
HAL Id: hal-01771751
https://hal.univ-reunion.fr/hal-01771751

Submitted on 19 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unfolding of finite concurrent automata
Alexandre Mansard

To cite this version:
Alexandre Mansard. Unfolding of finite concurrent automata. 11th Interaction and Concurrency
Experience, ICE 2018, Jun 2018, Madrid, Spain. pp.68-84. �hal-01771751�

https://hal.univ-reunion.fr/hal-01771751
https://hal.archives-ouvertes.fr

Unfolding of finite concurrent automata

Alexandre Mansard

LIM - University of La Réunion

April 18, 2018

Abstract

We consider recognizable trace rewriting systems with level-regular
contexts (RTL). A trace language is level-regular if the set of Foata nor-
mal forms of its elements is regular. We prove that the rewriting graph
of a RTL is word-automatic. Thus its first-order theory is decidable.
Then, we prove that the concurrent unfolding of a finite concurrent au-
tomaton with the reachability relation is a RTL graph. It follows that
the first-order theory with the reachability predicate (FO[Reach] the-
ory) of such an unfolding is decidable. It is known that this property
holds also for the ground term rewriting graphs. We provide examples
of finite concurrent automata of which the concurrent unfoldings fail
to be ground term rewriting graphs. The infinite grid tree (for each
vertex of an infinite grid, there is an edge from this vertex to the origin
of a copy of the infinite grid) is such an unfolding. We prove that the
infinite grid tree is not a ground term rewriting graph. We have thus
obtained a new class of graphs for with a decidable FO[Reach] theory.

1 Introduction

A challenging problem in automatic verification consists in determining (or
in extending) classes of infinite graphs having a decidable theory in a given
logic. A first technique consists in considering some judicious graph trans-
formations, as for example unfolding (that preserves decidability of monadic
second-order logic) or logical interpretations. The pushdown hierarchy [3]
is a hierarchy of decidable graphs of monadic second-order theory. Starting
from finite graphs, each level consists of the monadic interpretations of the
unfoldings of lower levels. The tree-automatic hierarchy [5] is a hierarchy
of graphs of decidable first-order (FO) theory: each level consists of finite

1

set interpretations of the corresponding level of the pushdown hierarchy. A
second technique is to consider graphs whose vertex set and relations are rec-
ognizable by automata whose recognized languages form a boolean algebra.
For instance, it is the case of word-automatic graphs or more generally tree-
automatic graphs, i.e graphs whose vertex set can be encoded by a regular
tree language and each relation recognized by a synchronized tree transducer.
It turns out the first level of the tree-automatic hierarchy consists of tree-
automatic graphs. Lastly, rewriting systems also allow to define interesting
graph classes. Graphs at the first level of the pushdown hierarchy are the
suffix rewriting graphs of recognizable word rewriting systems [2]. Ground
term rewriting graphs (GTR graphs) with the reachability relation are tree-
automatic and thus the first-order theory with the reachability predicate
(FO[Reach]) of a GTR graph is decidable [6].

Since its monadic second-order theory is not decidable, the infinite grid
does not belong to the pushdown hierarchy and is therefore not the unfold-
ing of a finite graph. Nevertheless, as a GTR graph, the infinite grid has a
decidable FO[Reach] theory. In fact, even the theory of the infinite grid in
first-order logic extended by the operator of transitive closure for first-order
definable relations remains decidable [15]. But consider now the infinite grid
tree: from each vertex of an infinite grid, there is an edge (labelled by a new
symbol) to the origin of a copy of the infinite grid. We will prove that this
simple graph (it is just the configuration graph of a system with 2 coun-
ters that we can independently incremente and simultanely reset) has the
FO[Reach] theory decidable but is not a GTR graph. In fact, we are inter-
ested in considering, more generally, a class of graphs that model concurrent
system computations. For such a system, sequential and parallel computa-
tions are possible. To that end, we will consider Mazurkiewicz traces: if the
dependency is total, then a trace reduces to a string that describes sequential
computation while independence between some letters bring the possibility
to describe parallel computation.

For a recognizable trace rewriting system, that is a finite set of rules of

the form U · (V
λ
−→ W) where U , V, W are recognizable trace languages,

λ a label, consider then its suffix rewriting graph: the set of edges of the

form ts
λ
−→ ts′ such that there exists a rewriting rule U · (V

λ
−→ W) with

t ∈ U , s ∈ V, s′ ∈ W. If all letters are dependent, then such a graph is
at the first level of the pushdown hierarchy since it is the suffix rewriting
graph of a recognizable word rewriting system, and if no distinct letters are
dependent, then it is the configuration graph of a vector addition system.
In any case, we will prove in Section 3 that such a graph is word-automatic,

2

even with level-regular contexts: a trace language is level-regular if the set
of Foata normal forms of its elements is regular. Since the set of Foata
normal forms is regular, every recognizable trace language is level-regular.
But, for example, if a and b are two independant letters, the trace language
[(ab)∗] is level-regular but not recognizable. The FO theory of the suffix
rewriting graph of a recognizable trace rewriting system with level-regular
contexts (RTL graph) is thus decidable. We also prove that, in general, its
FO[Reach] theory is not decidable. Otherwise, we could decide the halting
problem for 2-counters Minsky machine. In Section 4, we prove that the
concurrent unfolding of a finite concurrent automaton has the FO[Reach]
theory decidable, by showing that such a graph with the reachability relation
is a RTL graph. This extend a theorem of Madhusudan [11] on decidability
of FO theory of regular trace event structures [14]. We will observe that the
infinite grid and the infinite grid tree are the concurrent unfoldings of finite
concurrent automata. In Section 5, we define the tree of a graph and we
prove that if it is a GTR graph, then it is finitely decomposable by size. The
latter implies it is at the first level of the pushdown hierarchy. We deduce
that the infinite grid tree is not a GTR graph.

2 Preliminaries

Before presenting the suffix rewriting graphs of recognizable trace rewriting
systems, we recall some basic definitions about graphs, logics, automata and
traces.

Let Σ be a finite alphabet and Σ∗ be the free monoid of words over Σ.

2.1 Graphs

A Σ-graph G is a subset of V × Σ × V where V is a set. An element
(p, a, q) ∈ G is an edge labelled by a from source p to target q. The notation
p

a
−→
G

q (or p
a
−→ q when G is understood) means (p, a, q) ∈ G. The vertex set

of G is VG = {p ∈ V | ∃q (p
a
−→
G

q ∨ q
a
−→
G

p)}.

The graph G is deterministic if for every a ∈ Σ, if (p
a
−→
G

q and p
a
−→
G

q′)

then q = q′.
A path in G between vertices p an q, labelled by a word u = a1 . . . ak is a

finite sequence of the form p
a1−→
G

p1, . . . , pk−1
ak−→
G

q. We denote by p
a1...ak−−−−→

G
q

the existence of such a path. A loop in G is a path of the form p
a
−→
G

p. If G

3

is finite, then for p, q ∈ VG, the Σ-word language Lp,q := {u ∈ Σ∗ | p
u
−→
G

q}

is regular. We write p
∗
−→
G

q if there exists a word u ∈ Σ∗ such that p
u
−→
G

q.

Denote by G∗ the Σ ∪̇ {∗}-graph defined by G∗ = G ∪ {(p, ∗, q) | p
∗
−→
G

q}.

The graph G∗ is obtained from G by adding the reachability relation.
An isomorphism f from (G,P) onto (H,Q), where G and H are Σ-graphs

and P and Q are subsets of VG and VH respectively, is a bijection from VG

to VH such that

f(P) = Q and (p
a
−→
G

q ⇐⇒ f(p)
a
−→
H

f(q)).

2.2 Logics

A Σ-graph G is a relational structure over the binary signature Σ. The first-
order (FO) theory of G is defined as usual (see [7]). The FO theory of G∗

will be refered to as the FO[Reach] theory of G.

2.3 Automata

A Σ-automaton is a triple A = (G, i, F) where G is a Σ-graph, i ∈ VG is
an initial state and F ⊆ VG is the set of final states. The Σ-word language
recognized by A is L(A) = {u ∈ Σ∗ | ∃f ∈ F i

u
−→
G

f}. A Σ-word language

is regular if it is recognized by a finite Σ-automaton. The class of regular
Σ-word languages is a boolean algebra and is denoted by Reg(Σ∗).

2.4 Traces

2.4.1 Generalities

A dependence relation D is a reflexive and symmetric binary relation on Σ.
The pair (Σ,D) is called a dependence alphabet. The complement of D is the
independence relation I := Σ2\D. The (Σ,D)-trace equivalence ≡D is the
least congruence on Σ∗ such that (a, b) ∈ I ⇒ ab ≡D ba. The (Σ,D)-trace of
a word w ∈ Σ∗ is its ≡D-equivalence class and is denoted [w]. The quotient
monoid Σ∗/ ≡D is called the trace monoid of the dependence alphabet (Σ,D)
and is denoted by M(Σ,D). Note that in case of D = Σ2, the trace monoid
M(Σ,D) coincides to the free monoid Σ∗.

The prefix binary relation ⊑ on M(Σ,D) defined by t ⊑ t′ if and only if
there exists s ∈M(Σ,D) such that ts = t′ is a partial ordering.

Consider the finite alphabet ID := {A ⊆ Σ | ∀a1 6= a2 ∈ A (a1, a2) ∈ I},
and denote by ΠID : I∗D → M(Σ,D) the canonical morphism defined by

4

b

a a b

c

d

Figure 1: The Foata normal form of [acbdab] (Example 2.2)

ΠID(∅) = [ε] and ΠID({a1, · · · , an}) = [a1 . . . an] (n > 0). Given P ⊆ ID,
we denote by ΠP the restriction of ΠID to P ∗. A P -word U encodes the
trace ΠP (U).

Consider the binary relation ⊲ on I−D := ID \{∅} defined by: A⊲B ⇐⇒
∀b ∈ B ∃a ∈ A aDb. Denote by F ⊆ I−D

∗
the set of ⊲-paths.

The surjective morphism ΠI−
D

is not injective. Indeed, suppose Σ = {a, b}

and aIb, then ΠI−
D
({a, b}) = ΠI−

D
({a}{b}). The following lemma expresses

that each trace is encodable by a unique I−D-word in F.

Proposition 2.1 (Foata normal form). Let t ∈M(Σ,D). The Foata normal
form of t, ⌈t⌉F, is the unique I−D-word ⌈t⌉F = A1 · · ·Ap ∈ F (p > 0) such
that ΠI−

D
(A1 · · ·Ap) = t.

Example 2.2. Suppose Σ = {a, b, c, d} and aIc, bId, cId. The Foata normal
form of t = [acbdab] (see Figure 1) is ⌈t⌉F = {a, c}{b, d}{a}{b}.

Lemma 2.3 (Level automata). The set F of Foata normal forms is regular.

Proof. It is recognized by the following finite I−D-automaton AF.

• The I−D -graph is given by:

⊥
A
−→ A : A ∈ I−D

A
B
−→ B : A⊲B

• the initial state is ⊥ /∈ I−D

• all the states are final (even ⊥).

2.4.2 Recognizable trace languages

A (Σ,D)-trace language is a subset of M(Σ,D). If L is a trace language, then
the word language ∪L is ∪L = {w ∈ Σ∗ | [w] ∈ L}. If L is a word language,
then [L] is the trace language defined by [L] := {[w] ∈M(Σ,D) | w ∈ L}.

5

A trace language L ⊆ M(Σ,D) is recognizable if there exists a finite
monoid N and a monoid morphism φ : M(Σ,D) → N such that L =
φ−1(φ(L)). The class of recognizable trace languages is denoted by Rec(M(Σ,D)).

Remark 2.4. In case of D = Σ2, Rec(M(Σ,D)) = Reg(Σ∗).

The next proposition recalls the robustness of the class Rec(M(Σ,D)).

Proposition 2.5. Rec(M(Σ,D)) is a boolean algebra closed under concate-
nation.

We give two characterizations of the recognizability of a trace language.
The residual by s ∈ M(Σ,D) of L ⊆ M(Σ,D) is s−1L = {t ∈ M(Σ,D) |
s · t ∈ L}. For example, suppose Σ = {a, b} and aIb, then consider L =
{[ab], [abaa], [aaa], [aabbb]}. The residual by [ab] of L is {ε, [aa], [abb]}. The
recognizability of a trace language L is characterized by the finiteness of its
set of residuals.

Proposition 2.6. L ∈ Rec(M(Σ,D)) if and only if {s−1L | s ∈ M(Σ,D)}
is finite.

Proof. (⇒) There exists a finite monoid N and a monoid morphism φ :
M(Σ,D) → N such that L = φ−1(φ(L)). For all s, t ∈ M(Σ,D) such that
φ(s) = φ(t), we have s−1L = t−1L. Since N is finite, the set of L-residuals
is finite.

(⇐) Consider the finite monoid N of binary relations on the finite set of
L-residuals endowed with composition. For t ∈ M(Σ,D), define φ(t) ∈ N
by φ(t) := {(s−1L, (st)−1L) | s ∈M(Σ,D)}. The mapping φ is a morphism.
Furthermore, if φ(s) = φ(t), then s−1L = t−1L. We deduce L = φ−1(φ(L)).
Thus L ∈ Rec(M(Σ,D)).

Suppose P is a finite alphabet and π : P ∗ → M(Σ,D) is a surjective
morphism. For instance, P could be Σ, I−D or ID. If for a trace t we think of
π−1(t) as the set of its P -encodings, the following proposition says that the
recognizability of a trace language is equivalent to the regularity of the set
of all P -encodings of its elements.

Proposition 2.7. L ∈ Rec(M(Σ,D)) if and only if π−1(L) is regular.

Proof. First, note that if U, V ∈ P ∗ such that π(U) = π(V), then U−1π−1(L) =
V −1π−1(L). Then, consider the mapping f (that is well-defined) from the set
of L-residuals to the set of π−1(L)-residuals by f(s−1L) = U−1π−1(L), where
π(U) = s. The mapping f is obviously surjective. Let us prove that it is in-
jective. Suppose U−1π−1(L) = V −1π−1(L), where π(U) = s and π(V) = t.

6

If l ∈ s−1L, then π−1(sl) ⊆ π−1(L) and in particular Uπ−1(l) ⊆ π−1(L).
Since U−1π−1(L) = V −1π−1(L), we deduce that V π−1(l) ⊆ π−1(L) and in
particular tl ∈ L. Thus s−1L ⊆ t−1L. We can show the inverse inclusion by
the same way. The mapping f is thus a bijection.

3 Recognizable trace rewriting system with level-

regular contexts

The trace language [(ab)∗] with aIb is not recognizable since it has an infinite
set of residuals. Nevertheless, the set of Foata normal forms of its elements
{a, b}∗ is regular. This suggests to consider a weaker form of recognizability.
In this section, we define the notion of level-regularity for trace languages.
Then we consider recognizable trace rewriting systems with level-regular
contexts and we prove that their suffix rewriting graphs are word-automatic.

Let (Σ,D) be a dependance alphabet. In the following, we write ΠF for
the restriction of ΠI−

D
to F.

3.1 Level-regularity

Definition 3.1. L ⊆M(Σ,D) is level-regular if the word language Π−1
F

(L)
is regular.

By Proposition 2.7 and Lemma 2.3, every recognizable trace language is
level-regular. Indeed, Π−1

F
(L) = Π−1

ID
(L) ∩ F.

The class of level-regular languages is a boolean algebra but it is not
closed under concatenation. Consider for example the concatenation of the
two level-regular trace languages [(ab)∗] and [(bc)∗], with D = {(a, a), (b, b), (c, c)}.
The set of Foata normal forms of its elements

Π−1
F

([(ab)∗] · [(bc)∗])
= {{a, b, c}k{b, c}∗{b}k | k > 0} ∪ {{a, b, c}k{a, b}∗{b}k | k > 0}

is not regular.

3.2 Trace rewriting system

Graphs at the first level of the pushdown hierarchy are the suffix rewriting
graphs of recognizable word rewriting systems. Such a rewriting system is a
finite set of rules of the form U · (V −→W), where U (the context language),
V and W are regular languages. In the following, we consider recognizable
trace rewriting systems with level-regular contexts and recognizable left and

7

right hand sides and we prove that their suffix rewriting graphs are word-
automatic by encoding their vertex sets by their Foata normal forms.

Definition 3.2. A recognizable trace rewriting system with level-regular
contexts (RTL) R on M(Σ,D) is a finite set of rules of the form

U · (V
λ
−→W)

where U is level-regular, V,W ∈ Rec(M(Σ,D)) and λ ∈ Λ a set of labels.
The suffix rewriting graph GrR of the RTL R is the Λ-graph on M(Σ,D)

defined by

GrR = {[uv]
λ
−→ [uw] | ∃ U · (V

λ
−→W) ∈ R, [u] ∈ U , [v] ∈ V, [w] ∈ W}.

Example 3.3. Suppose D = {(a, a), (b, b)} and consider the following RTL:
[(a+ b)∗] · (ε

a
−→ [a])

[(a+ b)∗] · ([ε]
b
−→ [b])

[(ab)∗] · ([ε]
f
−→ [ε])

Its suffix rewriting graph is the infinite grid with a loop labelled by f on
each vertex of its diagonal (see Figure 2).

Example 3.4. Suppose D = {(a, a), (b, b), (c, c)} and consider the following
RTL R:

[(abc)∗] · ([ε]
a
−→ [abc])

[(abc)∗(ac)∗] · ([b]
b
−→ [ε])

[(abc)∗(ac)∗] · ([ac]
c
−→ [ε])

The suffix rewriting graph GrR (see Figure 3) is not in the pushdown
hierarchy because its MSO theory is undecidable. Furthermore, remark that
without the c-inner edges, we obtain a graph belonging to level 2 of the
pushdown hierarchy.

Before stating the main result (Theorem 3.8) of this section, we recall
some basic definitions about word-automatic graphs.

Word-automatic graphs. Let Σ be an alphabet and ♯ /∈ Σ a new symbol.
The synchronization of two Σ-words, u = a1 . . . am and v = b1 . . . bn, is the
(Σ ∪̇ {♯})2-word u⊗ v defined by
u ⊗ v := (a1, b1) . . . (ak, bk)(xk+1, yk+1) . . . (xK , yK), where k = min(m,n),
K = max(m,n) and for every k < i 6 K, (xi, yi) = (♯, bi) if k = m and
(xi, yi) = (ai, ♯) if not.

8

f

f

f
bb

b

b

b b

. . .

...
...

...

. . .

. . .

a

a

a

a

a

a

. . .

Figure 2: The diagonal of the infinite grid (Example 3.3)

a

c

a

a

c

c
.

.

.

.

.

.

b

b

b

b

b

b

c

c

c

Figure 3: The suffix rewriting graph of a RTL (Example 3.4)

A Λ-graph (Λ a finite alphabet) G is word-automatic if there exists a
regular word language LVG

and a bijection ν : LVG
−→ VG such that for

each λ ∈ Λ, the synchronized word language Lλ = {ν−1(s)⊗ν−1(t) | s
λ
−→
G

t}

is regular.
The following proposition recalls that the domain and the image of any

word-automatic relation is regular.

Lemma 3.5. If a language L of (Σ ∪̇ {♯})2-words u⊗ v is regular, then the
languages {u ∈ Σ∗ | ∃v ∈ Σ∗ u ⊗ v ∈ L} and {v ∈ Σ∗ | ∃u ∈ Σ∗ u⊗ v ∈ L}
are regular.

Remark 3.6. By Lemma 3.5, a Λ-graph is word-automatic if and only if there
exists a bijection ν : L −→ V , where L ∈ Reg(Σ∗) and V ⊇ VG such that for

each λ ∈ Λ, the (Σ ∪̇ {♯})2-word language Lλ = {ν−1(s) ⊗ ν−1(t) | s
λ
−→
G

t}

is regular.

Remark 3.7. Let L be a regular P -word language. Then the (P ∪̇ {♯})2-word
language {u ⊗ v | u, v ∈ L} is regular. In particular, the (I−D ∪̇ {♯})

2-word
language {⌈s⌉F ⊗ ⌈t⌉F | s, t ∈ M(Σ,D)} is regular. Indeed, suppose L

9

is recognized by a P -automaton AL, it suffices to consider the following
(P ∪̇ {♯})2-automaton.

• The (P ∪̇ {♯})2-graph is given by :

(p, q)
a/b
−−→ (p′, q′) : p

a
−−→
AL

p′, q
b
−−→
AL

q′

(p, q)
♯/b
−−→ (⊥, q′) : p is final, q

b
−−→
AL

q′

(⊥, q)
♯/b
−−→ (⊥, q′) : q

b
−−→
AL

q′

(p, q)
a/♯
−−→ (p′⊥) : p

a
−−→
AL

p′, q is final

(p,⊥)
a/♯
−−→ (p′,⊥) : p

a
−−→
AL

p′

• the initial state is (iAL
, iAL

)

• the final states are {(p, q) | p, q ∈ FAL
} ∪ {(p,⊥) | p ∈ FAL

} ∪ {(⊥, q) |
q ∈ FAL

}.

The following theorem is partially due to the unique encoding of any
trace by its Foata normal form.

Theorem 3.8. The suffix rewriting graph of a recognizable trace rewriting
with level-regular contexts (RTL graph) is word-automatic.

Theorem 3.8 is no more guaranteed if we suppose that left and right hand
sides are just level-regular (see Remark 3.12).

Corollary 3.9 ([8]). The FO theory of a RTL graph is decidable.

In order to prove Theorem 3.8, we set out a crucial property about com-
patibility between concatenation and Foata normal forms.

In general, ⌈st⌉F 6= ⌈s⌉F⌈t⌉F. Indeed, suppose D = {(a, a), (b, b)}. If
s = [a] and t = [ab], then ⌈s⌉F = {a}, ⌈t⌉F = {a, b} and ⌈st⌉F = {a, b}{a}.
The following lemma expresses some compatibility between concatenation
and Foata normal form.

Lemma 3.10. Let s, t ∈ M(Σ,D) such that ⌈s⌉F = A1 · · ·Ap (p > 0)
and ⌈st⌉F = B1 · · ·Bm. Then m > p, Ai ⊆ Bi for each 1 6 i 6 p and
ΠID((B1 \ A1) · · · (Bp \ Ap)Bp+1 · · ·Bm) = t.

Proof. By induction on the length of t.

10

In the following, for ⌈s⌉F = A1 · · ·Ap (p > 0) and t ∈ M(Σ,D), denote
by ⌈s⌉F ‖ t the ID-word language B1 · · ·Bm (m > p) such that Ai ⊆ Bi

for each 1 6 i 6 p and ΠID((B1 \ A1) · · · (Bp \ Ap)Bp+1 · · ·Bm) = t. Thus
⌈st⌉F ∈ ⌈s⌉F ‖ t, by the lemma above.

Example 3.11. Suppose D = {(a, a), (b, b)} and consider s = [aba] and
t = [ab]. Then ⌈s⌉F = {a, b}{a} and

⌈s⌉F ‖ t = {a, b}{a}∅
∗({a}∅∗{b}+{b}∅∗{a}+{a, b})∅∗ ∪ {a, b}{a, b}∅∗{a}∅∗

Proof of Theorem 3.8. By Proposition 2.1 and Lemma 2.3, ΠF is a bijection
from the regular language F onto M(Σ,D) ⊇ VGrR . We are going to prove
that for each λ ∈ Λ, the (ID ∪̇ {♯})

2-word language Lλ = {⌈[u][v]⌉F ⊗

⌈[u][w]⌉F | [u] ∈ U , [v] ∈ V, [w] ∈ W, U · (V
λ
−→W) ∈ R} is regular.

Let U ·(V
λ
−→W) be a rule in R. We have to prove that the (ID ∪̇ {♯})

2-word
language {⌈[u][v]⌉F ⊗ ⌈[u][w]⌉F | [u] ∈ U , [v] ∈ V, [w] ∈ W} is regular. By
Lemma 3.10 and Remark 3.7 and because the intersection of two regular word
languages is regular, it suffices to show that the language of (ID ∪̇ {♯})

2-
words of the form X⊗Y such that there exists [u] ∈ U , [v] ∈ V and [w] ∈ W
such that X ∈ ⌈[u]⌉F ‖ [v] and Y ∈ ⌈[u]⌉F ‖ [w], is regular. For this, consider
the ID-automata A1, A2 et A3 that recognize respectively {⌈u⌉F | [u] ∈ U},
Π−1

ID
(V) and Π−1

ID
(W) and define the following (ID ∪̇ {♯})

2-automaton.

• The initial state is (iA1
, iA2

, iA3
)

• the (ID ∪̇ {♯})
2-graph is given by

(p, q, r)
A∪̇B/A∪̇C
−−−−−−−→ (p′, q′, r′) : p

A
−−→
A1

p′, q
B
−−→
A2

q′, r
C
−−→
A3

r′

(p, q, r)
B/C
−−−→ (⊥, q′, r′) : p ∈ FA1

∪ {⊥}, q
B
−−→
A2

q′, r
C
−−→
A3

r′

(p, q, r)
♯/C
−−→ (⊥,⊥, r′) : p ∈ FA1

∪ {⊥}, q ∈ FA2
, r

C
−−→
A3

r′

(⊥,⊥, r)
♯/C
−−→ (⊥,⊥, r′) : r

C
−−→
A3

r′

(p, q, r)
B/♯
−−→ (⊥, q′,⊥) : p ∈ FA1

∪ {⊥}, r ∈ FA3
, q

B
−−→
A2

q′

(⊥, q,⊥)
B/♯
−−→ (⊥, q′⊥) : q

B
−−→
A2

q′

• the set of final states is F = {(p, q, r) | p ∈ FA1
∪ {⊥}, q ∈ FA2

, r ∈
FA3
} ∪ {(⊥,⊥, r) | r ∈ FA3

} ∪ {(⊥, q,⊥) | q ∈ FA2
}.

11

Remark 3.12. Suppose D = {(a, a), (b, b), (c, c)} and consider the following
rewriting rule: [(ab)∗]([ε] −→ [(bc)∗]). Observe that [(ab)∗] and [(bc)∗] are
level-regular but not recognizable. Recall that if a relation is word-automatic,
then its image is regular (Proposition 3.5). The suffix rewriting graph of this
rewriting rule fails to be word-automatic by encoding its vertex set by their
Foata normal forms because Π−1

F
([(ab)∗] · [(bc)∗]) is not regular.

The FO[Reach] theory of a RTL graph may fail to be decidable. Indeed,
the halting problem of 2-counter Minsky machines can be encoded by RTL
graphs.

Proposition 3.13. There exists some RTL graphs that does not have a
decidable FO[Reach] theory.

Before proving the proposition above, let us recall some basic definitions
about 2-counter Minsky machines.

A 2-counter Minsky machine M of length n is a sequence of n instruc-
tions. The n-th instruction is a special instruction that halts the machine
and for each k ∈ {1, . . . , n − 1} the k-th instruction is of the form

k : c := c+ 1; goto(j) (Incr(c, j))
or
k : if c 6= 0 then c := c− 1; goto(j) else goto(l) (Decr(c, j, l))

where j, l ∈ {1, . . . , n} and c is one of the 2 counters.
Configurations of M are the triples (k, c1, c2) ∈ {1, . . . , n}×N×N, where

k is the instruction number, and c1 and c2 the 2-counter contents. The ini-
tial configuration is (1, 0, 0). A computation is a sequence of configurations
starting from the initial configuration and such that two successive configu-
rations respect the instructions. The halting problem is: given a 2-counter
Minsky machine, is there a finite computation that halts the machine ?

Theorem 3.14 (Minsky). The halting problem of 2-counter Minsky ma-
chines is undecidable.

Proof of Proposition 3.13. Given a 2-counter Minsky machine M of length
n, consider the suffix rewriting graph GM of the following recognizable trace
rewriting system:

• Σ := {⊥a,⊥b, a, b, 1, . . . , n}

• the independence relation I on Σ is given by: aIb, ⊥aI⊥b

12

• for each k ∈ {1, . . . , n− 1} the rewriting rules are:

– k
R
−→ cj (j ∈ {1, . . . , n}, c ∈ {a, b}) if the k-th instruction is

Incr(c, j)

– ck
R
−→ j

and

⊥ck
R
−→ ⊥cl (j, l ∈ {1, . . . , n}, c ∈ {a, b}) if the k-th instruction is

Decr(c, j, l)

– [⊥a⊥b1]([ε]
i
−→ [ε])

– [n]([ε]
f
−→ [ε])

The initial configuration is encoded by [⊥a⊥b1]. Final configurations are
encoded by [⊥a⊥ba

∗b∗n]. A configuration (k, c1, c2) accessible from [⊥a⊥b1]

is encoded by the trace [⊥a⊥b

c1︷ ︸︸ ︷
a . . . a

c2︷ ︸︸ ︷
b . . . b k].

The machine M halts if and only if GM satisfies: ∃x∃y(x
i
−→ x ∧ y

f
−→

y ∧ x
∗
−→ y).

4 Concurrent unfolding of a concurrent automaton

In this section, we consider concurrent automata, that were first introduced
in [13] as asynchronous transition systems, and we prove that the FO[Reach]
theory of their concurrent unfoldings is decidable. Indeed, we will show that
the concurrent unfolding of a concurrent automaton, with the reachability
relation is a RTL graph.

Let (Σ,D) be a dependence alphabet and I = Σ2 \D.

4.1 Concurrent automata

Definition 4.1. An Σ-automaton A = (G, i, F) is D-concurrent when

• G is deterministic

• ((a, b) ∈ I and p
ab
−→
A

q) =⇒ p
ba
−→
A

q.

Every automaton can be seen as a concurrent automaton relatively to
the total dependence relation on its edge label set.

13

b

a a

b

a

b b

a
· · ·

[ab]∗.[a2] [ab]∗.[a] [ab]∗.[b] [ab]∗.[b2]
[ab]∗

D = {(a, a), (b, b)}

· · ·

Figure 4: Res([(ab)∗],Σ) (Example 4.2)

Example 4.2. Let L ⊆M(Σ,D) be a trace language. The residual automa-
ton of L by Σ is the D-concurrent Σ-automaton Res(L,Σ) defined by:

• the Σ-graph {[u]−1L
a
−→ [ua]−1L | u ∈ Σ∗, a ∈ Σ}

• the initial state L

• final states [u]−1L such that [ε] ∈ [u]−1L,

is a D-concurrent Σ-automaton that recognises ∪L (see Figure 4).

Example 4.3. Let L ⊆ M(Σ,D) be a trace language. The unfolding au-
tomaton U(L,Σ) of L by Σ defined by

• the Cayley graph of M(Σ,D): {[u]
a
−→ [ua] | u ∈ Σ∗, a ∈ Σ}

• the initial state [ε]

• final states t ∈ L

is a D-concurrent Σ-automaton that recognises ∪L.

By combining Proposition 2.7 and Example 4.2, we obtain the following
characterization of recognizable trace languages:

Proposition 4.4. A trace language L is recognizable if and only if there
exists a finite D-concurrent Σ-automaton A such that ∪L = L(A).

4.2 The concurrent unfolding of a concurrent automaton

Definition 4.5. The D-unfolding UnfD(A) of a finite D-concurrent Σ-
automaton A is the D-concurrent Σ ∪̇ {f}-graph defined by:

UnfD(A) = {[u]
a
−→ [ua] | u ∈ Σ∗, a ∈ Σ, i

ua
−→
A
} ∪ {[u]

f
−→ [u] | u ∈ L(A)}.

14

In the following example, we introduce the infinite grid tree as the con-
current unfolding of a finite concurrent automaton.

Example 4.6. Let Σ = {a, b, c} and suppose aIb. Consider the graph

G = {p
a,b,c
−−−→ p}. The D-unfolding of A = (G, p,∅) (Figure 5), is the infinite

grid (on {a, b}) tree (see Section 5) and has a decidable FO[Reach] theory
by the theorem below.

Before stating the main result of this section, recall that the unfolding
of a finite graph is a regular tree whose monadic second-order theory is de-
cidable (since unfolding preserves monadic second-order decidability). Here,
we consider a notion of concurrent unfolding and we apply this graph trans-
formation to a wider class than the class of finite graphs.

Theorem 4.7. If A is a finite D-concurrent automaton, then the FO[Reach]
theory of UnfD(A) is decidable.

We do not know if, in general, the D-unfolding preserves FO[Reach]
decidability.

Proof of Theorem 4.7. Consider the Σ ∪̇ {∗}-automaton

UnfD(A)∗ := UnfD(A) ∪ {[u]
∗
−→ [uv] | u, v ∈ Σ∗, i

uv
−→
A
}

It is the suffix rewriting graph of the following recognizable trace rewriting
system:




[L(G, i,Qa)]([ε]
a
−→ [a]) a ∈ Σ and Qa = {q ∈ Q | q

a
−→
A
}

[L(G, i, F)]([ε]
f
−→ [ε])

[L(G, i, q)]([ε]
∗
−→ [L(G, q,Q)]) q ∈ Q.

Remark 4.8. Given a Σ-graph G, the FO theory of the graph G ∪ {p
L
−→ q |

p
u
−→ q, [u] ∈ L,L ∈ Rec(M(Σ,D))} is refered to as the first-order theory with

recognizable reachability predicates (FO[Rec]) of G. We can strengthen the
last theorem and show that: if A is a finite D-concurrent automaton, then
UnfD(A) has a decidable FO[Rec] theory. Indeed, observe that each sentence

in FO[Rec] logic contains a finite number of atomic formula x
L1−→ y,. . . ,

x
Ln−−→ y (n > 1). Then UnfD(A)∪ {p

Lj
−→ q | p

u
−→ q, [u] ∈ Lj , j ∈ {1, . . . , n}}

is the suffix rewriting graph of the following RTL:

15

c

c

c

c

· · ·

· · ·

a a

aa

a a

b b b

bbb

a a

aa

a a

b b b

bbb

a a

aa

a a

b b

bbb

...

.

.

.

.

.

.

· · ·

· · ·
· · ·

b

Figure 5: The infinite grid tree





[L(G, i,Qa)]([ε]
a
−→ [a]) a ∈ Σ and Qa = {q ∈ Q | q

a
−→
A
}

[L(G, i, F)]([ε]
f
−→ [ε])

[L(G, i, q)]([ε]
Lj
−→ [L(G, q,Q)] ∩ Lj) q ∈ Q j ∈ {1, . . . , n}.

We have deduced the FO[Rec] theory decidability of the Cayley graph
of a trace monoid from the FO decidability of RTL graphs. The following
remark shows the inverse reduction.

Remark 4.9. Lastly, note that any suffix rewriting graph of a recognizable
trace rewriting system (with recognizable contexts) on some trace monoid
M(Σ,D) is a FO[Rec] interpretation of the Cayley graph of this trace monoid.
Indeed, observe that the neutral element is FO-definable: neutral(x) =
∀t

∧
a∈Σ ¬(t

a
−→ x). Then for each rule of the form U · (V −→ W) consider

the formula: φ(x, y) = ∃i∃z(neutral(i) ∧ i
U
−→ z ∧ z

V
−→ x ∧ z

W
−→ y).

4.3 Regular trace event structure

In [11], Madhusudan prove that the FO theory of a regular trace event struc-
ture is decidable. For this, he shows that the vertex set and the relations
of such a graph can be encoded by a recognizable trace language on a ju-
dicious dependence alphabet. Note that, due to the level-regular contexts,

16

this technique does not allow to prove that the FO theory of RTL graphs is
decidable.

A trace t = [a1 · · · an] ∈M(Σ,D) is prime if the set {1, . . . , n}, partially
ordered by the relation E defined by iEj if and only if i < j and aiDaj , has
exactly one maximal element.

Let L ⊆ M(Σ,D) be a trace language. Denote by prime(L) the set of
prime traces in L.

Definition 4.10. The event structure defined by L, ESL, is the {6, ♯, (λa)a∈Σ}-
graph whose vertex set is prime(L) defined by

• t
6
−→ t′ : t ⊑ t′

• t
♯
−→ t′ : ∀t′′ ∈ prime(L)(t 6⊑ t′′ ∨ t′ 6⊑ t′′))}

• t
λa−→ t : the maximal element of t is a.

Theorem 4.11 ([11]). If L ∈ Rec(M(Σ,D)), then ESL has a decidable FO
theory.

Proof. A trace t ∈ VUnfD(Res(L,Σ))∗ is prime if and only if t is not successor of
two distinct vertices of UnfD(Res(L,Σ))∗. The event structure ESL can be
obtained by a FO interpretation of UnfD(Res(L,Σ))∗ that has a decidable
FO theory.

5 Graph tree

In this section, we consider ground term rewriting graphs. These graphs
have a decidable FO[Reach] theory [6]. We define a notion of graph tree and
we prove that if a graph tree is a ground term rewriting graph (GTR graph),
then it is finitely decomposable by size. A direct consequence is that the
infinite grid tree, defined above as the concurrent unfolding of a concurrent
automaton (Exemple 5), is not a GTR graph, although it has a FO[Reach]
theory decidable.

5.1 Ground Term Rewriting graphs (GTR graphs)

A position is an element of N∗, the set of finite words over N. Denote by ⊑
the prefix ordering over N

∗. Let F be a ranked alphabet (each symbol in F
has an arity in N). A term t on F is a partial function t : N∗ −→ F whose
domain, Dom(t), has the following properties :

17

t

u

t↓ u

b

xx

Figure 6: The context of t at position u

• Dom(t) 6= ∅

• Dom(t) is prefix closed

• ∀u ∈ Dom(t), if the arity of t(u) is n (n > 0), then {j | uj ∈ Dom(t)} =
{1, . . . , n}.

The size |t| of a term t is the number of its nodes. The subterm of t at
position u, denoted t↓ u, is the term on F defined by :

• Dom(t↓ u) = {v ∈ N
∗ | uv ∈ Dom(t)}

• ∀v ∈ Dom(t↓ u), (t↓ u)(v) = t(uv).

If u ∈ Dom(t) and s is a term, then t[u ← s], the term obtained from t by
replacing the subterm t↓ u by s, is defined by :

t[u← s](v) =

{
s(w) if v = uw and w ∈ Dom(s)

t(v) if v ∈ Dom(t) and u 6⊑ v

If t is a term on F and u ∈ Dom(t), then the context of t at the position u
is the term t[u← x] on F ∪̇ {x}, where x is a constant i.e the arity of x is
0 (see Figure 6).

A context C on F is a term on F ∪̇ {x}, x constant, such that there
exists a unique position uC ∈ Dom(C) for which C(uC) = x. If t is a term
on F , then the term C[t] on F is defined by C[t] := C[uC ← t]. The size |C|
of a context C on F is the number of its nodes minus 1 (see Figure 7).

A ground term rewriting system R is a 4-tuple R = (F,Σ, R, i) where :

• F is a ranked alphabet

• Σ is a label alphabet

18

C

uC
b xx

C[s]

uC

s

Figure 7: Context

• R :=
⋃

a∈Σ

Ra, where for each a ∈ Σ, Ra is a finite set of rules of the

form s
a
−→ s′ with s and s′ distinct terms on F

• i is an initial F -term.

We write :

• t
a
−→
R

t′ if there exists a position p ∈ Dom(t) and a rule s
a
−→ s′ ∈ Ra

such that t↓ p = s and t′ = t[p← s′]

• t −→
R

t′ when there exists a ∈ Σ such that t
a
−→
R

t′

•
∗
−→
R

for the reflexive and transitive closure under composition of −→
R

.

The configuration graph GrR of R is the Σ-graph defined by

GrR := {t
a
−→
R

t′ | i
∗
−→
R

t, a ∈ Σ}

A graph is called Ground Term Rewriting graph (GTR graph) if it is iso-
morphic to the configuration graph of a ground term rewriting system.

Remark 5.1. GTR graphs have no loop since each rule in the rewriting system
has distinct left hand side and right hand side.

Example 5.2. The infinite grid is a GTR graph (see Figure 8).

In [6], Dauchet and Tison prove that a GTR graph with the reachability
relation is tree-automatic. Thus:

Theorem 5.3 ([6]). GTR graphs have a decidable FO[Reach] theory.

19

1

11

1 1

1

2

2

2

f

a b

2

1

...
...

...

· · ·

· · ·

· · ·

g

g

f

g

b

f

b g

g

f

b

a

a

g

f

g

g

b

f

g

g

b

a

f

ga

b

f

g

b

g

a

g

g

f

g

g

a
b

a
a

g

g
b

b

R

2
2

2

a

a

g

Figure 8: The infinite grid is a GTR graph

5.2 Finite decomposition of a graph

Let us start by recalling the definition of the frontier of a subgraph.

Definition 5.4. Let G be a graph and H ⊆ G a subgraph of G. The frontier
of H (in G) is Fr(H) = VH ∩ VG−H .

The frontier of H is the set of H-vertices that are incident to an edge in
G−H.

Let GrR be a GTR graph. For each n > 0,

Gn := {s
e
−→ t ∈ GrR | |s| < n or |t| < n}

According to Definition 5.4, the frontier of GrR−Gn (see Figure 9) is
Fr(GrR − Gn) = VGrR−Gn ∩ VGn . And, the frontier of K, a connected
component of GrR −Gn, is Fr(K) = Fr(GrR −Gn)∩ VK . The frontier of K
are the K-vertices incident to an edge in Gn.

The graph GrR is finitely decomposable by size if

dec := {(K,Fr(K)) | K connected component of GrR−Gn, n > 0}

has finite index, for the isomorphism relation.

20

n

Gn

GrR −Gnb b

b
b

b
bb

GrR

Figure 9: Frontier of GrR−Gn

...
...

...
...

...

...

c

c

c

c

...
...

...

...

· · ·
a a

· · ·
a a

· · ·
a

· · ·
a a

· · ·
a a

000 001 002

a

0 1 2

00 01 02

011 012

11 1210

010

Figure 10: The semi-line tree

Theorem 5.5 ([4]). If a countable graph is finitely decomposable by size,
then it is at the first level of the pushdown hierarchy. In particular, it has a
decidable MSO theory.

5.3 Graph tree and finite decomposition

Definition 5.6. Let G be a Σ-graph and p0 ∈ VG. Given a new symbol
c /∈ Σ, the G-tree from p0 is the Σ ∪̇ {c}-graph, Tree(G, p0), defined by

Tree(G, p0) := {up
a
−→ uq | u ∈ V ∗

G, p
a
−→
G

q} ∪ {u
c
−→ up0 | u ∈ V ∗

G}

Example 5.7. See Figure 10 for the semi-line tree.

21

Remark 5.8. The graph Tree(G, p0) is c-deterministic:

(v
c

−−−−−−→
Tree(G,p0)

v1 and v
c

−−−−−−→
Tree(G,p0)

v2) =⇒ v1 = v2

Remark 5.9. The graph Tree(G, p0) is a tree if and only if G is a tree.

Remark 5.10. Let (Σ,D) be a dependence alphabet, G a finite D-concurrent
Σ-graph and p0 ∈ VG. The Σ ∪̇ {c}-graph defined by G∪ {p

c
−→ p0 | p ∈ VG}

is Dc-concurrent, with Dc = D ∪ (Σ ∪ {c}) × (Σ ∪ {c}). Its Dc-unfolding
from p0 is Tree(UnfD(G, p0), p0).

Theorem 5.11. If Tree(G, p0) is a GTR graph, then Tree(G, p0) is finitely
decomposable by size.

The MSO theory of the infinite grid is undecidable. The same holds for
the infinite grid tree. By combining Theorem 5.11 and Theorem 5.5, we
deduce the corollary below.

Corollary 5.12. The infinite grid tree is not a GTR graph.

5.4 Proof of Theorem 5.11

Lemma 5.13. Let G be a Σ-graph and p0 ∈ VG. If there exists a ground
term rewriting system R = (F,Σ, R, i) such that Tree(G, p0) is isomorphic
to GrR, then for every term t ∈ VGrR , there exists a smallest position ut (for
the prefix ordering ⊑) at which t is incident to a rewriting in GrR.

Proof of Lemma 5.13. It suffices to prove that if there exist two incompara-
ble positions u′ and u′′ at which t is incident to rewritings, then there exists
a position v, v ⊑ u′, v ⊑ u′′ at which t is incident to a rewriting.

Denote by e′ (respectively e′′) the label of the rewriting t is incident in
position u′ (respectively u′′). We are going to show that c /∈ {e′, e′′}. Since
u′ and u′′ are incomparable and because of Remark 5.1, there exists two
paths between two distinct vertices of GrR, labelled by e′e′′ and e′′e′, each
of them with no loop (see Figure 11). This is possible in Tree(G, p0) only if
c /∈ {e′, e′′}. Indeed,

• {e′, e′′} ⊆ {c} is impossible because of Remark 5.8

• e′ = c and e′′ ∈ Σ (or the converse e′′ = c and e′ ∈ Σ) is impossible
because c and e′′ do not commute in Tree(G, p0).

22

u′ u′′

c

e′′

e′

t

t′ t′′

•

e′ e′′

e′′ e′

t′
e′
←−
u′

t
e′′
−→
u′′

t′′

t

t′ t′′

•

e′ e′′

e′′ e′

t′
e′
−→
u′

t
e′′
←−
u′′

t′′

t

t′ t′′

•

e′ e′′

e′′ e′

t′
e′
−→
u′

t
e′′
−→
u′′

t′′

Figure 11: Paths in GrR between two distinct vertices, labelled by e′e′′ and
e′′e′

23

But there exists a position v at which the term t is incident to a rewriting
labelled by c. Due to the precedent point, the position v must be comparable
to positions u′ and u′′. Since u′ and u′′ are not comparable, we deduce that
v ⊑ u′ and v ⊑ u′′.

Proof of Theorem 5.11. Let R = (F,Σ, R, i) be a ground term rewriting
system such that Tree(G, p0) is isomorphic to GrR. We have to show that

dec := {(K,VK ∩ VGn) | K connected component of GrR−Gn, n > 0}

has finite index. Let δ := max{||d| − |g|| | g
e
−→ d ∈ R} and M :=

max{|g|, |d| | g
e
−→ d ∈ R}. We are going to show that for each connected

component K in dec, there exists a position uK and a context CK such that

• for every term t ∈ VK , uK ∈ Dom(t) and CK is the context of t at the
position uK (t = CK [t↓ uK])

• for every term t ∈ FrGrR(K), |t↓ uK | < M + δ.

Then the finite subset of the (finite) set of terms whose size is at most M+δ,
obtained from FrGrR(K) by removing the context CK , is characteristic of

the isomorphy type of (K,FrGrR(K)). Indeed, for K ∈ dec, let K̃ := {s |

CK [s] ∈ FrGrR(K)}. If K̃ = K̃ ′, then (K,FrGrR(K)) and (K ′,FrGrR(K
′))

are isomorphic via CK [s] 7→ CK ′[s].

Let K ∈ dec and n > 0 such that K is a connected component of
GrR−Gn. Remark that for every t ∈ FrGrR(K), n 6 |t| < n + δ. In
particular, FrGrR(K) is finite.
Let mK := min{|t| | t ∈ VK}. Thus n 6 mK . Consider tK ∈ VK such that
|tK | = mK . Since tK is not an isolated vertex in K, there exists a position u
at which tK is incident to a rewriting in K. Let uK be the smallest prefix of
u such that |tK↓ uK | 6 M . The term tK can be written tK = CK [tK↓ uK],
with CK a context.

We are going to prove that each term t ∈ VK is defined at position uK
and the context of t at uK is CK . It is sufficient to prove the following claim.

Claim 1. Let t ∈ VK . The position uK is prefix of every position at which
the term t is incident to a rewriting in K.

Let t ∈ FrGrR(K). Recall that n 6 |t| < n+δ. Since |t↓ uK | = |t|−|CK |,
we deduce |t↓ uK | < n+δ−|CK | 6 mK+δ−|CK |. But we have mK−|CK | =
|tK↓ uK | 6 M . It follows that |t↓ uK | < M + δ.

24

n
mK

Gn
t

K

b
tK

t ∈ VK

CK

uK

v

w

b ut

Figure 12: Proof of Claim 1

Proof of Claim 1. First, let us show that the claim holds for the term tK .
Recall that there exists a position u at which tK is incident to a rewriting in
K and uK is the smallest prefix of u such that |tK↓ uK | 6 M . The smallest
position, utK , at which the term tK is incident to a rewriting (Lemma 5.13)
is greater than uK . Indeed, utK ⊑ u and |tK↓ utK | 6 M . Therefore, every
position v at which tK is incident to a rewriting in K is such that: uK ⊑
utK ⊑ v.

Then, let t ∈ VK a term such that

• t is defined at position uK

• the context of t at uK is CK

• the position uK is prefix of every position at which t is incident to a
rewriting in K

Consider a term t′ and a position u at which the terms t and t′ are incident
to a same rewriting in K. Let us show that uK is prefix of every position at
which t′ is incident to a rewriting in K. The smallest position, ut′ , at which
the term t′ is incident to a rewriting (Lemma 5.13) is not smaller than uK .
Indeed, we have |t′↓ ut′ | 6 M and for every position v smaller than uK , we
have |t′↓ v| > |t′↓ uK | > |tK↓ uK |. Thus, for the same reason as above for

25

the term tK , every position v at which t′ is incident to a rewriting in K is
greater than uK .

Lastly, since K is connected, the claim is proved.

6 Conclusion

We have shown that a RTL graph is word-automatic and thus its first-order
theory is decidable. We have also shown that such a graph does not have a
decidable FO[Reach] theory. Furthermore, we have shown that the concur-
rent unfolding of a concurrent automaton with the reachability relation is a
RTL graph and therefore its FO[Reach] theory is decidable. Lastly, we have
shown that the class of concurrent unfoldings of finite concurrent automata
is not included in the class of GTR graphs since the infinite grid tree is not
a GTR graph.

Summing up, we have extended the first level of the pushdown hierar-
chy that consists of suffix rewriting graphs of recognizable word rewriting
systems, to RTL graphs (Figure 13). Graphs at the first level of the push-
down hierarchy are the monadic interpretations of regular trees, that are
concurrent unfoldings of finite concurrent automata (UFCA) for a trivial
dependence relation. A RTL graph is FO[Rec] interpretation of the Cayley
graph of the underlying trace monoid (Remark 4.9), that is the concurrent
unfolding of a finite concurrent automaton. But we do not know whether
reciprocally an FO[Rec] interpretation of a concurrent unfolding of a finite
concurrent automaton is a RTL graph. We do not either know whether
the concurrent unfolding transformation preserves FO[Reach] decidability.
Another interesting problem would be to extend the second level of the
pushdown hierarchy.

26

G
ra

ph
s

W
or

d−
au

to
m

at
ic

(finite graphs)

Trees1 Graphs1

Graphs0

G
ra
p
h
s 1

T
re
e-
au

to
m
at
ic⊆

∈

∈

Interpretation

Infinite grid

Infinite grid tree

graph tree

automata

concurrent

Unfolding
⊆

concurrent
automata

Finite
⊇

concur
rent

g
ra
p
h
s

unfold
ing

Unfolding

Graphs

∗

∗

R
T
L

GTR

Figure 13: Pushdown hierarchy level 1 and its extension by RTL graphs

References

[1] A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in
terms of logic and higher-order pushdown automata. In FST TCS 2003:
Foundations of Software Technology and Theoretical Computer Science,
23rd Conference, Mumbai, India, December 15-17, 2003, Proceedings,
pages 112–123, 2003.

[2] D. Caucal. On the regular structure of prefix rewriting. In CAAP ’90,
15th Colloquium on Trees in Algebra and Programming, Copenhagen,
Denmark, May 15-18, 1990, Proceedings, pages 87–102, 1990.

[3] D. Caucal. On infinite terms having a decidable monadic theory. In
Mathematical Foundations of Computer Science 2002, 27th Interna-
tional Symposium, MFCS 2002, Warsaw, Poland, August 26-30, 2002,
Proceedings, pages 165–176, 2002.

[4] D. Caucal. Deterministic graph grammars. In Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas]., pages 169–
250, 2008.

[5] T. Colcombet and C. Löding. Transforming structures by set interpre-
tations. Logical Methods in Computer Science, 3(2), 2007.

[6] M. Dauchet and S. Tison. The theory of ground rewrite systems is
decidable. In Proceedings of the Fifth Annual Symposium on Logic in
Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June
4-7, 1990, pages 242–248, 1990.

27

[7] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Under-
graduate Texts in Mathematics. Springer New York, 1996.

[8] B. Hodgson. On direct products of automaton decidable theories. The-
oretical Computer Science, 19(3):331 – 335, 1982.

[9] K. Lodaya. Petri nets, event structures and algebra. In Formal Mod-
els, Languages and Applications [this volume commemorates the 75th
birthday of Prof. Rani Siromoney]., pages 246–259, 2007.

[10] C. Löding. Infinite Graphs Generated by Tree Rewriting. PhD thesis,
RWTH Aachen, 2003.

[11] P. Madhusudan. Model-checking trace event structures. In 18th IEEE
Symposium on Logic in Computer Science (LICS 2003), 22-25 June
2003, Ottawa, Canada, Proceedings, pages 371–380, 2003.

[12] S. Schulz. First-order logic with reachability predicates on infinite sys-
tems. In IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2010, December 15-
18, 2010, Chennai, India, pages 493–504, 2010.

[13] M. Shields. Asynchronous Transition Systems, pages 183–189. Springer
London, London, 1997.

[14] G. Winskel and M. Nielsen. Handbook of logic in computer science (vol.
4). chapter Models for Concurrency, pages 1–148. Oxford University
Press, Oxford, UK, 1995.

[15] S. Wöhrle and W. Thomas. Model checking synchronized products of
infinite transition systems. In 19th IEEE Symposium on Logic in Com-
puter Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceed-
ings, pages 2–11, 2004.

28

