubin’s book, [3]).

Theorem 1 : in ZF, HB implies the following statement Sg
Sg : For every abelian ordered group G with a positive order unit e and
every subgroup H of G such that e ∈ H, every e-state on H can be
extended into a e-state on G .

Remark : the converse statement Sg ⇒ HB also holds in ZF.
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Hahn-Banach Axiom

Hahn-Banach Axiom HB : a weak form of the AC
HB : Given a real vector space E , a sublinear mapping p : E → R (i.e. a
subadditive mapping such that for all t ∈ R+ and for all
x ∈ E , p(tx) = tp(x)), a vector subspace S of E and a linear mapping
f : S → R such that f ≤ p|S , there exists a linear mapping g : E → R
extending f such that g ≤ p.

Corollary 1 : in ZF, HB implies the classical following statement

Given a real normed vector space (E , || ||) and a ∈ E \ {0}, there exists a
linear form ϕ : E → R continuous of norm 1 such that ϕ(a) = ||a||.

Proof : apply HB to the sublinear mapping p := || ||, the vector

subspace S := Vect(a) and the linear form f : S → R
λa 7→ λ||a|| .
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Order unit e

1 On partially ordered groups :
Let G be an abelian ordered group. A non-zero element e of G is an
order unit of G if : ∀x ∈ G ∃k ∈ Z − ke ≤ x ≤ ke.

2 On partially ordered vector spaces :
Let E be an ordered vector space over R.

An element e ∈ E \ {0} is an order unit of E if it is an order unit of
the ordered group (E , +). For an order unit e of E : e ∈ E+ or
−e ∈ E+.
Given a positive order unit e ∈ E+ we associate a semi-norm || ||e
defined by :

∀x ∈ E ||x ||e := inf{t ∈ R+,−te ≤ x ≤ te}

The semi-norms associated to two positive order units are equivalent
and then, they define the same topology on E .
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Positive morphisms

1 On ordered groups :
Let G be an abelian ordered group. A group morphism f : G → R is
positive if it is increasing i.e. ∀x , y ∈ G ,

(
x ≤ y ⇒ f (x) ≤ f (y)

)
.

2 On ordered vector spaces :

Lemma 1 (Characterisation)

Let f : E → R be a linear form on an ordered vector space E with an
order unit e ∈ E+. Then :
f is positive (i.e. increasing) if and only if f is continuous of norm f (e).

Proof :
Assume that f is positive. Let x ∈ E : there exists s ∈ R∗+ such that
−se ≤ x ≤ se, so |f (x)| ≤ s|f (e)| and then f is continuous and of norm f (e).
Now assume that f is continuous of norm f (e). Let x ∈ E+, show that f (x) ≥ 0 :
If x ≤ e then 0 ≤ e − x ≤ e so f (e − x) ≤ ||f ||.||e − x ||e ≤ f (e) and finally f (x) ≥ 0.
If x � e, there exists s ∈ R∗+ such that −se ≤ x ≤ se then, apply the previous case to 1

s x .
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Concurrent relations (Luxemburg, [4])

Let X and Y be two sets. Given a binary relation R on X × Y , for every
x ∈ X , we define R(x) := {y ∈ Y | xRy}.

The relation R is concurrent if for every finite subset
F := {x1, . . . , xn} of X , the intersection R(x1) ∩ · · · ∩ R(xn) is
non-empty.

If R is a concurrent relation on X ×Y , we can define the filter F on
Y generated by the sets R(x), x ∈ X :

F := {A ⊆ Y | ∃x1, . . . , xn ∈ X R(x1) ∩ · · · ∩ R(xn) ⊆ A}
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Reduced power (Luxemburg, [4])

Definition
Let E be a real vector space. Consider a set T and F a filter over T .
Denote by Z the following vector subspace of the vector space ET :

Z := {(xt)t∈T ∈ ET | {t ∈ T | xt = 0} ∈ F}

The reduced power ET/F of E by the filter F is the quotient vector
space ET/Z . We denote by z the class of an element z ∈ ET and we

consider the canonical embedding : can : E → ET/F
x 7→ (x)t∈T

Remarks : if E is an ordered vector space :
The vector space ET endowed with the product order is an ordered
vector space and the vector subspace Z is order-convex i.e. for
every v ,w ∈ F , [v ,w ] := {x ∈ E , v ≤ x ≤ w} ⊆ F .
Thus, the reduced power ET/F is also an ordered vector space.
Moreover, if E has an order unit e, then the set :
L0(ET/F} := {z ∈ ET/F | ∃α, β ∈ R α can(e) ≤ z ≤ β can(e)}
is an ordered vector space with order unit can(e).
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HB⇒ Sg

A group morphism f : G → R on an abelian ordered group G with
positive order unit e is a e-state if f is positive and f (e) = 1.

We want to prove the following result :

Theorem 1 : in ZF, HB implies the following statement Sg

Sg : For every abelian ordered group G with a positive order unit e and
every subgroup H of G such that e ∈ H, every e-state on H can be
extended into a e-state on G .

The proof is in two steps : first, extending to “one dimension” and then
extending to G .
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Step 1 : extending to one dimension, in ZF
Let G be an abelian ordered group, H be a subgroup of G and f : H → R
a positive group morphism on H.

Extending to one dimension : If H is cofinal (i.e. for every x ∈ G ,
there exists y ∈ H such that x ≤ y) and if x ∈ G , we consider :

pH(x) = sup
{

f (y)
m | m ∈ N∗, y ∈ H, y ≤ mx

}
∈ R

rH(x) = inf
{

f (z)
n | n ∈ N

∗, z ∈ H, nx ≤ z
}
∈ R

Remark : pH(x) ≤ rH(x).

Lemma 2 (Goodearl [2], extending to one dimension)

Let G be an abelian ordered group, H be a cofinal subgroup of G and
f : H → R a positive group morphism on H. Let x ∈ G :

1 For every positive group morphism g : H + Zx → R extending f , we
have : pH(x) ≤ g(x) ≤ rH(x).

2 For every t ∈ [pH(x), rH(x)], it is possible to extend f to a positive
group morphism g : H + Zx → R such that g(x) = t.
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Corollary 2 : extending to a finite number of dimensions
Let G be an abelian ordered group, H be a cofinal subgroup of G and
f : H → R a positive group morphism on H. Let x1, . . . , xn ∈ G . There
exists a positive group morphism g : H + Zx1 + · · ·+ Zxn extending f
such that pH ≤ g ≤ rH .

Proof : apply the preceding Lemma and remark that if H1 is a
subgroup of G such that H ⊆ H1, pH ≤ pH1 ≤ rH1 ≤ rH .
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Step 2 : Proof of Theorem 1 i.e. HB⇒ Sg
Extending to G : Let G be an abelian ordered group with positive order
unit e, H a subgroup of G such that e ∈ H (then H is cofinal) and
f : H → R a e-state on H.

1. Concurrent relation :
Denote by Pfin(G) the set of finite subsets of G and
T := {g ∈ RG | pH ≤ g ≤ rH}.
Let Rf be the binary relation defined by ∀(F , g) ∈ Pfin(G)× T :

Rf (F , g) :


∀a, b ∈ F (a + b ∈ F ⇒ g(a + b) = g(a) + g(b))
∀a ∈ F (−a ∈ F ⇒ g(−a) = −g(a))
∀a, b ∈ F (a ≤ b ⇒ g(a) ≤ g(b))
∀a ∈ F (a ∈ H ⇒ g(a) = f (a))
∀a ∈ F pH(a) ≤ g(a) ≤ rH(a)

Using Corollary 2, we prove that if F ∈ Pfin(G) there exists g ∈ T
extending f ; then Rf (F ) 6= ∅.
Rf is concurrent because if F1, . . . ,Fn ∈ Pfin(G) then
∅ 6= Rf (F1 ∪ · · · ∪ Fn) ⊆ Rf (F1) ∩ · · · ∩ Rf (Fn).
Thus, we consider the filter F on T generated by the sets Rf (F ),
F ∈ Pfin(G).
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Step 2 : Proof of Theorem 1 i.e. HB⇒ Sg (cont’d)
2. Reduced power of R :

Consider the reduced power RT/F (if z ∈ RT , we note z the class
of z in RT/F) and can : R→ RT/F the canonical embedding.

Consider ϕ : G → RT/F
x 7→ (g(x))g∈T

: ϕ is a positive group

morphism.

For all x ∈ G , ϕ(x) ∈ L0(RT/F) because :

∀g ∈ T rH ≤ g ≤ pH

Then :
∀x ∈ G rH(x) can(1) ≤ ϕ(x) ≤ pH(x) can(1)

First positive group morphism

ϕ : G → L0(RT/F)
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Proof of Theorem 1 i.e. HB⇒ Sg (cont’d)
3. Use of HB :

Normed vector space L0(RT/F)/N :
L0(RT/F) is an ordered vector space with an order unit e1 := can(1).
Thus it is endowed with a semi-norm || ||e1 .
Let N be the vector subspace N := {x ∈ L0(RT/F) | ||x ||e1 = 0}.
The quotient vector space L0(RT/F)/N is endowed with the associated
quotient norm.

Apply HB (Corollary 1) to L0(RT/F)/N : there exists a linear form
ψ : L0(RT/F)/N → R continuous of norm 1 such that
ψ(e1 + N) = ||e1 + N|| = 1.

Then, Γ : L0(RT/F) → R
z 7→ ψ(z + N) is continuous of norm 1

and Γ(e1) = 1 : with Lemma 1, Γ is a e1-state.
Γ ◦ can = IdR.

Second positive group morphism

Γ : L0(RT/F)→ R
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Proof of Theorem 8 : HB⇒ Sg (cont’d)

4. Existence of state on G :

Extension of f

f̃ := Γ ◦ ϕ : G → R

f̃ is a e-state.
f̃ extends f because if x ∈ H then :

f̃ (x) = Γ ◦ ϕ(x) = Γ((g(x))g∈T ).

But (g(x))g∈T = can(f (x)) because
Rf ({x}) ⊆ {g ∈ T | g(x) = f (x)} ∈ F .

Then f̃ (x) = Γ(can(f (x)) = f (x) because Γ ◦ can = IdR
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Other structures

We worked on several structures : abelian ordered group with positive
order unit, real vector spaces with positive order unit, or unital
C∗-algebras.

Given an abelian ordered group G (resp. a real ordered vector space E )
with a positive order unit e, a pure state on G (resp. on E ) is an extreme
point of the convex set of e-states on G (resp. on E ).

Question
Which consequence of axiom of choice do we need to prove the existence
of states or pure states on ordered groups or ordered vector spaces with
order unit ?
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Other axioms

Consider the two other following weak forms of the Axiom of Choice :
KM (Krein-Milman axiom) : Let K be a non-empty compact convex
subset of a topological locally convex Haussdorf real vector space X .
Then K has an extreme point.
T2 (Tychonov’s axiom) : For every family (Xi)i∈I of compact
Haussdorf spaces, the product

∏
i∈I

Xi is compact.

We have the following diagram :

AC

zz ''

(KM + T2)//oo

T2

��

)
BB

KM
�

aa

HB
U
GG

We obtained the following results :
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Diagram : states and axioms of choice

T2
+

KM

��

��

AC oo ////oo
E0 : Every ordered
vector space with
positive order unit
has a pure state.

��

KM
Al5 : Every unital
C∗-algebra has a

pure state.

��

?
OO

T2 oo //

��

Al4 : Every unital
abelian

C∗-algebra has a
pure state.

oo //

[1], ?
OO

Ri5 : Every Riesz
group with

positive order unit
has a pure state.

oo //

14AU : Every
Riesz vector space

with positive
order unit has a

pure state.

HB oo //
Sg : Every abelian
ordered group
with positive

order unit has a
state.

oo //
Ev3 : Every

ordered vector
space with

positive order unit
has a state.

oo //
Al2 : Every unital

abelian
C∗-algebra has a

state.
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Thank you for listening.
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