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Abstract: Power output from photovoltaic (PV) systems in outdoor conditions is substantially 

influenced by climatic parameters such as solar irradiance and temperature. PV manufacturers 

always provide technical specifications in laboratory conditions but reliable relationship for the 

power output must be determined for accurate prediction under real operating conditions. For the 

present study, solar irradiance G, temperature T and electrical power output P data under real 

conditions are methodically and regularly inscribed in dataloggers. Hence, in this paper, we 

investigate rigorous and robust statistical methods for small sample such as Augmented Dickey-

Fuller and Engle Granger for stationary series to determine the estimate regression between variables 

P, G & T. A first regression of power output P time series variable on solar irradiance G time series 

has shown spurious results and thus spurious regression. The first differences of such time series are 

stationary and a regression is proposed whereas temperature variable is identified as not significant 

and where autocorrelation of residuals is suspected. Finally, the novelty of this paper is the Engle & 

Granger method that is used to provide a relationship between variables P and G in a difference level. 

A final relationship without suspicious heteroscedasticity has been determined. Our model is 

formulated on the basis of PV real conditions statistical approach and is more realistic than steady 

approach models.  
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1. Introduction  

Forecasting accurately photovoltaic (PV) power output is not only based on climatic conditions 

but large variation of the power output is also observed due to several factors such as solar irradiance, 

temperature, wind speed and humidity. Actually PV nominal specifications such as power output or 

energy yield of recent modules are evaluated by manufacturers under standard conditions (STC) by a 

flashing technology and these nominal specifications are hand out to customers. Under real outdoor 

conditions theses specifications are not always valid. Meanwhile, an economical solar simulator 

based on micro-channel solar cell thermal (MCSCT) [1–3] has been designed and tested in indoor 

condition. Yet, the PV measured data from indoor and outdoor conditions are decorrelated. Since late 

70 s the simplest explicit equation [4] for the steady-state operating temperature of a solar module 

links with the ambient temperature and the incident solar radiation flux had been studied. It is 

difficult to effectively assess the impact of PV output variability [5,6] on the power grid stability 

without a clear understanding of the factors that influence this variability. 

Many factors have become redundant in the presence of other factors, and their value in the 

forecasting framework may vary under different prediction horizons and error measurements. 

Nevertheless, many studies conducted to date have shown that temperature [7–9] is the most 

important parameter that influences the PV output, although the latter is largely dependent on solar 

irradiance. Comparative studies of different models have been used to predict the PV module 

temperature in a mathematically [10] explicit and several empirical models [6,11,12] for estimation 

of PV module temperature have been proposed based on solid state physics of PV or thermal 

radiation and convection contributions [13–15] to the PV operating temperature as well as for PV 

technologies such as thin film PV system under Mediterranean climate conditions [16]. More 

implicit in form or experimental results have validated temperature effect on electrical model [17] in 

outdoor conditions. In the past few years, many statistical techniques [18–21] have also been 

proposed to forecast energy output of PV system or others have shown either how to improve 

confidence intervals of PV data from estimator’s variance [22] or modeling solar forecasting through 

Artificial Neural Network [23–26] as an alternative to conventional approaches. Also a novel 

contribution of fault detection algorithm [27] has been proposed using a statistical analysis of real-

time long term measured data and theoretical thresholds.  

Some studies have used classical regression methods that took advantage of correlation nature 

of meteorological variables which are used prediction model as inputs. However, regression between 

non-stationary series may lead to conclude on the existence of a relationship between two variables 

even though there is no meaningful linear relationship between them. The novelty of this paper is to 

show that if PV explanatory variables are non stationary then a study of first difference must be 

determined. An incidental advantage of the first-difference transformation is that it may make a 
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nonstationary time series stationary to reach the final PV equation taking into account the temporal 

relations between the PV explanatory variables in a moderate zone. 

We compared measurements and prediction of energy output [28] in real outdoor conditions as 

a function of location and environmental conditions mainly solar irradiance  (W/m
2
). The goal of 

the present work carried out is to develop an operational forecasting framework zone. An accurate 

PV output forecasting method would be of great help to grid operators and would minimize costs 

while enabling more integration of variable renewable energy (RE) in the grid. The resulting 

statistical model should then be applied in future works on collected datasets at several particular 

temperate climatic sites for validation. A mathematical model [29] using satellite data has also been 

proposed to determine PV performance in continental scale. The two models should be compared in 

a future work.  

Statistically we studied a linear relation analysis of time series data collected over a period of 

time and investigated mainly the dependent variable of power output P on explanatory variables such 

as solar irradiance G and temperature T. For that we first determined the stationary character or not 

of each time series of solar irradiance and temperature as this will set the statistical method to be 

used. Testing the stationarity of a series would be able to understand autocorrelation function and its 

statistical significance. Dickey Fuller (DF) have developed a test called Augmented Dickey &  

Fuller (ADF) [30,31] which is a unit root test for stationarity.  

The ADF test is used to determine the method of regression estimation between PV variables 

such as P, G and T. Then we show that these variables are not stationary at level and an ordinary 

least square (OLS) regression is only possible at difference level for each variable including a 

constant in the regression. First results of the study show that temperature at first difference level and 

the constant are not very significant as the OLS coefficients are well estimated. Then we analyze 

residual hypotheses.  

Analysis of residuals is a powerful diagnostic tool and it helps to assess whether some of 

underlying assumptions of regression have been violated. Ideally all residuals should be small and 

unstructured meaning that the regression analysis has been successful in explaining the essential part 

variation of the dependent variable. We first apply the Goldfeld-Quandt (GQ) test when 

heteroscedastic variance is related to variables in the regression model then the Durbin Watson (DW) 

test to detect serial correlation in the residuals. In this present study, the GQ test is well verified but 

DW test is still doubtful and not very conclusive. Outliers are suspected in the model. Therefore, a 

more recent procedure such as the Engle & Granger (EG) method is suggested to determine the most 

appropriate model. Our model is formulated on the basis of PV real conditions statistical approach 

and is more realistic than steady approach models.  

For this study, the small samples of one year daily means data is retrieved among the 7 years 

measurements from the GREEN lab of Physics department of University of Lorraine in Metz. The 

PV design of the GREEN lab is an on grid connected system. Six polycrystalline
 
modules of 

SCHÜCO technologies are connected in a series wiring pattern and mounted on the south-south east 

vertical wall of the platform building. Each module has a peak power of 205 WP, at tilt angle of 60°, 

low ventilation and connected to a SCHÜCO inverter for a power level up to 1 kWP. 

This paper is organized as follows. Section 2 is an introduction to the methodology explaining 

the ADF stationary test and Engle Granger tests for cointegration. In Section 3, we describe the input 
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solar irradiance distribution of this peculiar zone to predetermine if a frequency distribution such as 

Weibull distribution is expected. In Section 4, we use informal tools such correlograms and  

Q-statistic to test whether each variable such as solar irradiance G, power output P and temperature T 

is stationary or non-stationary. The ADF test is applied to each variable and results are presented and 

analyzed in table form. If a time series has a unit root then first differences of such time series are 

assume to become stationary. In that section, we apply the ADF test to first difference series 

transforming non-stationary time series to yield stationary series, we propose a probable estimates 

difference equation regression model. In section 5, we propose the OLS regression equation and 

identify outliers before analyzing residuals from the propose regression using the GQ test then the 

DW-d stat test with its corresponding tabulated bound. We discuss and highlight the proposed 

regression equation with residuals and introduction to EG method. In section 6, we apply the EG 

correction mechanism reconciling the short-run behavior with its long-run behavior and a final 

relationship without suspicious heteroscedasticity is proposed. Finally, conclusion and future work 

are indicated in Section 7. 

2. Methodology 

Let us consider a dependent variable Y and a number of explanatory variables such as X’s (X1, 

X2, ..., Xk). Xk, being the k
th

 explanatory variable. These (k+1) variables will denote the i
th

 observation 

on explanatory variable Xk. In order to determine the linear relationship between variables, for 

example, Y = a0 + a1X1 + … + ajXj + … + akXk, the well-known least squares linear regression 

technique is used. This technique provides an estimate of each of the coefficients for ai, giving a 

measure of the quality of the linear fit of the correlation coefficient R and provides confidence 

intervals for the predictions, etc. The interpretation of R in a multiple regression model is of dubious 

value and this technique can only be used when observations of one explanatory variable is 

independent one to each other. 

However, and in this study, this hypothesis of independency is not necessarily verified, due to 

time series: there exists a relationship between the y(t) series and y(t–1), y(t–2) series and so on, 

there may be an autocorrelation phenomenon for Xk variables as well. 

In this context, it is then necessary to check whether the series are stationary or not. Indeed, 

performing a regression between non-stationary series leads to what is known as spurious results or 

regression [29] for R
2
 determination as well as for the regression coefficients. This can lead to 

conclude the existence of a relationship between two variables when in fact there is no linear 

relationship between them. Regressions involving time series data include the possibility of 

obtaining spurious or dubious results [29] in the sense that superficially results look good but on 

further probing they look suspect.  

If variables are non stationary which is the case of this study, then the first difference (or upper 

orders if needed) must be studied. If these first differences are stationary then the multiple regression 

technique is used to determine linear relationships between theses first differences. An incidental 

advantage of the first-difference transformation is that it may make a nonstationary time series 

stationary. 
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A linear combination of variables at a non stationary level may become stationary which is 

given as the co-integration equation also known as the Engel Granger (EG) method [32,33]. 

Highlighting of such a relationship should allow improving the estimation of the linear relationship 

between the variables in difference that should also lead to reach the final equation, first by taking 

into account the temporal relations between the variables, then by introducing explanatory variables 

as variables measured in the previous period. 

2.1. Dickey-Fuller stationary test 

The principle of DF [9] in statistics stationary test is based on null hypothesis or test for the 

existence of a unit root in an autoregressive model. Unit root test is explained in appendix A. DF 

have shown that under the null hypothesis that is if  = 0 then the estimated t value of the coefficient 

of Xt−1 follows the τ (tau) statistic. The tau statistic or test is known as the DF test. DF has computed 

critical tau values and can be obtained in a tabulated form.  

The DF test is usually estimated on three models with their corresponding equation under three 

different null hypotheses. But we should consider only one random walk equation for the model as 

others are mainly used by economists in a financial field. 

Model: Xt is a random walk, where there is no constant or drift component and no trend:  

            or                   (1) 

In each case, the null hypothesis is given for  = 0, that is there is a unit root and the time series 

is non-stationary. The alternative hypothesis is that  is less than zero and the time series is 

stationary.  

In this paper, the following indication for different hypotheses will be used: 

Hypothesis H0  = 0 means  = 1 then such series is a non-stationary series. 

Hypothesis H1  < 0 means  < 1 then such series is a stationary series. 

It is extremely important to note that the critical values of the tau test to test the hypothesis that 

 = 0, are different for each of the preceding three specifications of the DF test. The estimation 

procedure of tau will be explained later from experimental data table. However, if the computed 

absolute value of the tau statistic (τ) less than the DF critical tau values from tables, hypothesis that  

 = 0 is rejected in which case the time series is stationary. On the other hand, if the computed τ is 

less than the critical tau value the null hypothesis is not rejected in which case the time series is  

non-stationary.  

In conducting the DF test it was assumed that the white noise error term ut was uncorrelated. 

But in case the ut are correlated then DF have developed a test, known as the Augmented Dickey-

Fuller (ADF) test which is explained in the next section. 

2.2. Augmented Dickey-Fuller stationary test 

To tackle autocorrelation problems DF have developed a test called Augmented Dickey- 

Fuller (ADF) which is still a unit root test for stationarity. This test is conducted by augmenting the 
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above equation by adding the lagged values of the dependent variable Xt. This equation is given as 

follows: 

Model (1):                     
 
    or                      

 
     (2) 

Where                                     , etc.  

The number of lagged difference terms to include is often determined empirically, the goal is to 

include enough terms so that the error is serially uncorrelated. In ADF still test whether  = 0 and the 

ADF test follows the same asymptotic distribution as the DF statistic so the same critical values can 

be used.  

2.3. Spurious regression  

Let us consider a random walk model given by Eq 3a: 

          
 and           

      (3a) 

And the same number of observations generated from vt et ut and also assumed that the initial 

values of both Z and X were zero. Il is also assumed that ut and vt are serially uncorrelated as well as 

mutually uncorrelated. Suppose Zt is regressed on Xt as both are uncorrelated processes the R
2
 from 

the regression of Z on X should be close to zero; that is, there should not be any relationship between 

the two variables. However, it may happen that the R
2 

value is significant but there is no linear 

relationship between the variables. This is the phenomenon of spurious regression and spurious 

model is not desirable [33].  

To avoid spurious regression problem that may arise from regressing a non-stationary time 

series on one or more non-stationary time series, we have to transform non-stationary time series to 

make them stationary. If a linear combination of non-stationary variables is stationary, the variables 

are said to be cointegrated [33]. Their fluctuations are concomitant. But the regression model is not 

appropriate for highlighting linear relationships between non-stationary variables, this is the problem 

of spurious regression, so other procedures such as Engle & Granger must be used as described in 

the next section. 

2.4. Engle-Granger tests for cointegration 

A linear combination of non stationary variables can be stationary, the variables are then 

cointegrated and their fluctuations are related. But the OLS regression model is not appropriate for 

highlighting linear relationships between non stationary variables, this is the problem of spurious 

regression as discussed earlier. Another procedure such as EG [34,35] is then applied. The EG test 

for cointegration is a three-step procedure.  

The first step: it is necessary to ensure that the first differences of the corresponding Zt and Xt 

series are stationary series. 

The second step: let vt be the residual of the regression of Zt with respect to Xt given as follows: 
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Zt = aXt + b + vt        (3b) 

then if vt is stationary then Zt and Xt series are cointegreted and the relationship is usually called long 

run equilibrium. Practically it’s not possible to do a stationary test on the unknown zt series but the 

test can be applied to the following series: 

^^^

bXaZv ttt   where hat a and hat b are determined by regressing Zt with respect to Xt. The critical 

values of DF test and ADF test are then modified. 

The third step: Error Correction Model (ECM) 

The model is as follows: 

tttt XvZ    11

^

 and ttttt XbXaZZ  







  1

^

1

^

1  (3c) 

The three variables of this equation ∆Zt, t–1 and ∆Xt–1 are stationary so that all estimations of 

this equation are given by the least squares method. If  is a negative value, vt–1 acts as spring force 

and thus when vt–1 is a positive value the Zt value has a higher value than it should be given the long 

run relationship, Zt–1 > aXt–1 + b. As  has negative value the vt–1 effect on ∆Zt gives a negative value 

and thus Zt < Zt–1 that tends to balance the long run relationship. For those interested on that topic 

may refer to a more specialized books in econometrics. 

3. Solar irradiance frequency distribution test 

Solar energy is harnessed with solar PV converting sunlight directly into electricity. Thus the 

energy output of PV system depends on the input solar irradiance distribution. In this section, the 

solar data of a peculiar site is systematically recorded and analyzed to determine whether the 

distribution of solar irradiance frequency distribution follows a predetermined distribution such as 

Weibull distribution which is then used to predict performance and energy output as for wind  

turbine 34. Although 8 years of solar irradiance data have been recorded from the GREEN 

Platform of University of Lorraine and due to data similarities between years, only one year data is 

used for the test. Otherwise the 8 years data that is being sampled every 10 minutes would need huge 

processing time.  

These long term irradiance data are used to calculate the probability density function of the 

irradiance for different hours of a typical day in a month. The frequency distribution of solar 

irradiation of the study series is displayed as a histogram in Figure 1. The histogram divides the 

series range (the distance between the maximum and minimum values) into a number of equal length 

intervals or bins and displays a count of the number of observations that fall into each bin. Figure 1 

indicates the number of observation against 15 bins of classes and each class is an interval of values 

of the irradiance variable G (W/m
2
). For example, the fourth bin between 75 to 100 indicate the 

corresponding number of 17 observations. The visual examination does not seem to identify any 

appropriate functional form of a Weibull distribution curve that may be superimposed on the 

histogram pattern. We therefore proceed by a statistical test as indicated in Table 1. 
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Figure 1. Rejecting the normal distribution of solar irradiance. 

The statistical hypothesis testing framework is as follows, the null hypothesis H0 is Weibull 

distribution and H1 is non Weibull distribution. The statistical test is based on the likelihood ratio 

that gives the number of times data is more likely under one model than the other. 

This likelihood ratio is then used to determine the probability or p-value or compared to a 

critical value to decide whether or not to reject the null hypothesis. Table 2 is the second part of the 

output of Table 4. The p-value is less than the required significance level then we say the null 

hypothesis is rejected at the given level of significance. But at the same time the z-statistic value is 

so great compared to test critical values. 

Therefore, the null hypothesis of a Weibull distribution cannot be retained but seems to be very 

unlikely. 

Table 1. Empirical distribution of solar irradiance test. 

Method Value Adj. Value Probability 

Cramer-von Mises 0.159053 0.160722 (0.01, 0.025) 

Watson 0.157972 0.159630 (0.01, 0.025) 

Anderson-Darling 1.250903 1.264034 < 0.01 

Hypothesis Weibull; Sample: 363; Observation: 363. 

Table 2. The likelihood table. 

Parameter Value Std. Error z-statistic Probability 

M 0.000000 - NA NA 

S 234.2153 8.624198 27.15477 0.0000 

A 1.500020 0.062977 23.81856 0.0000 

Log likelihood –2267.794 Mean dependent var 211.5373 

No. of coefficients 2 S.D dependent var 141.4750 

 

https://en.wikipedia.org/wiki/Likelihood
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4. From pattern recognition to stationary assumption 

Figure 2 represents 363 observations of the solar irradiance G evolution to demonstrate the 

application of ADF test on variable.  

 

Figure 2. Irradiance evolution for year observation. 

Before we go to the ADF model, we draw the graph of the study series for an eye examination 

of any pattern that might be important in our future assumption. In the next sections, we should 

verify whether the series are stationary or not.  

4.1. Correlograms & Q-Statistics 

In that part the two alternative hypothesis are considered, H0: series X is stationary; H1: series X 

is not stationary. 

We shall be using correlograms or Ljung box statistics to test whether the series is stationary or 

not. The following tables show pictures of correlograms of a time series. Autocorrelation and partial 

autocorrelation functions characterize the pattern of temporal dependence in the series and typically 

make sense only for time series data. This is applied to solar irradiance data and is displayed in  

Table 3. The first column is the autocorrelation column represented as spikes between vertical lines.  

The autocorrelation of a series Z at lag k is estimated by the following Eq 4: 

   
                  

     

         
   

        (4) 

where  is the sample mean of Z. This is the correlation coefficient for values of the series k 

periods apart. If 1 is non zero, it means that the series is first order serially correlated. If k dies off 

more or less geometrically with increasing lag k it is a sign that the series obeys a low-order 

autoregressive (AR) process. If k drops to zero after a small number of lags it is a sign that the series 

obeys a low order moving-average (MA) process.  

Z
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Normally, when the spikes are outside the two lines we suspect that the data is not stationary 

and this is for example one sign among others. From the AC column in Table 3, the estimated values 

at lag k that are usually noted as hat symbol  is gradually going down which means that probably 

data is non-stationary and is lagged from 1 to 36.  

Table 3. Correlogram solar irradiance series. 

 

The partial autocorrelation at lag k is the regression coefficient on Zt–k when Zt is regressed on a 

constant and Zt–1, … , Zt–k. This is a partial correlation since it measures the correlation of Z values 

that are k periods apart after removing the correlation from the intervening lags. When the pattern of 

autocorrelation is one that can be captured by an autoregression of order less than k then the partial 

autocorrelation at lag k will be close to zero that is indicated by the PAC ( Partial AutoCorrelation) 

column in Table 3. 

Finally, the last value of the Q-stat (Q-Statistic) column in Table 3 are significant at all lags 

indicating significant serial correlation in the residuals. The last value of the Q-stat column which 

931.47 is a high value and the corresponding probability or p-value is zero which less that 5% 

meaning that the null hypothesis H0 is rejected.  

We note that equation for Q-stat is given as follows: 

         
   
 

   
  

           (5) 

where T is the total number of observations et m is the lag length.  

The stationary test of the solar irradiance series seems to be a non-stationary data so OLS 

between these series could not be applied. The slow linear decay of the AC coefficients in Table 3 

can be observed which indicates the need to differentiate. An advantage of the first-difference 

transformation is that it may make a non stationary time series stationary. 

k̂
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Correlogram of the first difference for solar irradiance is given in Table 4, the autocorrelations 

at various lags hover around zero which is a picture of the correlogram of a stationary time series. 

We repeated the procedure for power output and temperature data. Tables 5 & 7 respectively, show 

each correlogram of power and temperature series with the corresponding correlogram of the first 

difference series given in Tables 6 & 8. These correlograms show similarities to the solar irradiance 

series. The null hypothesis is thus rejected and all series are non-stationary series but not for the first 

difference series.  

The ADF is discussed in the next section to determine the functional form of the regression 

model with the first difference as variables. 

Table 4. Correlogram first difference solar. 

 

Table 5. Correlogram of power series. 
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Table 6. Correlogram of difference power series. 

 

Table 7. Correlogram of temperature series. 

 

Table 8. Correlogram of difference temperature. 
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4.2. Augmented dickey fuller solar irradiance test  

To tackle the autocorrelation problem, the Augmented Dickey-Fuller (ADF) is applied to test 

the null hypothesis of whether a unit root unit is present in a time series test. The test is applied to the 

three series solar irradiance series (G), power output series (P) and temperature series (T) with the 

following assumption, H0: series has a unit root; H1: series has no unit root. 

The ADF test results are divided into two distinct sections. The first portion displays the test of 

the unit root output provides information about the form of the test that is, the type of test, the 

exogenous variables and lag length used and contains the test output associated critical values such 

as the probability p-value. The second part of the output shows the intermediate test equation 

computed to calculate the ADF statistic. In this section, the unit root test is applied to the solar 

irradiance and the results are explained. In the following sections, the same procedure is then applied 

to the power and temperature series. 

The first portion of the ADF test is given in Table 8a, where the none exogenous estimate the 

test that does not include a constant and linear trend in the test regression and the variable is E that is 

lagged once as displayed by the correlogram of Table 3. 

Table 8a. Testing solar irradiance. 

  t-Statistic Probability* 

Augmented Dickey-Fuller test statistic –0.778035 0.3786 

Test critical values: 1% level –2.571511  

 5% level –1.941721  

 10% level –1.616099  

Null Hypothesis: G has a unit root; Exogenous: None; Lag Length: 8 (Automatic: based on SIC, maxlag = 16). 

ADF statistic absolute value in Table 8a is −0.778035 and the associated one-sided p-value is 

−0.3786 for a number of observations specified in Table 8b. In addition, the critical values at the 1%, 

5% and 10% levels are also reported. We notice here that the t-statistic value is greater than the 

critical values which is higher than 5% so that we do not reject the null hypothesis at conventional 

test sizes.  
Second part of the output is displayed in Table 8b and shows the intermediate test equation that 

has been used to calculate the ADF statistic upon 363 observations and the dependent variable is  

D (G) which is regressed first lag.  

In Table 8b, the column labeled coefficient depicts the estimated coefficients or estimates and 

should not be viewed as being deterministic. It’s a kind of indication upon the variable precision. 

The absolute t-statistic value associated to the G (−1), that is 0.778035 is defined as the ratio 

coefficient to the standard error and given as follows: 

                 

               
 

  

   
 

          

        
            

The t-stat value of the coefficient value should be compared to critical values tabulated by DF. 

This value is less than those indicated in Table 2, given as 2.58, 1.95, 1.61 for the corresponding 
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threshold 1%. This comparison indicates that the solar irradiance series is not stationary. In this test 

we ignored the probability value from Table 8b because the coefficient value of G (−1) is not 

distributed that is it does not follow the student distribution. The t-statistic value and corresponding 

probability value of the first difference term lagged one are highly significant so we did not make 

any mistake from earlier analysis in considering this variable.  

In the following sections, only results of the first part of the ADF test corresponding to power 

output and temperature data are presented as the second parts have similar characteristics to the first 

difference lagged at different levels to the second part of solar irradiance ADF test. 

Table 8b. Second output of ADF solar equation. 

Variable Coefficient Std. Error t-Statistic Probability 

E (–1) –0.021473 0.027599 –0.778035 0.4371 

D (E (–1)) –0.632395 0.058947 –10.72823 0.0000 

D (E (–2)) –0.525921 0.064797 –8.116418 0.0000 

D (E (–3)) –0.354483 0.067566 –5.246454 0.0000 

D (E (–4)) –0.328680 0.067350 –4.880199 0.0000 

D (E (–5)) –0.366181 0.066697 –5.490251 0.0000 

D (E (–6)) –0.374641 0.066079 –5.669598 0.0000 

D (E (–7)) –0.337516 0.062371 –5.411434 0.0000 

D (E (–8)) –0.124641 0.054153 –2.301633 0.0220 

R-squared 0.335576 Mean dependent var –0.290650 

Adjusted R-squared 0.320169 S.D. dependent var 142.5432 

S.E. of regression 117.5296 Akaike info criterion 12.39635 

Sum squared resid 4765554. Schwarz criterion 12.49472 

Log likelihood –2185.154 Hannan-Quinn criter 12.43549 

Durbin-Watson stat 2.028671   

Augmented Dickey-Fuller Test Equation; Dependent Variable: D (E); Method: Least Squares; Sample: (adjusted 363); 

Included observations: 354 after adjustments. 

4.3. Augmented dickey fuller power & temperature test  

Similar ADF test is applied to the variable power (P) and temperature (T) and each first part is 

given in appendix C. Examination of these tables reveals that the observed p-value in each case 

given respectively as 0.3459 and 0.6907 is not significant as it is a very high value compare to 5%. 

Also t-stat value of the variable power (P) equal to −0.853089 is again higher than all the critical 

values. The t value of the temperature coefficient is 0.026823 but this value is greater than even the 

10 percent critical τ value of −1.616101 suggesting that even after taking care of possible 

autocorrelation in the error term, both power and temperature series is a non-stationary series. 

However, the both dependent variable D (P) and D (T) first difference lagged one shows significant 

characteristics values of a stationary series. 

The next section is concerned with the ADF test applied to difference series. 
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4.4. ADF test to difference series of irradiance, power and temperature  

To avoid the spurious regression problem that may arise from regressing a non stationary time 

series on one or more non stationary time series, we have to transform non stationary time series to 

make them stationary. If a time series has a unit root then the first differences of such time series 

may be stationary. Therefore, the solution here is to take the first differences of the time series.  

Table 9a. First part difference solar irradiance G. 

  t-Statistic Probability* 

Augmented Dickey-Fuller test statistic –12.22837 0.0000 

Test critical values: 1% level –2.571511  

 5% level –1.941721  

 10% level –1.616099  

Null Hypothesis: D (G) has a unit root; Exogenous: None; Lag length: 7 (Automatic-based on SIC, mawlag = 16). 

Table 9b. Second part difference solar irradiance G. 

Variable Coefficient Std. Error t-Statistic Probability 

D (G (–1)) –4.145076 0.338972 –12.22837 0.0000 

D (G (–1), 2) 2.492967 0.311017 8.015532 0.0000 

D (G (–2), 2) 1.949729 0.275106 7.087194 0.0000 

D (G (–3), 2) 1.579856 0.234643 6.733011 0.0000 

D (G (–4), 2) 1.237359 0.192906 6.414317 0.0000 

D (G (–5), 2) 0.859116 0.149072 5.763101 0.0000 

D (G (–6), 2) 0.474450 0.101222 4.687212 0.0000 

D (G (–7), 2) 0.129271 0.053794 2.403044 0.0168 

R-squared 0.758759 Mean dependent var –0.900650  

Adjusted R-squared 0.753878 S.D. dependent var 236.7688  

S.E. of regression 117.4625 Akaike info criterion 12.39246  

Sum squared resid 4773916 Schwarz criterion 12.47990  

Log likelihood –2185.465 Hannan-Quinn criter 12.42725  

Durbin-Watson stat 2.029534    

Augmented Dickey-Fuller Test Equation; Dependent Variable: D (G, 2); Method: Least Squares ; Sample: (adjusted 363); 

Included observations: 354 after adjustments. 

D operator is used to specify differences of series. To specify first differencing, we simply 

include the series name in parentheses after D with the corresponding lagged. The number of lagged 

difference terms to include is often determined empirically, the idea being to include enough terms 

so that the white noise error term in is serially uncorrelated. The difference solar irradiance table of 

the ADF test is illustrated in following tables. The similar tables of each dependent variable P and T 

are given in appendix C.  

The lag length is being checked with the corresponding correlogram of the series to determine 

and to re-estimate with one less round of differencing. 
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4.5. Conclusion 

The time series of variable P, G, T are not stationary series but differencing may yield 

stationary series. We can therefore use the regression test between the 3 variables in difference. This 

is discussed in the next section. 

5. Difference regression equation 

We computed the regression as each variable is stationary in difference. Table 10, is the 

regression difference where the explanatory variables G and T are used including a constant C. 

The dependent variable is P (Delta P) for 363 samples and 362 included observations after 

adjustments. Let’s just turn to interpreting the results. From Table 14, firstly we deduce the expected 

regression equation referring to the corresponding explanatory coefficient.  

This is given as Eq 6a below: 

                                 (6a) 

Table 10. The regression difference data. 

Variable Coefficient Std. Error t-Statistic Probability 

G 0.969868 0.027980 34.66231 0.0000 

T 0.500517 0.603774 0.828980 0.4077 

C –0.010523 1.778432 –0.005917 0.9953 

R-squared 0.945447 Mean dependent Var 0.284254  

Adjusted R-Squared 0.945143 S.D dependent var 144.4618  

S.E of regression 33.83531 Akaike Info criterion 9.889140  

Sum squared resid 410993.4 Schwarz criterion 9.921391  

Log Likelihood –1786.934 Hannan-Quinn criter 9.901961  

F-statistic 3110.855 Durbin-Watson stat 2.799248  

Prob (F-Statistic) 0.000000   

Dependent Variable: P; Method: Least Squares; Sample: (adjusted 363); Included observations 362 after adjustments. 

It is a standard practice to use the coefficient p-values to decide whether to include variables in 

the final model. Yet, the corresponding p-value of T and constant term C are not statistically 

significant because their corresponding p-value (0.4077, 0.9953) are greater than the usual 

significance level of 1%, 5%, 10% and can be removed from Eq 6a. Whereas the t-statistic value of 

G is highly significant as well as the corresponding probability that is less than 5%, expecting good 

regression between P and G.  

The overall regression fit as measured by the R
2
 value is more than 94% indicating a very tight 

fit. Obviously we’ll focus on R-squared (R
2
) suggesting that solar irradiance alone can explain over 

nearly 95% of the variation of power output and it will have only 1% impact on the variable power P. 

Although this regression seems to be very significant however, both the constant and temperature 

difference are not significant as is revealed by the corresponding probability p-value 0.99 and 0.40. 

Indeed, the p-value given just below the F-statistic in Table 10 denoted as Prob (F-statistic) is the 
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marginal significance level of the F-test. If the p-value is less than the significance level that is 5% 

the hypothesis that all slope coefficients are equal to zero are rejected.  

For example, in Table 10, the p-value is essentially zero for G. Note that the F-test is a joint 

test so that even if all the t-statistics are insignificant the F-statistic can be highly significant. 

However, we can propose the apparent estimate equation using least squares given as follows by  

Eq 6b. 

                   (6b) 

The proposed regression equation is still not satisfactory because other data in the table seem to 

indicate differences between the predicted value (based on the regression equation) and the actual 

observed value. This is discussed in the next section.  

5.1. Outliers & analyzing residuals from regression  

One problem with least squares occurs when there are one or more large deviations for example, 

cases whose values differ substantially from the other observations. These points are called outliers. 

They may represent important information about the relationship between variables. Robust 

regression might be a good strategy since it is a compromise between excluding these points entirely 

from the analysis and including all the data points and treating all them equally in ordinary least 

squared (OLS) regression. In linear regression, an outlier is an observation with large residual. 

Figure 3, represents the residual graph where the blue curve is the residuals from the regression 

provided by a residual table. The green and red curves are respectively the real or actual and fitted 

curves of power output against the number of observations. We see that the regression seems to be 

going rather well from the point of view of predicting power output evolution. However, the residual 

graph shows 4 outliers diagnosing failures of the above assumptions of the regression model. The 4 

outliers do appear on one side at 220 and 221 observations with amplitude around 100 and on the 

other side at 357 and 358 with amplitude around 170.  

 

Figure 3. The real & fitted curves and residuals graph. 
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Given the existence of outliers, we re-estimate the regression without these 4 points as given in 

Table 11 with the corresponding residual curve of P as illustrated in Figure 4. 

 

Figure 4. The residual graph of P. 

From the residual graph of P in Figure 4, we can see that there is no longer any spurious 

residual but we can suspect a little heteroscedasticity, that is to say a variance of the residual values 

varying with the level of the variables. This is discussed in the next section. 

Table 11. Regression difference data without outliers. 

Variable Coefficient Std. Error t-Statistic Probability 

C 0.024771 1.338098 0.018512 0.9852 

G 0.996329 0.021519 46.29970 0.0000 

T –0.389609 0.461854 –0.843577 0.3995 

R-squared 0.967559 Mean dependent Var 0.949972  

Adjusted R-Squared 0.967376 S.D dependent var 140.1690  

S.E of regression 25.31743 Akaike Info criterion 9.309208  

Sum squared resid 227545.1 Schwarz criterion 9.341726  

Log Likelihood –1663.348 Hannan-Quinn criter 9.322140  

F-statistic 5293.958 Durbin-Watson stat 2.732836  

Prob (F-Statistic) 0.000000   

Dependent Variable: P; Method: Least Squares; Sample: (adjusted 359); Included observations: 358. 

5.2. Heteroscedasticity & autocorrelation 

When using some statistical techniques such as OLS, a number of assumptions are typically 

made. In a linear regression model in which the errors have expectation zero and are uncorrelated as 



37 

AIMS Energy                                                              Volume 6, Issue 1, 19–48. 

well as having equal variances then the best linear unbiased estimator (BLUE) of the coefficients is 

given by the OLS estimator. If the variance of the error term εi is not the same across all observations 

i=1, ..., n, then the disturbances are said to be heteroscedastic.  

Heteroscedasticity tends to produce p-values that are smaller than they should be. This effect 

occurs because heteroscedasticity increases the variance of the coefficient estimates but the OLS 

procedure does not detect this increase. Consequently, OLS calculates the t-values and F-values 

using an underestimated amount of variance.  

This problem can lead to conclude that a model term is statistically significant when it is 

actually not significant as the coefficients are biased. In our case, as the t-test for each coefficient 

examines them individually the t-test of G in Table 11 is higher than that in Table 10 with the  

F-value very significant in Table 11. The overall F-test is significant and the R-squared value has 

been improved therefore correlation between the model and dependent variable is statistically 

significant. 

We thus identified the single significant explanatory variable which is G with heteroscedastic 

disturbance and therefore the kind of heteroscedasticity must be identified. In the next section we 

propose more in-depth studies in order to propose a regression equation closer to real experimental 

conditions. 

The corresponding graph of first difference of power output P against first difference of solar 

irradiance G is illustrated in Figure 5. However, some scattered values do not fit the regression line 

reasonably and although the constant term has been removed, the very slight intercept on the delta P 

axis are indications to pursue further studies. 

 

Figure 5. Relation between P and G. 
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Table 12. Final regression difference data. 

Variable Coefficient Std. Error t-Statistic Probability 

G 0.980052 0.009507 103.0827 0.0000 

S.E of regression 25.27172 Akaike Info criterion 9.300038  

Sum squared resid 228001.5 Schwarz criterion 9.310878  

Log Likelihood –1663.707 Hannan-Quinn criter 9.304349  

F-statistic 10595.79 Durbin-Watson stat 2.722380  

Prob (F-Statistic) 0.000000 Mean dependent var 0.949972  

Dependent Variable: P; Method: Least Squares; Sample: (adjusted 359); Included observations: 358. 

We then test that the residual is an increasing function of the explanatory variable and the 

Goldfeld Quandt (GQ) test is proposed. This is discussed in the next section. 

5.3. The goldfeld quandt test 

The blue curve of Figure 6 is the residual of P with no outliers and is oscillating in a range of 

values that act as good estimates. This range is also known as the confidence interval and is 

represented by the dotted blue lines. GQ have argued that the error term may not satisfy the ordinary 

least squares assumptions and may itself be heteroscedastic. 

 

Figure 6. The residual graph of P with no outliers. 

The GQ test is accomplished by undertaking separate least squares analyses on two subsets of 

the original dataset: these subsets are specified so that the observations for which the pre-identified 

explanatory variable takes the lowest values are in one subset, with higher values in the other. The 

test statistic or F-test used is the ratio of the mean square residual (MSR) errors for the regressions 
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on the two subsets given by Eq 7 where MSRmax is the highest value in a subset and MSRmin is the 

lowest value. 

min

max

MSR

MSR
F           (7) 

In our study, the OLS regressions of the GQ test is based on the first 100 and the last 100 

observations and their associated residual sums of squares are given respectively in Tables 13a and 

13b. 

Table 13a. Regression based on the first 100 observations. 

Variable Coefficient Std. Error t-Statistic Probability 

G 0.980428 0.017402 56.33851 0.0000 

S.E of regression 31.99997 Akaike Info criterion 9.779297  

Sum squared resid 101375.8 Schwarz criterion 9.805349  

Log Likelihood –487.9648 Hannan-Quinn criter 9.789840  

Durbin-Watson stat 1.901483 S.D dependent var 75.58948  

Mean dependent var –166.9105    

Dependent Variable: P; Method: Least Squares; Sample: 260359; Included observations: 100. 

Table 13b. Regression based on the last 100 observations. 

Variable Coefficient Std. Error t-Statistic Probability 

G 0.978710 0.015881 61.62793 0.0000 

S.E of regression 29.54568 Akaike Info criterion 9.619702  

Sum squared resid 86421.76 Schwarz criterion 9.645753  

Log Likelihood –479.9851 Hannan-Quinn criter 9.630245  

Durbin-Watson stat 1.754791 S.D dependent var 72.19141  

Mean dependent var 169.8802    

Dependent Variable: P; Method: Least Squares; Sample: 260359; Included observations: 100. 

From Tables 13a and 13b, the corresponding sum squared residuals values are MSRmax = 101375 

and MSRmin = 86421. The F ratio as indicated above is determined and is equal to 1.17 so we can reject 

the hypothesis of heteroscedasticity.  

However, this value from the GQ method is a non-zero value for the error term and a further 

study on the DW d-stat test is proposed in the next section.  

5.4. Durbin Watson D-Stat test 

The corresponding residual graph is displayed in Figure 6, the colored curves have the same 

defintion as defined in Figure 3 where the blue curve indicates that no outliers values are blatant for 

the residuals but does not explain the DW statistic value. The conventional DW tables are not 

applicable when a constant term does not exist in the regression and instead an appropriate set of 

Durbin-Watson tables is used as reference table. 
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The DW is a test that the residuals from a linear regression or multiple regression are 

independent and makes it possible to detect a first order autocorrelation errors that is an equation 

given as follows: 

ttt uu   1         (8) 

Because most regression problems involving time series data exhibit positive autocorrelation 

the hypotheses usually considered in the DW test are H0:  = 0 and H1:  > 0. 

The test statistic is given as follows: 

 
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          (9) 

For ttt yyu
^

  where y and hat y are respectively, the observed and predicted values of the 

response variable for individual t. d becomes smaller as the serial correlations increase. Upper and 

lower critical values d2 and d1 have been tabulated for different values of the number of explanatory 

variables and T. If a test for negative autocorrelation is desired, then the 4-d statistic is used. The 

decision rules for H0,  = 0 versus H1  < 0 are the same as those used in testing for positive 

autocorrelation. 

The DW table at 5% level d1 = 1.664 and d2 = 1.779. The tabulated bound is summarized as 

follows: 

0 < d < d1: positive autocorrelation of residuals 

d1 < d < 4-d2: no autocorrelation 

4-d2 < d < 4-d1: undefined 

4-d1 < d < 4: negative autocorrelation of residuals 

The DW statistic from Table 16 is 2.72 which is between 2.336 and 4 therefore a negative 

autocorrelation is expected.  

However, a more rigorous method such as Cochrane Orcutt method [29] can be applied if 

required but this is beyond the scope of this study.  

5.5. Discussion 

Regression of a non stationary series on another non stationary series may cause spurious 

regression which is not desirable. In our case, we have two variables P and G and they have unit 

root at level meaning non stationary. They are stationary after first difference. Nevertheless the 

regression model is not appropriate for highlighting linear relationships between non stationary 

variables and suppose P is regressed on G as follows: 
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Pt = Gt + C + et         (10) 

where et has a unit root and is stationary as explained in the previous section. It is then proposed to 

estimate the regression of equation (10) and obtain the residuals.  

However, there is one precaution to exercise. Since the estimated et are based on the estimated 

cointegrating parameter , ADF critical significance values are not quite appropriate and other values 

are used and determined from Engle and Granger method. This is discussed in the next section.  

6. Engle and granger method 

The outline of Engle & Granger (EG) [30] method is explained in section 2.4, still we can 

simply resume the principle. EG note that a linear combination of two or more series may be 

stationary, in which case we say the series are cointegrated. Such a linear combination defines a 

cointegrating equation between variables with cointegrating vector of weights characterizing the 

long-run relationship between the variables. Therefore, from Eq 10 is deduced the following 

relationship: 

et = Pt – Gt – C          (11a) 

This is computed and the results are given in distinct tables.  

Table 14a shows result of regression between variables at level, that is long term relationship. The 

dependent variable is P and the explanatory variables are solar irradiance G and a constant term C.  

Table 14a. Long term data for regression. 

Variable Coefficient Std. Error t-Statistic Probability 

G 0.93982 0.010494 89.55454 0.0000 

C 16.67559 2.669565 6.246557 0.0000 

R-squared 0.956926 Adjusted R-squared 0.956807  

S.E of regression 28.24849 Akaike Info criterion 9.525451  

Sum squared resid 228069.7 Adjusted R-squared 

Akaike Info criterion 

0.956807 

9.525451 

 

Log Likelihood –1726.869 Schwarz criterion 9.546908  

F-statistic 8020.015 Hannan-Quinn criter 9.533980  

Prob (F-Statistic) 0.000000 Durbin-Watson stat 1.494379  

  Mean dependent var 215.4845  

  S.D dependent var 135.9218  

Dependent Variable: P; Method: Least Squares; Sample: 363; Included observations: 363. 

When the dependent variable Pt is regressed on Gt the following regression is obtained  

Pt = 0,9398Gt + 16,6755 + et       (11b) 

So we focus on stationarity or not of the residual of Table 14c. The residual is noted as 

ResidCoint. 
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Since the computed t value (–14.677) is very significant and much more negative than  

–2.5713 [30,33,36], our conclusion is that the residuals from the regression of P on G are stationary. 

Hence, Eq 17b is a cointegrating equation and is called the long run function and interprets its 

parameters as long run parameters. Thus, 0.9398 represents the long-run or equilibrium. Obviously, 

in the short run there may be disequilibrium. Therefore, the error term in Eq 11a must be processed 

as the equilibrium error and this error term is used to link the short-run behavior of PCE to its long-

run value. 

Table 14b. EG residcoint data. 

Variable Coefficient Std. Error t-Statistic Probability 

ResidCoint (–1) –0.747317 0.050917 –14.67710 0.0000 

R-squared 0.373717 Mean dependent var 0.0181680 0.0000 

Adjusted R-squared 0.373717 S.D. dependent var 34.53230  

S.E. of regression 27.32818 Akaike info criterion 9.4564721  

Sum squared resid 269605.4 Schwarz criterion 9.4672335  

Log likelihood –1710.622 Hannan-Quinn criter 9.4607460  

Durbin-Watson stat 2.045377    

Dependent Variable: D (ResidCoint); Method: Least Squares; Sample: (adjusted 363); Included observations: 362 after 

adjustments. 

Table 14c. EG critical values. 

  t-Statistic Probability* 

Augmented Dickey-Fuller test statistic –14.67710 0.0000 

Test critical values: 1% level –2.571336  

 5% level –1.941701  

 10% level –1.616113  

Null Hypothesis: ResidCoint has a unit root; Exogenous: None; Lag Length: 0 (Automatic-based on SIC, maxlag = 16). 

The error correction mechanism (ECM) which is the third step of the EG test as described in 

section 2.4 is applied and the similar Eq to (3b) is given as follows: 

∆ Pt = α0 + α∆Gt + βet–1 + εt        (12) 

Where, ∆ as usual denotes the first difference operator, εt is a random error term, and  

et–1 = (Pt–1 – Gt–1 – C )        (13) 

that is the one lagged value of the error from the cointegrating regression of Eq 11b.  

ECM equation, that is Eq 12, states that ∆P depends on ∆G and also on the equilibrium error 

term et–1. If the latter is non zero, then the model is out of equilibrium. Suppose ∆G is zero and et–1 is 

positive this means ∆Pt–1 is too high to be in equilibrium. Since β is expected to be negative the term 

βet–1 is negative and therefore ∆Pt will be negative to restore the equilibrium. That is, if Pt is above 

its equilibrium value it will start falling in the next period to correct the equilibrium error. As well as 
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if et–1 is negative that is P is below its equilibrium value βet–1 will be positive which will cause ∆Pt to 

be positive leading Pt to rise in period t. Thus, the absolute value of β decides how quickly the 

equilibrium is restored.  

Eq 13 is computed the corresponding results are given in Table 15. The coefficient β tells us at 

what rate it corrects the previous period disequilibrium of the system. When β is significant and 

contains a negative sign it validates that there exists a long run equilibrium relationship among the 

variables.  

Table 15. ECM regression data. 

Variable Coefficient Std. Error t-Statistic Probability 

ResidCoint (–1) –0.725527 0.051027 –14.21850 0.00000 

G 0.969314 0.010166 95.35067 0.00000 

C 0.013603 1.423750 0.009554 0.99244 

R-squared 0.965033 Mean dependent var 0.284254  

Adjusted R-squared 0.964836 S.D. dependent var 144.4618  

S.E. of regression 27.08863 Akaike info criterion 9.444358  

Sum squared resid 263432 Schwarz criterion 9.476610  

Log likelihood –1706.429 Hannan-Quinn criter 9.457179  

Durbin-Watson stat 2.045261 F-statistic  4953.946  

Prob (F-statistic) 0.000000    

Dependent Variable: P; Method: Least Squares; Sample: (adjusted 363); Included observations: 362 after adjustments. 

The coefficient value β of ResidCoint (–1) or (et–1) = –0.7255 that validate the long run 

relationship between P and G.  

Therefore, from Table 19 we can deduce that the model is very significant as the R squared 

value is very high thus the Fisher statistic value is high. The two explanatory variables that is, first 

difference stationary solar irradiance G, ResidCont lagged one (et–1) are very significant whereas 

the constant term C = α0 is not significant as indicated by its p-value.  

Still, we plot the residual graph and this is displayed in Figure 7. 

 

Figure 7. Residual from EG method including first solar irradiance and constant terms. 
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The colored curves have the same defintion as defined in Figure 3 and where two outliers are 

identified respectively at position 320 and 357. Thus we applied the EG test for difference regression 

and the dependent variable is ∆P. 

Results are given in Table 16 for the coefficient of the equilibrium error term and the short run 

term (coefficient of ∆G). 

Table 16. Error term regression without constant. 

Variable Coefficient Std. Error t-Statistic Probability 

ResidCoint (–1) –0.601050 0.049178 –12.22193 0.0000 

G 0.966657 0.008066 119.8493 0.0000 

R-squared 0.977102 Mean dependent var 0.949972  

Adjusted R-squared 0.977037 S.D. dependent var 140.1690  

S.E. of regression 21.24035 Akaike info criterion 8.955253  

Sum squared resid 160610.3 Schwarz criterion 8.976932  

Log likelihood –1600.990 Hannan-Quinn criter 8.963875  

Durbin-Watson stat 2.062846 F-statistic  7578.573  

Prob (F-statistic) 0.000000    

Dependent Variable: P; Method: Least Squares; Sample: (adjusted 363); Included observations: 362 after adjustments. 

The R-squared value is very significant as well as the DW statistic close to 2 there is no more 

heteroscedasticity as represented in Figure 8. 

 

Figure 8. Residual from EG method without suspicious heteroscedasticity. 

Thus, the relationship between the variables is given as 

∆P = 0.966∆G – 0.601(Pt–1 – 0.939Gt–1 – 16.67)     (14) 
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where ∆P = Pt – Pt–1 and ∆G = (Gt – Gt–1) and by substituting ∆P and ∆G in Eq 14 the final 

relationship for Pt is written as follows  

Pt = 0,966 Gt – 0.402Gt–1 +1,601 Pt–1 + 10.019    (15) 

Hence, Eq 15 is the full equation not only with variables P and G in difference but also with P 

and G with one period lagged. 

7. Conclusion and future work 

It is difficult to effectively assess the impact of PV output variability on the power grid stability 

without a clear understanding of the factors that influence this variability. Many factors can become 

redundant in the presence of other factors and their value in the forecasting framework may vary 

under different prediction horizons and error measurements. One of the objectives of this paper 

consisted of applying a statistical method of time series data to identify the most important on-site 

climatic and environmental parameters that influence PV output variability. Various estimation 

technique to estimate a linear relationship between PV variables have been proposed in the literature 

but these OLS regression techniques had lead to spurious results as these techniques were based on 

the assumption that the variables involved are stationary. Regressions involving time series data 

include the possibility of obtaining spurious or dubious results in the sense that superficially results 

look good but on further probing they look suspect.  

The originality of this paper is that a technique of cointegration has been introduced known as 

the EG method according to which models containing nonstationary stochastic variables have been 

constructed in such a way that the results are statistically meaningful. Through this technique a linear 

relationship is obtained including not only the dependent variable P(t) and explanatory variable Gk(t), 

but also their one time lagged variables P(t–1) and Gk(t–1), thus a temporal link between the 

variables in small samples, that is daily mean data upon one year. 

For that, the EG method requires testing whether variables are integrated of the same order. 

This is done using the ADF unit root test. We then used the error correction model to test whether 

the residuals of the long run relationship between P and G are stationary. All these conditions are 

satisfied and the two variables under investigation cointegrate.  

The advantage of the Engle-Granger method over the other techniques is its ease of 

implementation. However, its results are dependent on how the long-run equilibrium equation is 

specified. In some cases, it might not be easy to identify which variable enters as the dependent 

variable. 

This study was conducted in a temperate region and temperature had been eliminated in the 

final PV relationship. However, the latter cannot be readily adopted by other countries as both the 

methodologies employed depend on several site-dependent features. The PV output also is heavily 

reliant on numerous local meteorological and environmental factors. Therefore, future work has been 

proposed in a South West Indian Ocean project to improve this PV model. 
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