J. Tyson and B. Novak, Temporal Organization of the Cell Cycle, Current Biology, vol.18, issue.17, pp.759-68, 2008.
DOI : 10.1016/j.cub.2008.07.001

G. Kops, B. Weaver, and D. Cleveland, On the road to cancer: aneuploidy and the mitotic checkpoint, Nature Reviews Cancer, vol.143, issue.10, pp.773-85, 2005.
DOI : 10.1083/jcb.143.2.283

S. Lim and P. Kaldis, Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Dev (Cambridge, England), pp.3079-93, 2013.

M. Malumbres, E. Harlow, T. Hunt, T. Hunter, J. Lahti et al., Cyclin-dependent kinases: a family portrait, Nature Cell Biology, vol.11, issue.11, pp.1275-1281, 2009.
DOI : 10.1093/jnci/djm011

M. Arellano and S. Moreno, Regulation of CDK/cyclin complexes during the cell cycle, The International Journal of Biochemistry & Cell Biology, vol.29, issue.4, pp.559-73, 1997.
DOI : 10.1016/S1357-2725(96)00178-1

R. King, P. Jackson, and M. Kirschner, Mitosis in transition, Cell, vol.79, issue.4, pp.563-71, 1994.
DOI : 10.1016/0092-8674(94)90542-8

D. Morgan, Principles of CDK regulation, Nature, vol.374, issue.6518, pp.131-135, 1995.
DOI : 10.1038/374131a0

D. Morgan, CYCLIN-DEPENDENT KINASES: Engines, Clocks, and Microprocessors, Annual Review of Cell and Developmental Biology, vol.13, issue.1, pp.261-91, 1997.
DOI : 10.1146/annurev.cellbio.13.1.261

L. Johnson and R. Lewis, Structural Basis for Control by Phosphorylation, Chemical Reviews, vol.101, issue.8, pp.2209-2251, 2001.
DOI : 10.1021/cr000225s

P. Blume-jensen and T. Hunter, Oncogenic kinase signalling, Nature, vol.411, issue.6835, pp.355-65, 2001.
DOI : 10.1038/35077225

J. Ubersax, J. Ferrell, and . Jr, Mechanisms of specificity in protein phosphorylation, Nature Reviews Molecular Cell Biology, vol.298, issue.7, pp.530-571, 2007.
DOI : 10.1128/MCB.16.11.6486

J. Olsen, B. Blagoev, F. Gnad, B. Macek, C. Kumar et al., Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks, Cell, vol.127, issue.3, pp.635-683, 2006.
DOI : 10.1016/j.cell.2006.09.026

URL : https://doi.org/10.1016/j.cell.2006.09.026

G. Manning, D. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The Protein Kinase Complement of the Human Genome, Science, vol.298, issue.5600, pp.1912-1946, 2002.
DOI : 10.1126/science.1075762

D. Hanahan and R. Weinberg, The Hallmarks of Cancer, Cell, vol.100, issue.1, pp.57-70, 2000.
DOI : 10.1016/S0092-8674(00)81683-9

L. Johnson, Protein kinase inhibitors: contributions from structure to clinical compounds, Quarterly Reviews of Biophysics, vol.1784, issue.01, pp.1-40, 2009.
DOI : 10.1016/j.tips.2008.02.005

M. Noble, J. Endicott, and L. Johnson, Protein Kinase Inhibitors: Insights into Drug Design from Structure, Science, vol.303, issue.5665, pp.1800-1805, 2004.
DOI : 10.1126/science.1095920

URL : http://users.umassmed.edu/balaji.bhyravbhatla/papers/prot-kinase-science2004.pdf

D. Krause and R. Van-etten, Tyrosine Kinases as Targets for Cancer Therapy, New England Journal of Medicine, vol.353, issue.2, pp.172-87, 2005.
DOI : 10.1056/NEJMra044389

H. Daub, J. Olsen, M. Bairlein, F. Gnad, F. Oppermann et al., Kinase-Selective Enrichment Enables Quantitative Phosphoproteomics of the Kinome across the Cell Cycle, Molecular Cell, vol.31, issue.3, pp.438-486, 2008.
DOI : 10.1016/j.molcel.2008.07.007

URL : https://doi.org/10.1016/j.molcel.2008.07.007

R. Malik, R. Lenobel, A. Santamaria, A. Ries, E. Nigg et al., Quantitative Analysis of the Human Spindle Phosphoproteome at Distinct Mitotic Stages, Journal of Proteome Research, vol.8, issue.10, pp.4553-63, 2009.
DOI : 10.1021/pr9003773

N. Dephoure, C. Zhou, J. Villen, S. Beausoleil, C. Bakalarski et al., A quantitative atlas of mitotic phosphorylation, Proceedings of the National Academy of Sciences, vol.34, issue.suppl_1, pp.10762-10769, 2008.
DOI : 10.1093/nar/gkj141

URL : http://www.pnas.org/content/105/31/10762.full.pdf

M. Glotzer, A. Murray, and M. Kirschner, Cyclin is degraded by the ubiquitin pathway, Nature, vol.349, issue.6305, pp.132-140, 1991.
DOI : 10.1038/349132a0

B. Dynlacht, Regulation of transcription by proteins that control the cell cycle, Nature, vol.16, issue.6647, pp.149-52, 1997.
DOI : 10.1093/emboj/16.2.332

H. Chen, Y. Wang, and M. Fann, Identification and Characterization of the CDK12/Cyclin L1 Complex Involved in Alternative Splicing Regulation, Molecular and Cellular Biology, vol.26, issue.7, pp.2736-2781, 2006.
DOI : 10.1128/MCB.26.7.2736-2745.2006

J. Trembley, P. Loyer, D. Hu, T. Li, J. Grenet et al., Cyclin Dependent Kinase 11 in RNA Transcription and Splicing, Prog Nucleic Acid Res Mol Biol, vol.77, pp.263-88, 2004.
DOI : 10.1016/S0079-6603(04)77007-5

S. Pyronnet and N. Sonenberg, Cell-cycle-dependent translational control, Current Opinion in Genetics & Development, vol.11, issue.1, pp.13-21, 2001.
DOI : 10.1016/S0959-437X(00)00150-7

X. Bu, D. Haas, and C. Hagedorn, Novel phosphorylation sites of eukaryotic initiation factor-4F and evidence that phosphorylation stabilizes interactions of the p25 and p220 subunits, J Biol Chem, vol.268, issue.7, pp.4975-4983, 1993.

S. Pyronnet, H. Imataka, A. Gingras, R. Fukunaga, T. Hunter et al., Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E, The EMBO Journal, vol.18, issue.1, pp.270-279, 1999.
DOI : 10.1093/emboj/18.1.270

URL : http://embojnl.embopress.org/content/embojnl/18/1/270.full.pdf

B. Raught, F. Peiretti, A. Gingras, M. Livingstone, D. Shahbazian et al., Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases, The EMBO Journal, vol.14, issue.8, pp.1761-1770, 2004.
DOI : 10.1101/gad.835000

URL : http://emboj.embopress.org/content/embojnl/23/8/1761.full.pdf

T. Duchaine, I. Hemraj, L. Furic, A. Deitinghoff, M. Kiebler et al., Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles, J Cell Sci, vol.115, pp.3285-95, 2002.

S. Tang, D. Meulemans, L. Vazquez, N. Colaco, and E. Schuman, A Role for a Rat Homolog of Staufen in the Transport of RNA to Neuronal Dendrites, Neuron, vol.32, issue.3, pp.463-75, 2001.
DOI : 10.1016/S0896-6273(01)00493-7

M. Maher-laporte, F. Berthiaume, M. Moreau, L. Julien, G. Lapointe et al., Molecular Composition of Staufen2-Containing Ribonucleoproteins in Embryonic Rat Brain, PLoS ONE, vol.345, issue.6, p.11350, 2010.
DOI : 10.1371/journal.pone.0011350.s001

URL : https://doi.org/10.1371/journal.pone.0011350

M. Mallardo, A. Deitinghoff, J. Muller, B. Goetze, P. Macchi et al., Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain, Proceedings of the National Academy of Sciences, vol.22, issue.23, pp.2100-2105, 2003.
DOI : 10.1038/336674a0

URL : http://www.pnas.org/content/100/4/2100.full.pdf

R. Allison, K. Czaplinski, A. Git, E. Adegbenro, F. Stennard et al., Two distinct Staufen isoforms in Xenopus are vegetally localized during oogenesis, RNA, vol.10, issue.11, pp.1751-63, 2004.
DOI : 10.1261/rna.7450204

B. Goetze, F. Tuebing, Y. Xie, M. Dorostkar, S. Thomas et al., The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis, The Journal of Cell Biology, vol.23, issue.2, pp.221-252, 2006.
DOI : 10.1016/j.neuron.2004.09.022

URL : http://jcb.rupress.org/content/jcb/172/2/221.full.pdf

J. Jeong, Y. Nam, S. Kim, E. Kim, J. Jeong et al., The transport of Staufen2-containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway, Journal of Neurochemistry, vol.4, issue.6, pp.2073-84, 2007.
DOI : 10.1038/83976

Y. Nam, H. Cheon, Y. Choi, S. Kim, E. Shin et al., Role of mitogen-activated protein kinase (MAPK) docking sites on Staufen2 protein in dendritic mRNA transport, Biochemical and Biophysical Research Communications, vol.372, issue.4, pp.525-534, 2008.
DOI : 10.1016/j.bbrc.2008.05.047

S. Ramasamy, H. Wang, H. Quach, and K. Sampath, Zebrafish Staufen1 and Staufen2 are required for the survival and migration of primordial germ cells, Developmental Biology, vol.292, issue.2, pp.393-406, 2006.
DOI : 10.1016/j.ydbio.2006.01.014

URL : https://doi.org/10.1016/j.ydbio.2006.01.014

M. Thomas, M. Tosar, L. Loschi, M. Pasquini, J. Correale et al., Staufen Recruitment into Stress Granules Does Not Affect Early mRNA Transport in Oligodendrocytes, Molecular Biology of the Cell, vol.16, issue.1, pp.405-425, 2005.
DOI : 10.1523/JNEUROSCI.23-16-06627.2003

URL : http://www.molbiolcell.org/content/16/1/405.full.pdf

M. Sanchez-carbente and L. Desgroseillers, Chapter 3 Understanding the importance of mRNA transport in memory, Prog Brain Res, vol.169, pp.41-58, 2008.
DOI : 10.1016/S0079-6123(07)00003-9

G. Lebeau, L. Miller, M. Tartas, R. Mcadam, I. Laplante et al., Staufen 2 regulates mGluR long-term depression and Map1b mRNA distribution in hippocampal neurons, Learning & Memory, vol.18, issue.5, pp.314-340, 2011.
DOI : 10.1101/lm.2100611

URL : http://learnmem.cshlp.org/content/18/5/314.full.pdf

M. Mikl, G. Vendra, and M. Kiebler, Independent localization of MAP2, CaMKII?? and ??-actin RNAs in low copy numbers, EMBO reports, vol.23, issue.10, pp.1077-84, 2011.
DOI : 10.1038/nsmb.1514

URL : http://embor.embopress.org/content/embor/12/10/1077.full.pdf

T. Miki, Y. Kamikawa, S. Kurono, Y. Kaneko, J. Katahira et al., Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1, BMC Molecular Biology, vol.12, issue.1, p.48, 2011.
DOI : 10.1089/hyb.2009.0107

URL : https://bmcmolbiol.biomedcentral.com/track/pdf/10.1186/1471-2199-12-48?site=bmcmolbiol.biomedcentral.com

E. Park, M. Gleghorn, and L. Maquat, Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity, Proceedings of the National Academy of Sciences, vol.40, issue.14, pp.405-417, 2013.
DOI : 10.1093/nar/gks344

URL : http://www.pnas.org/content/110/2/405.full.pdf

O. Leary, D. Sharif, O. Anderson, P. Tu, B. Welch et al., Identification of Small Molecule and Genetic Modulators of AON-Induced Dystrophin Exon Skipping by High-Throughput Screening, PLoS ONE, vol.4, issue.12, p.8348, 2009.
DOI : 10.1371/journal.pone.0008348.s003

M. Maher-laporte and L. Desgroseillers, Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains, BMB Reports, vol.43, issue.5, pp.344-352, 2010.
DOI : 10.1128/MCB.20.15.5592-5601.2000

URL : http://www.ndsl.kr/soc_img/society/ksbmb/E1MBB7/2010/v43n5/E1MBB7_2010_v43n5_344.pdf

L. Furic, M. Maher-laporte, and L. Desgroseillers, A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes, RNA, vol.14, issue.2, pp.324-359, 2008.
DOI : 10.1261/rna.720308

URL : http://rnajournal.cshlp.org/content/14/2/324.full.pdf

J. Vessey, G. Amadei, S. Burns, M. Kiebler, D. Kaplan et al., An Asymmetrically Localized Staufen2-Dependent RNA Complex Regulates Maintenance of Mammalian Neural Stem Cells, Cell Stem Cell, vol.11, issue.4, pp.517-545, 2012.
DOI : 10.1016/j.stem.2012.06.010

URL : https://doi.org/10.1016/j.stem.2012.06.010

G. Kusek, M. Campbell, F. Doyle, S. Tenenbaum, M. Kiebler et al., Asymmetric Segregation of the Double-Stranded RNA Binding Protein Staufen2 during Mammalian Neural Stem Cell Divisions Promotes Lineage Progression, Cell Stem Cell, vol.11, issue.4, pp.505-521, 2012.
DOI : 10.1016/j.stem.2012.06.006

URL : https://doi.org/10.1016/j.stem.2012.06.006

C. Bilogan and M. Horb, Xenopus staufen2 is required for anterior endodermal organ formation, genesis, vol.25, issue.Suppl, pp.251-260, 2012.
DOI : 10.1146/annurev.cellbio.042308.113344

URL : http://onlinelibrary.wiley.com/doi/10.1002/dvg.22000/pdf

D. Cockburn, J. Charish, N. Tassew, J. Eubanks, R. Bremner et al., The double-stranded RNA-binding protein Staufen 2 regulates eye size, Molecular and Cellular Neuroscience, vol.51, issue.3-4, pp.3-4101, 2012.
DOI : 10.1016/j.mcn.2012.08.008

X. Zhang, V. Trepanier, R. Beaujois, W. Viranaicken, E. Drobetsky et al., The downregulation of the RNA-binding protein Staufen2 in response to DNA damage promotes apoptosis, Nucleic Acids Research, vol.42, issue.8, pp.3695-712, 2016.
DOI : 10.1385/NMM:6:2-3:127

J. Harper, Synchronization of cell populations in G1/S and G2/M phases of the cell cycle, Methods Mol Biol, vol.296, pp.157-66, 2005.

C. Martel, S. Dugre-brisson, K. Boulay, B. Breton, G. Lapointe et al., Multimerization of Staufen1 in live cells, RNA, vol.16, issue.3, pp.585-97, 2010.
DOI : 10.1261/rna.1664210

URL : http://rnajournal.cshlp.org/content/16/3/585.full.pdf

L. Vassilev, /M Phase Border by Reversible Inhibition of CDK1, Cell Cycle, vol.5, issue.22, pp.2555-2561, 2006.
DOI : 10.4161/cc.5.22.3463

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.5.22.3463?needAccess=true

K. Boulay, M. Ghram, W. Viranaicken, V. Trepanier, S. Mollet et al., Cell cycle-dependent regulation of the RNA-binding protein Staufen1, Nucleic Acids Research, vol.42, issue.12, pp.7867-83, 2014.
DOI : 10.1371/journal.pone.0035173

URL : https://academic.oup.com/nar/article-pdf/42/12/7867/3903334/gku506.pdf

P. Hornbeck, J. Kornhauser, S. Tkachev, B. Zhang, E. Skrzypek et al., PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse, Nucleic Acids Research, vol.24, issue.3, pp.261-70, 2012.
DOI : 10.1101/gad.1865810

P. Li, X. Yang, M. Wasser, Y. Cai, and W. Chia, Inscuteable and Staufen Mediate Asymmetric Localization and Segregation of prospero RNA during Drosophila Neuroblast Cell Divisions, Cell, vol.90, issue.3, pp.437-484, 1997.
DOI : 10.1016/S0092-8674(00)80504-8

URL : https://doi.org/10.1016/s0092-8674(00)80504-8

K. Suzuki, K. Sako, K. Akiyama, M. Isoda, C. Senoo et al., Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2, Scientific Reports, vol.5, issue.1, p.7929, 2015.
DOI : 10.1038/ncomms4667

M. Luo, T. Duchaine, and L. Desgroseillers, Molecular mapping of the determinants involved in human Staufen???ribosome association, Biochemical Journal, vol.365, issue.3, pp.817-841, 2002.
DOI : 10.1042/bj20020263

L. Wickham, T. Duchaine, M. Luo, I. Nabi, and L. Desgroseillers, Mammalian Staufen Is a Double-Stranded-RNA- and Tubulin-Binding Protein Which Localizes to the Rough Endoplasmic Reticulum, Molecular and Cellular Biology, vol.19, issue.3, pp.2220-2250, 1999.
DOI : 10.1128/MCB.19.3.2220

URL : http://mcb.asm.org/content/19/3/2220.full.pdf

M. Kiebler, I. Hemraj, P. Verkade, M. Kohrmann, P. Fortes et al., The Mammalian Staufen Protein Localizes to the Somatodendritic Domain of Cultured Hippocampal Neurons: Implications for Its Involvement in mRNA Transport, The Journal of Neuroscience, vol.19, issue.1, pp.288-97, 1999.
DOI : 10.1523/JNEUROSCI.19-01-00288.1999

Y. Cao, J. Du, D. Chen, Q. Wang, N. Zhang et al., RNA- binding protein Stau2 is important for spindle integrity and meiosis progression in mouse oocytes, Cell Cycle, vol.81, issue.8, pp.2608-2626, 2016.
DOI : 10.1080/15384101.2015.1100770

URL : http://www.tandfonline.com/doi/pdf/10.1080/15384101.2016.1208869?needAccess=true