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The Significant Impact of Abstentions on Election Outcomes

Two approaches are considered in an attempt to mollify previous observations regarding the very negative impact that voter abstentions can have on Plurality Rule, Negative Plurality Rule and Borda Rule when voters' preferences are assumed to be statistically independent. The first option is to add a degree of dependence among voters' preferences, and the second is to consider extensions of these three voting rules by using each as the basis for a two-stage elimination election procedure. The end result in both cases is that improved results are indeed observed for both Condorcet Efficiency and the probability that a Borda Paradox is observed for larger values of voter participation rates. The very disturbing result is that both of these options actually tend to make things worse with voter participation rates of 40% or less, and voter participation rates are observed in practice at this level. * 6 𝑖=1

, so that the voter participation rate is 𝑛 * 𝑛 . An observed voting situation is then defined by any combination of 𝑛 𝑖 * terms that sum to 𝑛 * . Candidate A is the Observed Condorcet Winner (OCW) based on the preference rankings of the participating voters if 𝐴𝑴 * 𝐵 and 𝐴𝑴 * 𝐶, with: 𝑛 1 * + 𝑛 2 * + 𝑛 4 * > 𝑛 3 * + 𝑛 5 * + 𝑛 6 * [𝐴𝑴 * 𝐵] (3) 𝑛 1 * + 𝑛 2 * + 𝑛 3 * > 𝑛 4 * + 𝑛 5 * + 𝑛 6 * [𝐴𝑴 * 𝐶].

The Observed Condorcet Loser (OCL) is also defined in the obvious manner.

Gehrlein and Lepelley (2017a) perform an analysis to conclude that the likelihood that some very bad election outcomes might be observed is significantly increased when voter participation rates are low. For example, depending upon which voters choose to abstain in any particular case, the ACW and the OCW do not necessarily have to coincide, and this current study begins by considering the probability that the ACW and OCW will be the same candidate as a function of the voter participation rate.

This overall analysis is then significantly extended to determine just how serious the impact of abstentions might be on a number of other very negative election outcomes. The second phase of our study evaluates some commonly considered voting rules on the basis of their Condorcet Efficiency, which measures the conditional probability that each of these rules will elect the ACW given that one exists, based on the available results from observed voting situations after abstention takes place. The voting rules that we initially consider are the single-stage voting rules: Plurality Rule (PR), Negative Plurality Rule (NPR) and Borda Rule (BR). The potentially extreme negative impact of voter abstention is obvious in this case, since all voting rules effectively become random choosers for the winner of an election, with Condorcet Efficiencies * > 𝑛 3 * + 𝑛 5 * [𝐴𝑷𝐵] (13) 𝑛 1 * + 𝑛 2 * > 𝑛 4 * + 𝑛 6 * [𝐴𝑷𝐶]. (14)

Introduction

We consider the impact that voter abstention can have on elections with three candidates {𝐴, 𝐵, 𝐶} when there are n possible voters in the electorate. To begin, we define the preferences of these voters by using 𝐴 ≻ 𝐵 to denote the fact that any given voter prefers Candidate A to Candidate B. There are six possible linear voter preference rankings on these candidates that are transitive and have no voter indifference between candidates, as shown in Figure 1.

A A B C B C B C A A C B C B C B A A 𝑛 1 𝑛 2 𝑛 3 𝑛 4 𝑛 5 𝑛 6
Figure 1. Six possible linear preference rankings on three candidates.

Here, for example, 𝑛 1 represents the number of possible voters with the preference ranking 𝐴 ≻ 𝐵 ≻ 𝐶, with 𝐴 ≻ 𝐶 being required by transitivity. The total number of possible voters is n with

𝑛 = ∑ 𝑛 𝑖
Much of what follows is based on the notion of using the preference rankings of all possible voters in an actual voting situation to perform majority rule comparisons on pairs of candidates, such that Candidate A beats B by Pairwise Majority Rule [𝐴𝑴𝐵] if 𝐴 ≻ 𝐵 more times than 𝐵 ≻ 𝐴 in the preference rankings of the possible voters. Candidate A is defined as the Actual Condorcet Winner (ACW) if both 𝐴𝑴𝐵 and 𝐴𝑴𝐶, with:

𝑛 1 + 𝑛 2 + 𝑛 4 > 𝑛 3 + 𝑛 5 + 𝑛 6 [𝐴𝑴𝐵] (1) 𝑛 1 + 𝑛 2 + 𝑛 3 > 𝑛 4 + 𝑛 5 + 𝑛 6 [𝐴𝑴𝐶].

(2)

It is well known that an ACW does not necessarily exist [START_REF] Condorcet | An essay on the application of probability theory to plurality decision making[END_REF]], but such a candidate would clearly be a very good choice for selection as the winner of an election whenever there is one, since a majority of the possible voters would oppose the choice of either of the other two candidates. The Actual Condorcet Loser (ACL) is then defined in the obvious manner, and such a candidate would be a terrible choice for selection as the winner.

We proceed to consider election outcomes when abstentions are allowed, so that some of the possible voters can choose not to participate for any reason. Let 𝑛 𝑖 * denote the number of voters with the associated preference ranking in Figure 1 who actually choose to participate in the election, with 0 ≤ 𝑛 𝑖 * ≤ 𝑛 𝑖 , for 𝑖 = 1, 2, 3, 4, 5, 6. The total number of voters who participate is defined by 𝑛 * = ∑ 𝑛 𝑖 of 33.3%, when voter participation rates are near zero! The point of interest is how quickly voting rules recover to achieve acceptable Condorcet Efficiency values as voter participation rates increase from near-zero.

After the initial Condorcet Efficiency component of this analysis is completed, the probability that these voting rules will perform in a very poor manner by electing the ACL is considered as a function of the voter participation rate. We then proceed to extend this same overall evaluation to consider common two-stage voting rules: Plurality Elimination Rule (PER), Negative Plurality Elimination Rule (NPER) and Borda Elimination Rule (BER). As in the case of Condorcet Efficiency values, the likelihood that voting rules will select the ACL also approaches 33.3% for near-zero voter participation rates. We limit our attention that the number of possible voters is very large as 𝑛 → ∞, and the overall results of our analysis typically present a somewhat pessimistic outlook for the performance of voting rules for scenarios in which voter participation rates are as low as those that can be observed in actual elections.

Probability of ACW and OCW Coincidence

Candidate A will be both the ACW and OCW whenever the actual and observed voting situations have preference rankings for voters that are simultaneously consistent with (1), ( 2), ( 3) and ( 4).

The coincidence probability for the ACW and OCW is obviously driven both by the probability that various actual voting situations are observed and by the mechanism that determines the subset of possible voters who choose to participate in the election. Two standard assumptions from the literature are used as a basis for models to consider these two components, and each will be seen to have its own interpretation of how the voter participation rate 𝛼 𝑉𝑅 is defined. The first of these models is 𝐼𝐶(𝛼 𝑉𝑅 ) which is based on the Impartial Culture Condition (IC) that assumes complete independence between voters' preferences. The second model is 𝐼𝐴𝐶(𝛼 𝑉𝑅 ) which is based on the Impartial Anonymous Culture Condition (IAC) that inherently assumes some degree of dependence among voters' preferences. Probability representations for the coincidence of the ACW and OCW will be considered in turn with these two models.

ACW and OCW Coincidence Results with IC

When 𝐼𝐶(𝛼 𝑉𝑅 ) is considered, we focus on the probability that a randomly selected voter from the set of possible voters will have each of the associated linear preference rankings in Figure 1, where 𝑝 𝑖 is the probability that the associated 𝑖 𝑡ℎ raking will be observed on a random selection with ∑ 𝑝 𝑖 6 𝑖=1

= 1. The basis of the IC requires that 𝑝 𝑖 = 1 6 for all 𝑖 = 1,2, … ,6, so that each possible voter is equally likely to have any of the six linear rankings. Then, [START_REF] Gehrlein | Probabilities of election outcomes for large electorates[END_REF] developed an extension of IC, such that 𝐼𝐶(𝛼 𝑉𝑅 ) further assumes that each possible voter will independently have a probability 𝛼 𝑉𝑅 of participating in the election.

The basic IC assumption was used by [START_REF] Guilbaud | Les theories de l'intérêt general et le probleme logique de l'agregation[END_REF] to develop a representation for the limiting probability 𝑃 𝐴𝐶𝑊 (𝐼𝐶, ∞) that an ACW exists to begin with as 𝑛 → ∞, and

𝑃 𝐴𝐶𝑊 (𝐼𝐶, ∞) = 3 4 + 3 2𝜋 𝑆𝑖𝑛 -1 ( 1 3 ) ≈ .91226. (5) 
The development of a representation for the limiting probability that the ACW and OCW coincide begins with the definitions of four variables {𝑋 1 , 𝑋 2 , 𝑋 3 , 𝑋 4 } that have different values that are based on the linear preference ranking that is associated with a randomly selected voter and on whether, or not, that voter participates in the election. These variables are defined in Table 1.

Table 1. Definitions of 𝑋 1 , 𝑋 2 , 𝑋 3 and 𝑋 4 .

Ranking 𝑋 1 [𝐴𝑴𝐵] 𝑋 2 [𝐴𝑴𝐶] 𝑋 3 [𝐴𝑴 * 𝐵] 𝑋 4 [𝐴𝑴 * 𝐶] 𝐴 ≻ 𝐵 ≻ 𝐶 (𝑝 1 ) +1 +1 +1 +1 𝐴 ≻ 𝐶 ≻ 𝐵 (𝑝 2 ) +1 +1 +1 +1 𝐵 ≻ 𝐴 ≻ 𝐶 (𝑝 3 ) -1 +1 -1 +1 𝐶 ≻ 𝐴 ≻ 𝐵 (𝑝 4 ) +1 -1 +1 -1 𝐵 ≻ 𝐶 ≻ 𝐴 (𝑝 5 ) -1 -1 -1 -1 𝐶 ≻ 𝐵 ≻ 𝐴 (𝑝 6 ) -1 -1 -1 -1 Abstention --- --- 0 0
The entries from Table 1 show that the value of 𝑋 1 for the linear preference ranking of a randomly selected voter is +1 whenever 𝐴 ≻ 𝐵 and it is -1 if 𝐵 ≻ 𝐴, so that AMB for n voters if the average value of 𝑋 1 has 𝑋 ̅ 1 > 0. In the same fashion AMC if 𝑋 ̅ 2 > 0, so Candidate A is the ACW whenever both 𝑋 ̅ 1 > 0 and 𝑋 ̅ 2 > 0. It then follows from the same logic that A will be the OCW for participating voters when both 𝑋 ̅ 3 > 0 and 𝑋 ̅ 4 > 0.

The expected values of these four variables with 𝐼𝐶(𝛼 𝑉𝑅 ) are given by: 𝐸(𝑋 1 ) = +1𝑝 1 + 1𝑝 The variance and covariance terms of the 𝑋 𝑖 variables in Table 1 with 𝐼𝐶(𝛼 𝑉𝑅 ) are given by:

𝐸(𝑋 1 2 ) = 𝐸(𝑋 2 2 ) = 1 and 𝐸(𝑋 3 2 ) = 𝐸(𝑋 4 2 ) = 𝛼 𝑉𝑅 𝐸(𝑋 1 𝑋 2 ) = (+1)(+1)𝑝 1 + (+1)(+1)𝑝 2 + (-1)(+1)𝑝 3 + (+1)(-1)𝑝 4 + (-1)(-1)𝑝 5 + (-1)(-1)𝑝 6 = 1 3 𝐸(𝑋 1 𝑋 3 ) = (+1)(+1)𝑝 1 𝛼 𝑉𝑅 + (+1)(+1)𝑝 2 𝛼 𝑉𝑅 + (-1)(-1)𝑝 3 𝛼 𝑉𝑅 + (+1)(+1)𝑝 4 𝛼 𝑉𝑅 + (-1)(-1)𝑝 5 𝛼 𝑉𝑅 + (-1)(-1)𝑝 6 𝛼 𝑉𝑅 + 0(1 -𝛼 𝑉𝑅 ) = 𝛼 𝑉𝑅 𝐸(𝑋 1 𝑋 4 ) = (+1)(+1)𝑝 1 𝛼 𝑉𝑅 + (+1)(+1)𝑝 2 𝛼 𝑉𝑅 + (-1)(+1)𝑝 3 𝛼 𝑉𝑅 + (+1)(-1)𝑝 4 𝛼 𝑉𝑅 + (-1)(-1)𝑝 5 𝛼 𝑉𝑅 + (-1)(-1)𝑝 6 𝛼 𝑉𝑅 + 0(1 -𝛼 𝑉𝑅 ) = 𝛼 𝑉𝑅 3 𝐸(𝑋 2 𝑋 3 ) = (+1)(+1)𝑝 1 𝛼 𝑉𝑅 + (+1)(+1)𝑝 2 𝛼 𝑉𝑅 + (+1)(-1)𝑝 3 𝛼 𝑉𝑅 + (-1)(+1)𝑝 4 𝛼 𝑉𝑅 + (-1)(-1)𝑝 5 𝛼 𝑉𝑅 + (-1)(-1)𝑝 6 𝛼 𝑉𝑅 + 0(1 -𝛼 𝑉𝑅 ) = 𝛼 𝑉𝑅 3 𝐸(𝑋 2 𝑋 4 ) = (+1)(+1)𝑝 1 𝛼 𝑉𝑅 + (+1)(+1)𝑝 2 𝛼 𝑉𝑅 + (+1)(+1)𝑝 3 𝛼 𝑉𝑅 + (-1)(-1)𝑝 4 𝛼 𝑉𝑅 + (-1)(-1)𝑝 5 𝛼 𝑉𝑅 + (-1)(-1)𝑝 6 𝛼 𝑉𝑅 + 0(1 -𝛼 𝑉𝑅 ) = 𝛼 𝑉𝑅 𝐸(𝑋 3 𝑋 4 ) = (+1)(+1)𝑝 1 𝛼 𝑉𝑅 + (+1)(+1)𝑝 2 𝛼 𝑉𝑅 + (-1)(+1)𝑝 3 𝛼 𝑉𝑅 + (+1)(-1)𝑝 4 𝛼 𝑉𝑅 + (-1)(-1)𝑝 5 𝛼 𝑉𝑅 + (-1)(-1)𝑝 6 𝛼 𝑉𝑅 + 0(1 -𝛼 𝑉𝑅 ) = 𝛼 𝑉𝑅 3
.

The resulting correlation matrix for these four variables is then given by 𝑹 𝟏 , with:

𝑹 𝟏 = [ 1 1 3 √𝛼 𝑉𝑅 √𝛼 𝑉𝑅 3 1 √𝛼 𝑉𝑅 3 √𝛼 𝑉𝑅 1 1 3 1 ]
.

The probability that any 𝑋 𝑖 ̅ √𝑛 takes on a specific value, including 𝐸(𝑋 𝑖 ̅ √𝑛), is zero in any continuous distribution. So, the limiting probability that Candidate A is both the ACW and OCW is given by the multivariate normal positive orthant probability Ф 4 (𝑹 𝟏 ) that 𝑋 𝑖 ̅ √𝑛 ≥ 𝐸(𝑋 𝑖 ̅ √𝑛),

for 𝑖 = {1,2,3,4}. The symmetry of 𝐼𝐶(𝛼 𝑉𝑅 ) with respect to the three candidates leads to the conclusion that the conditional limiting probability 𝑃 𝐴𝐶𝑊 𝑂𝐶𝑊 (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) that the ACW and OCW coincide, given that an ACW exists, is then directly obtained from

𝑃 𝐴𝐶𝑊 𝑂𝐶𝑊 (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) = 3Ф 4 (𝑹 𝟏 ) 𝑃 𝐴𝐶𝑊 (𝐼𝐶,∞) . ( 6 
)
Closed form representations for these positive orthant probabilities only exist for special cases, and 𝑹 𝟏 is one such case from [START_REF] Cheng | The orthant probability of four Gaussian variables[END_REF]. Using that result with ( 5) and ( 6) leads to

𝑃 𝐴𝐶𝑊 𝑂𝐶𝑊 (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) = [ 3 16 + 3 4𝜋 {𝑆𝑖𝑛 -1 ( 1 3 )+𝑆𝑖𝑛 -1 (√𝛼 𝑉𝑅 )+𝑆𝑖𝑛 -1 ( √𝛼 𝑉𝑅 3 )} + 3 4𝜋 2 {(𝑆𝑖𝑛 -1 ( 1 3 )) 2 +(𝑆𝑖𝑛 -1 (√𝛼 𝑉𝑅 )) 2 -(𝑆𝑖𝑛 -1 ( √𝛼 𝑉𝑅 3 )) 2 } ] 3 4 + 3 2𝜋 𝑆𝑖𝑛 -1 ( 1 3 ) . ( 7 
)
This representation corresponds to the result in [START_REF] Gehrlein | Probabilities of election outcomes for large electorates[END_REF], and the derivation has been developed in detail here as an example, since the same basic procedure will be used later to develop additional new probability representations for other election outcomes.

There is no election output to evaluate without any voter participation when 𝛼 𝑉𝑅 = 0, so Table 2 lists values of 𝑃 𝐴𝐶𝑊 𝑂𝐶𝑊 (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) from ( 7) for 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0. chance of coincidence when 𝛼 𝑉𝑅 = .5. Low voter participation rates can clearly have a huge negative impact on election outcomes with the independent voter 𝐼𝐶(𝛼 𝑉𝑅 ) scenario.

ACW and OCW Coincidence Results with IAC

It is well known that the introduction of a degree of dependence among voters' preferences generally reduces the probability that most paradoxical election outcomes will be observed, relative to the case of complete independence with IC [see for example [START_REF] Gehrlein | Voting paradoxes and group coherence: The Condorcet efficiency of voting rules[END_REF]]. [START_REF] Gehrlein | The impact of abstentions on election outcomes when voters have dependent preferences[END_REF] investigated this impact on the conditional probability for AOW and OCW coincidence with the assumption of 𝐼𝐴𝐶(𝛼 𝑉𝑅 ), such that all actual and observed voting situations are equally likely to be observed, given that the voter participation rate is fixed at

𝛼 𝑉𝑅 = 𝑛 * 𝑛 .
To begin developing this representation for the coincidence probability of ACW and OCW with 𝐼𝐴𝐶(𝛼 𝑉𝑅 ), we note that this requires that (1), ( 2), ( 3) and (4) must hold, along with

𝑛 1 + 𝑛 2 + 𝑛 3 + 𝑛 4 + 𝑛 5 + 𝑛 6 = 𝑛 (8) 𝑛 1 * + 𝑛 2 * + 𝑛 3 * + 𝑛 4 * + 𝑛 5 * + 𝑛 6 * = 𝑛 * (9) 0 ≤ 𝑛 𝑖 * ≤ 𝑛 𝑖 , for 𝑖 = 1, 2, 3, 4, 5, 6 (10) 
We would start by obtaining a representation for the total number of voting situations for which the restrictions (1), ( 2), ( 3), ( 4), ( 8), ( 9) and ( 10) simultaneously apply as a function of n and 𝑛 * , and then divide that by the total number of voting situations for which (1), ( 2), ( 8), ( 9) and ( 10) simultaneously apply as a function of n and 𝑛 * . The final representation could then be expressed as a function of n and 𝛼 𝑉𝑅 .

In the limit as 𝑛 → ∞, this process of developing representations to count the number of voting situations that meet the specified restrictions reduces to computing volumes of subspaces. All observed voting situations with the same value of 𝛼 𝑉𝑅 are then assumed to be equally likely to be observed with 𝐼𝐴𝐶(𝛼 𝑉𝑅 ), but it is not assumed that all 𝛼 𝑉𝑅 are equally likely to be observed. This general procedure has been used many times to develop limiting IAC-based probability representations in the literature, and we rely throughout this study on a particular method for doing this that uses the multi-parameter version of Barvinok's Algorithm that is described in detail in [START_REF] Lepelley | On Ehrhart polynomials and probability calculations in voting theory[END_REF]. The resulting representation for the limiting conditional probability that the ACW and OCW coincide with 𝐼𝐴𝐶(α VR ) is denoted 𝑃 𝑂𝐶𝑊 𝐴𝐶𝑊 (𝐼𝐴𝐶(α VR ), ∞), and it is given by:

𝑃 𝑂𝐶𝑊 𝐴𝐶𝑊 (𝐼𝐴𝐶(α VR ), ∞) = 444𝛼 𝑉𝑅 5 -4376𝛼 𝑉𝑅 4 +11817𝛼 𝑉𝑅 3 -15576𝛼 𝑉𝑅 2 +10080𝛼 𝑉𝑅 -2520 128(42𝛼 𝑉𝑅 5 -274𝛼 𝑉𝑅 4 +603𝛼 𝑉𝑅 3 -624𝛼 𝑉𝑅 2 +315𝛼 𝑉𝑅 -63) , 0 ≤ 𝛼 𝑉𝑅 ≤ 1 2 (11) = 10812𝛼 𝑉𝑅 5 -364𝛼 𝑉𝑅 4 -3947𝛼 𝑉𝑅 3 +1761𝛼 𝑉𝑅 2 -185𝛼 𝑉𝑅 -13 128(42𝛼 𝑉𝑅 5 +64𝛼 𝑉𝑅 4 -73𝛼 𝑉𝑅 3 +39𝛼 𝑉𝑅 2 -10𝛼 𝑉𝑅 +1) , 1 2 ≤ 𝛼 𝑉𝑅 ≤ 1.
Computed values of 𝑃 𝑂𝐶𝑊 𝐴𝐶𝑊 (𝐼𝐴𝐶(α VR ), ∞) from ( 11) are listed in Table 2 for 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0, to show some very surprising results. The introduction of a degree of dependence with 𝐼𝐴𝐶(α VR ) can indeed increase the probability of ACW and OCW coincidence relative to the case of complete voter independence with 𝐼𝐶(α VR ). But, this only occurs for α VR ≥ .5, and the coincidence probability is actually reduced by introducing dependence for most cases with α VR ≤ .5! When a large proportion of voters choose not to participate in an election, it is now quite evident that very bad things really can happen with the resulting election outcomes and adding a degree of dependence can make things even worse, so we proceed to investigate just how bad things can get in such cases.

Actual Condorcet Efficiency of Single-Stage Voting Rules

As mentioned above, the Condorcet Efficiency of a voting rule measures the conditional probability that the voting rule will elect the ACW, based on the results of an observed voting situation. A single-stage voting rule determines the winner of an election in a single step from the information on the voters' ballots. A weighted scoring rule 𝑊𝑆𝑅(𝜆) requires voters to rank the three candidates and a weight of one is assigned to each voter's most preferred candidate, a weight of zero to the least preferred candidate and a weight of 𝜆 to the middle-ranked candidate.

The candidate who receives the greatest total score from the observed voting situation is then declared as the winner. Such a voting rule reduces to PR when 𝜆 = 0, so that voters must only report their most preferred candidate on a ballot. When 𝜆 = 1, voters must only report their two more-preferred candidates, which defines NPR since it is the same as having each voter cast a ballot against their least-preferred candidate. Voters obviously do not really have to report a ranking on the candidates when either PR or NPR is employed, but they must do so for BR which uses 𝜆 = 1/2.

Actual Single-Stage Rule Efficiency with IC

The development of a representation for the Condorcet Efficiency 𝐶𝐸 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) of 𝑊𝑆𝑅(𝜆) as 𝑛 → ∞ with the assumption of 𝐼𝐶(𝛼 𝑉𝑅 ) begins by defining four variables that are based on the likelihood that given voter preference rankings are observed, as shown in Table 3.

Table 3. Definitions of 𝑌 1 , 𝑌 2 , 𝑌 3 and 𝑌 4 .

Ranking 𝑌 1 [𝐴𝑴𝐵] 𝑌 2 [𝐴𝑴𝐶] 𝑌 3 [𝐴𝑾𝐵] 𝑌 4 [𝐴𝑾𝐶] 𝐴 ≻ 𝐵 ≻ 𝐶 (𝑝 1 ) +1 +1 1 -𝜆 +1 𝐴 ≻ 𝐶 ≻ 𝐵 (𝑝 2 ) +1 +1 +1 1 -𝜆 𝐵 ≻ 𝐴 ≻ 𝐶 (𝑝 3 ) -1 +1 𝜆 -1 +𝜆 𝐶 ≻ 𝐴 ≻ 𝐵 (𝑝 4 ) +1 -1 +𝜆 𝜆 -1 𝐵 ≻ 𝐶 ≻ 𝐴 (𝑝 5 ) -1 -1 -1 -𝜆 𝐶 ≻ 𝐵 ≻ 𝐴 (𝑝 6 ) -1 -1 -𝜆 -1 Abstention --- --- 0 0
Following the logic of development of the representation for 𝑃 𝐴𝐶𝑊 𝑂𝐶𝑊 (𝐼𝐶(𝛼 𝑉𝑅 ), ∞), 𝑌 1 and 𝑌 2 are identical to 𝑋 1 and 𝑋 2 respectively, so that Candidate A is the ACW if 𝑌 1 ̅ > 0 and 𝑌 2 ̅ > 0.

Variables 𝑌 3 and 𝑌 4 define the difference in scores obtained by Candidate A over each of B and C respectively in the possible voter preference rankings, so that A will be the winner by 𝑊𝑆𝑅(𝜆) in an observed voting situation whenever both 𝑌 3 ̅ > 0 and 𝑌 4 ̅ > 0.

By utilizing the methodology that led to (6), it follows that

𝐶𝐸 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) = 3Ф 4 (𝑹 𝟐 ) 𝑃 𝐴𝐶𝑊 (𝐼𝐶,∞) . ( 12 
)
Based on the representation in (12), computations with the 𝑌 𝑖 definitions from Table 3 lead to:

𝑹 𝟐 = [ 1 1 3 √ 2 3𝑧 √ 1 6𝑧 1 √ 1 6𝑧 √ 2 3𝑧 1 1 2 1 ] , with 𝑧 = 1-𝜆(1-𝜆) 𝛼 𝑉𝑅 .
Since z is symmetric about 𝜆 = 1/2 for all 𝛼 𝑉𝑅 , it follows that PR and NPR must have the same limiting Condorcet Efficiency as 𝑛 → ∞ for any given 𝛼 𝑉𝑅 . The form of 𝑹 𝟐 unfortunately does not meet the conditions for any special case with a closed form representation for Ф 4 (𝑹 𝟐 ), as we observed above for Ф 4 (𝑹 𝟏 ) in the development of (7). [START_REF] Gehrlein | Effects of abstentions on voting procedures in three-candidate elections[END_REF] therefore used a representation from [START_REF] Gehrlein | A Representation for quadrivariate normal positive orthant probabilities[END_REF] to obtain values of Ф 4 (𝑹 𝟐 ) by using numerical integration over a single variable. Resulting values of 𝐶𝐸 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) for PR, NPR and BR from (12) are listed in Table 4 for the case that 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0. We see the expected result that Condorcet Efficiency values approach 1/3 to make all voting rules equivalent to random selection procedures when 𝛼 𝑉𝑅 → 0. We also note that BR dominates PR and NPR for all non-zero participation rates. The efficiencies decrease rapidly as voter participation rates decrease, and when this rate is 40% or less, all voting rules have Condorcet Efficiency less than 61%. This level of efficiency is quite disappointing, since voter participation rates as low as 40% are definitely observed in practice. For example, voter participation rates in the 2014 US elections [see [START_REF] Mcdonald | United States Election Project[END_REF] or other sources] range from 28.7% in Indiana to 58.7% in Maine, with an overall national participation rate of only 36.7%. While these participation rates do increase for elections during years when a president is being chosen, they are even lower during the primary elections to select final candidates. So, we certainly hope that the introduction of a degree of dependence among voters' preferences will improve this situation.

Actual Single-Stage Rule Efficiency with IAC

The impact that the inclusion of some degree of dependence among voters' preferences might have on this dreary expected result is considered by using the assumption of 𝐼𝐴𝐶(𝛼 𝑉𝑅 ) to obtain representations for 𝐶𝐸 𝑅𝑢𝑙𝑒 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞). It is not feasible to obtain such a representation for a generalized 𝑊𝑆𝑅(𝜆) with a reasonable effort, as we did with 𝐶𝐸 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞), but we can obtain a representation for each specified voting rule 𝑅𝑢𝑙𝑒 ∈ {𝑃𝑅, 𝑁𝑃𝑅, 𝐵𝑅}.

Based on the definitions of PR, NPR and BR that were given above, the following restrictions on observed voting situations apply:

Candidate A is the PR winner if

𝑛 1 * + 𝑛 2 11 = -(187353𝛼 𝑉𝑅 5 -987625𝛼 𝑉𝑅 4 +527980𝛼 𝑉𝑅 3 +221880𝛼 𝑉𝑅 2 -253805𝛼 𝑉𝑅 +56249) 4320(42𝛼 𝑉𝑅 5 +64𝛼 𝑉𝑅 4 -73𝛼 𝑉𝑅 3 +39𝛼 𝑉𝑅 2 -10𝛼 𝑉𝑅 +1) , 3 4 ≤ 𝛼 𝑉𝑅 ≤ 1.
The representations in ( 19), ( 20) and ( 21) are then used to obtain the 𝐶𝐸 𝑅𝑢𝑙𝑒 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) values with each Rule = PR, NPR and BR for values of 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.

The results are listed in Table 5. The results in Table 5 show that the addition of dependence improved efficiency results for PR and BR with voter participation of 50% or more. However, the addition of dependence had a negative impact on NPR efficiency at all non-zero levels of participation. The overall efficiency results for 𝐼𝐴𝐶(𝛼 𝑉𝑅 ) in Table 5 are even more discouraging with lower participation rates for all voting rules than the results for 𝐼𝐶(𝛼 𝑉𝑅 ) from Table 4. BR still outperforms PR and NPR for all non-zero participation rates, but the addition of a degree of dependence among voters' preferences has led to even lower efficiencies for the voting rules when 𝛼 𝑉𝑅 is small. The efficiencies of all voting rules are now less than 56% when participation rates are 40% or less. Adding dependence among voters' preferences has made things worse when participation rates are less than 50%!

Borda Paradox Probabilities

The occurrence of a Borda Paradox is much more disconcerting than having a voting rule fail to elect the ACW. The worst possible outcome occurs when a Borda Paradox is observed, such that a voting rule elects the ACL. Given the potentially significant negative impact that voter abstentions have been seen to have on the Condorcet Efficiency of voting rules, it is natural to wonder how serious the impact of voter abstentions might be for observing examples of this even more dramatic Borda Paradox.

Borda Paradox Probabilities for Single-Stage Rules with IC

It is easy to develop a representation for the limiting probability 𝐵𝑃 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) that a Borda Paradox is observed when using 𝑊𝑆𝑅(𝜆) as 𝑛 → ∞ with the assumption of 𝐼𝐶(𝛼 𝑉𝑅 ) by mirroring the development of the representation for 𝐶𝐸 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) in ( 12). All that has to be done is to reverse the signs of the 𝑌 1 and 𝑌 2 variable values in Table 3 to make Candidate A the ACL and the winner by 𝑊𝑆𝑅(𝜆). It obviously follows from the logic that led to (12) and the definition of 𝑹 𝟐 that

𝐵𝑃 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) = 3Ф 4 (𝑹 𝟑 ) 𝑃 𝐴𝐶𝑊 (𝐼𝐶,∞) , (22) 
where

𝑹 𝟑 = [ 1 1 3 -√ 2 3𝑧 -√ 1 6𝑧 1 -√ 1 6𝑧 -√ 2 3𝑧 1 1 2 1 ] , with 𝑧 = 1-𝜆(1-𝜆) 𝛼 𝑉𝑅 .
Since z remains symmetric about 𝜆 = 1/2 for all 𝛼 𝑉𝑅 , it follows as in the case of Condorcet Efficiencies, that PR and NPR have the same limiting probability of exhibiting a Borda Paradox for any specified value of 𝛼 𝑉𝑅 . The form of 𝑹 𝟑 is not a special case for which Ф 4 (𝑹 𝟑 ) has a closed form representation, so the representation from [START_REF] Gehrlein | A Representation for quadrivariate normal positive orthant probabilities[END_REF] is used to obtain values of Ф 4 (𝑹 𝟑 ). Computed 𝐵𝑃 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) values from ( 22) are listed in Table 6 for 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0 The expected result in Table 6 is that the Borda Paradox Probabilities approach 1/3 as 𝛼 𝑉𝑅 → 0, since all voting rules are equivalent to random selection procedures in this particular case, and that BR has a lower Borda Paradox probability than PR and NPR for all non-zero participation rates. A well-known result is that BR cannot elect the OCL [START_REF] Fishburn | Borda's rule, positional voting, and Condorcet's simple majority principle[END_REF]], so that the ACL cannot be elected by BR if all voters participate. However, this result is not true when some voters abstain so that the OCL and ACL do not necessarily coincide. The probability of observing a Borda Paradox consistently increases as voter participation rates decrease, and stage. We consider Plurality Elimination Rule (PER), Negative Plurality Elimination Rule (NPER) and Borda Elimination Rule (BER). It is definitely of interest to determine if these twostage voting rules can exhibit better performance than the single-stage rules on the basis of Condorcet Efficiency and the probability that Borda's Paradox is observed with lower levels of voter participation rates.

Condorcet Efficiency of Two-stage Voting Rules with IC

The development of the representation for 𝐶𝐸 𝑊𝑆𝑅(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) in ( 12) was based on the definitions of the four 𝑌 𝑖 variables in Table 3 had 𝑌 𝑖 ̅ > 0 for 𝑖 = 1,2,3,4. When we consider instead the more complex two-stage elimination rules 𝑊𝑆𝑅𝐸(𝜆), the resulting development of a representation for 𝐶𝐸 𝑊𝑆𝑅𝐸(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) requires the use of five variables that are denoted as 𝑍 𝑖 for 𝑖 = 1,2,3,4,5 in Table 8.

Table 8. Definitions of 𝑍 1 , 𝑍 2 , 𝑍 3 , 𝑍 4 and 𝑍 5 .

Ranking 𝑍 1 [𝐴𝑴𝐵] 𝑍 2 [𝐴𝑴𝐶] 𝑍 3 [𝐴𝑾𝐵] 𝑍 4 [𝐶𝑾𝐵] 𝑍 5 [𝐴𝑴 * 𝐶] 𝐴 ≻ 𝐵 ≻ 𝐶 (𝑝 1 ) +1 +1 1 -𝜆 -𝜆 +1 𝐴 ≻ 𝐶 ≻ 𝐵 (𝑝 2 ) +1 +1 +1 𝜆 +1 𝐵 ≻ 𝐴 ≻ 𝐶 (𝑝 3 ) -1 +1 𝜆 -1 -1 +1 𝐶 ≻ 𝐴 ≻ 𝐵 (𝑝 4 ) +1 -1 𝜆 +1 -1 𝐵 ≻ 𝐶 ≻ 𝐴 (𝑝 5 ) -1 -1 -1 𝜆 -1 -1 𝐶 ≻ 𝐵 ≻ 𝐴 (𝑝 6 ) -1 -1 -𝜆 1 -𝜆 -1 Abstention --- --- 0 0 0
By comparing Table 8 to Table 3, we see that 𝑍 1 and 𝑍 2 are identical to 𝑌 1 and 𝑌 2 , so that Candidate A will be the ACW if 𝑍 ̅ 1 > 0 and 𝑍 ̅ 2 > 0. It is also true that 𝑍 3 is identical to 𝑌 3 , so that A beats B by 𝑊𝑆𝑅(𝜆) if 𝑍 ̅ 3 > 0. Variable 𝑍 4 defines the relative margin by which C beats B in each ranking under 𝑊𝑆𝑅(𝜆). So, B will be the lowest ranked candidate by 𝑊𝑆𝑅(𝜆) when 𝑍 ̅ 3 > 0 and 𝑍 ̅ 4 > 0, and it therefore will be eliminated under 𝑊𝑆𝑅𝐸(𝜆). Variable 𝑍 5 accounts for the fact that the ACW Candidate A will then be the majority rule winner over C for participating voters in the second stage of 𝑊𝑆𝑅𝐸(𝜆) if 𝑍 ̅ 5 > 0. Candidate A will therefore be the ACW and the winner by 𝑊𝑆𝑅𝐸(𝜆) when 𝑍 ̅ 𝑖 > 0 for 𝑖 = 1,2,3,4,5.

The correlation matrix between these five variables is found to be given by 𝑹 𝟓 :

𝑹 𝟓 = [ 1 1 3 √ 2 3𝑧 √ 1 6𝑧 √𝛼 𝑉𝑅 3 1 √ 1 6𝑧 -√ 1 6𝑧 √𝛼 𝑉𝑅 1 1 2 √ 1 6𝑧𝛼 𝑉𝑅 1 -√ 1 6𝑧𝛼 𝑉𝑅 1 ] , with 𝑧 = 1-𝜆(1-𝜆) 𝛼 𝑉𝑅 .
There are three candidates that could be the ACW and there are two remaining candidates that could be eliminated in the second stage of 𝑊𝑆𝑅𝐸(𝜆), so a representation for limiting Condorcet Efficiency is obtained from

𝐶𝐸 𝑊𝑆𝑅𝐸(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) = 6Ф 5 (𝑹 𝟓 ) 𝑃 𝐴𝐶𝑊 (𝐼𝐶,∞) . ( 28 
)
As we have observed before, z is symmetric about 𝑧 = 1/2, so the Condorcet Efficiency values of PER and NPER are identical for 𝐼𝐶(𝛼 𝑉𝑅 ) for any given 𝛼 𝑉𝑅 . The process of obtaining values of multivariate-normal positive orthant probabilities becomes much more complicated for the case of five variables, but they can still be obtained by using numerical techniques over a series of integrals on a single variable, as described in [START_REF] Gehrlein | Computing multivariate normal positive orthant probabilities with 4 and 5 variables[END_REF]. That procedure is used here to obtain values of Ф 5 (𝑹 𝟓 ) for use in ( 28), to obtain values of 𝐶𝐸 𝑊𝑆𝑅𝐸(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) for PER, NPER and BER that are listed in Table 9 for 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0. The results in Table 9 produce some interesting outcomes. First of all, it is well known from [START_REF] Daunou | A paper on elections by ballot[END_REF] that BR cannot rank the OCW in last place, so that it cannot be eliminated in the first stage with BER and the OCW must then win in the second stage. The Actual Condorcet Efficiency of BER is therefore 100% when all voters participate so that the OCW and ACW must coincide. However, this is not true when some voters abstain and the OCW and ACW do not necessarily coincide.

When we compare the Condorcet Efficiency results for the two-stage rules with 𝐼𝐶(𝛼 𝑉𝑅 ) in Table 9 to their counterpart single-stage rules in Table 4. BER dominates PER and NPER for all non-zero voter participation rates, just as BR dominated PR and NPR. However, the degree of this domination is significantly dampened with the two-stage rules, since BER has a less than 1% advantage over PER and NPER for voter participation rates of 60% or less. It seems logical to expect increased Condorcet Efficiency results with two-stage rules, and this is true for PER and NPER. But, it is a very surprising outcome to observe that BER efficiencies are actually It follows from the definition of two-stage elimination rules that the OCL cannot win with any of these rules, so that Borda's Paradox cannot be observed if all voters participate so that the ACL and OCL coincide. However, this observation is not true when some voters abstain, so that the OCW and ACW might not be the same.

By comparing the results of Table 11 to Table 6, very different behaviors are observed for the two-stage voting rules when they are compared to their single-stage rule counterparts. The Borda Paradox probabilities are reduced at all levels of non-zero voter participation for PER and NPER compared to PR and NPR. However, the BER Borda Paradox probabilities all increase from their corresponding BR values for all 0 < 𝛼 𝑉𝑅 < 1. BER still has lower Borda Paradox probabilities than PER and NPER over the range of voter participation rates, but the differences are less than 0.3% in all cases. The particularly disturbing result from Table 11 is that when the voter participation rates is 40% or less, all two-stage voting rules now have a Borda Paradox probability of greater than about 13%, compared to the 11% that was observed in Table 6 for the single-stage rules!

  computed values of 𝐵𝑃 𝑊𝑆𝑅𝐸(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) from (32) for each PER, NPER and BER as 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0.

Table 2 .

 2 Limiting ACW and OCW Coincidence Probabilities.

	𝛼 𝑉𝑅	𝐼𝐶(𝛼 𝑉𝑅 )	𝐼𝐴𝐶(𝛼 𝑉𝑅 )
	≈ 0	.3041	5/16 = .3125
	.1	.4236	.3482
	.2	.4806	.3949
	.3	.5290	.4564
	.4	.5742	.5357
	.5	.6186	.6310
	.6	.6640	.7291
	.7	.7126	.8160
	.8	.7675	.8887
	.9	.8365	.9492
	1.0	1.0000	1.0000
	Some results from the 𝑃 𝐴𝐶𝑊 𝑂𝐶𝑊 (𝐼𝐶(𝛼		

𝑉𝑅 ), ∞) values in Table

2

are predictable. In particular, the coincidence probability is one when all voters participate with 𝛼 𝑉𝑅 = 1, and the coincidence probability decreases as this participation rate declines. When almost all voters independently abstain as 𝛼 𝑉𝑅 → 0, the candidate that becomes the OCW is effectively selected at random if there is an OCW, so the coincidence probability goes to 1 3 𝑃 𝐴𝐶𝑊 (𝐼𝐶, ∞). What is surprising is the very steep rate of decline in 𝑃 𝐴𝐶𝑊 𝑂𝐶𝑊 (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) values as 𝛼 𝑉𝑅 decreases, with only about a 62%

Table 4 .

 4 Computed Limiting Values for Condorcet Efficiency with 𝐼𝐶(𝛼 𝑉𝑅 ).

		Voting Rule
	𝛼 𝑉𝑅	PR & NPR	BR
	≈ 0	1/3 = .3333	1/3 = .3333
	.1	.4399	.4576
	.2	.4882	.5151
	.3	.5277	.5630
	.4	.5630	.6068
	.5	.5961	.6490
	.6	.6280	.6911
	.7	.6595	.7345
	.8	.6911	.7810
	.9	.7234	.8337
	1.0	.7572	.9012

Table 5 .

 5 Computed Limiting Values for Condorcet Efficiency with 𝐼𝐴𝐶(𝛼 𝑉𝑅 ).

	Voting Rule

Table 6 .

 6 Computed Limiting Borda Paradox Probabilities with 𝐼𝐶(𝛼 𝑉𝑅 ).

		Voting Rule
	𝛼 𝑉𝑅	PR & NPR	BR
	≈ 0	1/3 = .3333	1/3 = .3333
	.1	.2355	.2208
	.2	.1965	.1761
	.3	.1670	.1423
	.4	.1423	.1140
	.5	.1207	.0892
	.6	.1012	.0669
	.7	.0834	.0466
	.8	.0669	.0280
	.9	.0515	.0115
	1.0	.0371	0

Table 9 .

 9 Computed Limiting Values for Two-Stage Efficiencies with 𝐼𝐶(𝛼 𝑉𝑅 ).

		Voting Rule
	𝛼 𝑉𝑅	PER & NPER	BER
	≈ 0	1/3 = .3333	1/3 = .3333
	.1	.4516	.4537
	.2	.5075	.5109
	.3	.5546	.5593
	.4	.5982	.6043
	.5	.6407	.6484
	.6	.6836	.6934
	.7	.7288	.7411
	.8	.7786	.7944
	.9	.8387	.8597
	1.0	.9629	1

Table 11 .

 11 Limiting Borda Paradox Probability for Two-stage Rules with 𝐼𝐶(𝛼 𝑉𝑅 ).

		Voting Rule	
	𝛼 𝑉𝑅	PER & NPER	BER
	≈ 0	1/3 = .3333	1/3 = .3333
	.1	.2291	.2278
	.2	.1883	.1866
	.3	.1575	.1556
	.4	.1318	.1297
	.5	.1091	.1070
	.6	.0885	.0863
	.7	.0691	.0668
	.8	.0503	.0481
	.9	.0310	.0288
	1.0	0	0

𝑖=1 , and an actual voting situation defines any combination of 𝑛 𝑖 terms that sum to n.

NPR winner if 𝑛 5 * + 𝑛 6 * < 𝑛 Candidate A is the BR

The same procedure that was used to obtain the limiting representation for 𝑃 𝑂𝐶𝑊 𝐴𝐶𝑊 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) in ( 11) from the restrictions in (1), ( 2), (3), ( 4), ( 8), ( 9) and ( 10) is used to obtain representations for each 𝐶𝐸 𝑅𝑢𝑙𝑒 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞). This is done by replacing (3) and ( 4) with ( 13) and ( 14) for PR to obtain: ≤ 𝛼 𝑉𝑅 ≤ 1.

A limiting representation is obtained for the Condorcet Efficiency of NPR by replacing ( 3) and ( 4) with ( 15) and ( 16): 

A limiting representation for the Condorcet Efficiency of BR is obtained by replacing (3) and ( 4) with ( 17) and ( 18):

when this rate is 40% or less, all voting rules have a Borda Paradox probability of greater than 11%! That is a shockingly large probability for such a very negative outcome, given that voter participation rates as low as 40% are actually observed in practice.

Borda Paradox Probabilities for Single-Stage Rules with IAC

We consider the impact that the introduction of some degree of dependence among voters' preferences will have on the probability that Borda's Paradox will be observed by extending this analysis with the assumption of 𝐼𝐴𝐶(𝛼 𝑉𝑅 ). This begins by noting that Candidate A is the ACL whenever:

The representation for 𝐶𝐸 𝑃𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) in ( 19) was obtained by considering actual and observed voting situations for which (1), ( 2), ( 13), ( 14), ( 8), ( 9) and (10) held simultaneously.

Here, (1) and ( 2) respectively required that AMB and AMC to make Candidate A the ACW. This process is then repeated by replacing (1) and ( 2) with ( 23) and ( 24) to obtain a representation for 𝐵𝑃 𝑃𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞), with This process is then repeated for both NPR and BR, and the resulting limiting representations for observing Borda's Paradox are given by:

14

Associated values of 𝐵𝑃 𝑃𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) from ( 25), 𝐵𝑃 𝑁𝑃𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) from ( 26) and 𝐵𝑃 𝐵𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) from ( 27) are listed in Table 7 for 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0. 6 and7 shows the same general outcome that was observed when the Condorcet Efficiency of voting rules was analyzed earlier with 𝐼𝐶(𝛼 𝑉𝑅 ) and 𝐼𝐴𝐶(𝛼 𝑉𝑅 ). That is, the addition of a degree of dependence among voters' preferences with 𝐼𝐴𝐶(𝛼 𝑉𝑅 ) actually makes things worse for lower levels of voter participation. We now see that the probability of observing a Borda Paradox is greater than 15% for all levels of voter participation at 40% or less! The results for BR are uniformly the best of these options for all positive levels of voter participation, but BR still performs very poorly for lower levels of voter participation. If this very poor overall performance of single-stage voting rules at lower levels of voter participation is to be improved, the likely approach would be to consider the use of some other forms of voting rules.

Two-stage Voting Rules

Two-stage voting rules are sequential elimination procedures that take place in two steps. In the first stage, a voting rule is used to determine the candidate that is ranked as the worst of the three candidates. That candidate is eliminated from consideration in the second stage, where majority rule is used to determine the ultimate winner from the remaining two candidates. All that changes with the two-stage rules is the voting rule that is used to eliminate the loser in the first marginally smaller than BR efficiencies for . 1 ≤ 𝛼 𝑉𝑅 ≤ .5 and the Condorcet Efficiency values for two-stage rules remain less than 61% for voter participation rates that are 40% or less.

Condorcet Efficiency of Two-stage Voting Rules with IAC

The same type of two-stage voting rule Condorcet Efficiency analysis is extended with the assumption of 𝐼𝐴𝐶(𝛼 𝑉𝑅 ) and the resulting representations for PER, NPER and BER are shown respectively in ( 29), ( 30) and (31).

𝐶𝐸 𝑃𝐸𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) = (29) , for

Computed values of 𝐶𝐸 𝑅𝑢𝑙𝑒 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) for PER, NPER and BER from ( 29), ( 30) and ( 31) are listed in Table 10 for 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0. 10 to their counterpart single-stage rules in Table 5 produces very similar results to those observed immediately above with 𝐼𝐶(𝛼 𝑉𝑅 ). BER typically dominates PER and NPER for all non-zero voter participation rates, but NPER has a very small advantage over BER for 𝛼 𝑉𝑅 values of .1 and .2. All differences in efficiencies are significantly dampened with the two-stage rules, with a less than 1% difference between the efficiencies for voter participation rates of 50% or less. Increased Condorcet Efficiency results are observed for PER and NPER over the range of non-zero voter participation rates, but BER efficiencies are marginally smaller than BR efficiencies for . 1 ≤ 𝛼 𝑉𝑅 ≤ .5. Condorcet Efficiency values for two-stage rules are now less than 56% for voter participation rates that are 40% or less, to make things worse than we observed for the independent voter case with 𝐼𝐶(𝛼 𝑉𝑅 ) with two-stage voting rules in Table 9.

Borda Paradox Probabilities for Two-stage Voting Rules with IC

The development of a representation for the limiting probability that Borda's Paradox will be observed for two-stage voting rules with 𝐼𝐶(𝛼 𝑉𝑅 ) directly follows the process that led to the representation for 𝐶𝐸 𝑊𝑆𝑅𝐸(𝜆) (𝐼𝐶(𝛼 𝑉𝑅 ), ∞) in (28). The only difference is that the signs for the variables 𝑍 1 and 𝑍 2 in Table 8 are reversed to make Candidate A the ACL, which is then elected as the ultimate winner by 𝑊𝑆𝑅𝐸(𝜆). It follows directly that

, where

Borda Paradox Probabilities for Two-stage Voting Rules with IAC

Representations are also obtained for the limiting probabilities 𝐵𝑃 𝑃𝐸𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞), 𝐵𝑃 𝑁𝑃𝐸𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) and 𝐵𝑃 𝐵𝐸𝑅 (𝐼𝐴𝐶(𝛼 𝑉𝑅 ), ∞) by using the same process that lead respectively to the Condorcet Efficiency results in ( 29), ( 30) and ( 31). These resulting limiting probability representations are given by: ,

Computed values for the Borda Paradox probabilities in (33), ( 34) and ( 35) for each PER, NPER and BER respectively are listed in Table 12 as 𝛼 𝑉𝑅 → 0 and for each 𝛼 𝑉𝑅 = .1(. 1)1.0. 11 indicate that the addition of voter dependence with 𝐼𝐴𝐶(𝛼 𝑉𝑅 ) again causes an increase in the probability of observing a Borda Paradox for lower levels of voter participation with 𝛼 𝑉𝑅 values of 40% or less.

Conclusion

An initial analysis was performed to consider the probability that the ACW and OCW would coincide for the limiting case of voters with independent voters' preferences when voters have the option to abstain. This indicated that the probability of non-coincidence becomes relatively high as voter participation rates decline. Rather pessimistic results were also found for the Condorcet Efficiency and the probability that a Borda Paradox is observed with PR, NPR and BR under the same independent voter scenario. Two options were considered to improve this negative result. The first, was to add a degree of dependence among voters' preferences. The second was to use more complex versions of these three voting rules by using each as the basis for a two-stage elimination election procedure. The end result is that both of these options tended to make things better for both Condorcet Efficiency and the probability that a Borda Paradox is observed for larger values of voter participation rates. However, both options tended to make things worse for voter participation rates of 40% or less. The results indicate that low levels of voter participation that are consistent with some actual observed elections result in very poor performance for standard voting rules when voters have independent preferences. And, simple attempts to try to improve this dreary observation typically act to make things worse when voter participation rates are 40% or less.