J. Spranger, A. Kroke, M. Mohlig, M. Bergmann, M. Ristow et al., Adiponectin and protection against type 2 diabetes mellitus, The Lancet, vol.361, issue.9353, pp.226-234, 2003.
DOI : 10.1016/S0140-6736(03)12255-6

C. Herder, J. Baumert, B. Thorand, W. Koenig, W. De-jager et al., Chemokines as risk factors for type 2 diabetes: results from the MONICA/KORA Augsburg study, 1984???2002, Diabetologia, vol.54, issue.Suppl. 2, pp.921-930, 1984.
DOI : 10.1172/JCI20514

E. Lee, Obesity, leptin, and Alzheimer's disease, Annals of the New York Academy of Sciences, vol.5, issue.1, pp.15-29, 2011.
DOI : 10.1016/j.cmet.2005.10.009

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2011.06274.x/pdf

D. Gustafson, Adiposity indices and dementia, The Lancet Neurology, vol.5, issue.8, pp.713-733, 2006.
DOI : 10.1016/S1474-4422(06)70526-9

P. Zhang and B. Tian, Metabolic Syndrome: An Important Risk Factor for Parkinson???s Disease, Oxidative Medicine and Cellular Longevity, vol.67, issue.10, p.729194, 2014.
DOI : 10.1016/0003-9993(86)90007-9

M. Gianfrancesco, B. Acuna, L. Shen, F. Briggs, H. Quach et al., Obesity during childhood and adolescence increases susceptibility to multiple sclerosis after accounting for established genetic and environmental risk factors, Obesity Research & Clinical Practice, vol.8, issue.5, pp.435-482, 2014.
DOI : 10.1016/j.orcp.2014.01.002

M. Versini, P. Jeandel, E. Rosenthal, and Y. Shoenfeld, Obesity in autoimmune diseases: Not a passive bystander, Autoimmunity Reviews, vol.13, issue.9, pp.981-1000, 2014.
DOI : 10.1016/j.autrev.2014.07.001

D. Gustafson, E. Rothenberg, K. Blennow, B. Steen, and I. Skoog, An 18-Year Follow-up of Overweight and Risk of Alzheimer Disease, Archives of Internal Medicine, vol.163, issue.13, pp.1524-1532, 2003.
DOI : 10.1001/archinte.163.13.1524

J. Nguyen, A. Killcross, and T. Jenkins, Obesity and cognitive decline: role of inflammation and vascular changes, Frontiers in Neuroscience, vol.12, issue.177, p.375, 2014.
DOI : 10.1038/nrn3114

A. Bruce-keller, J. Keller, and C. Morrison, Obesity and vulnerability of the CNS, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1792, issue.5, pp.395-400, 1792.
DOI : 10.1016/j.bbadis.2008.10.004

URL : https://hal.archives-ouvertes.fr/hal-00562869

Y. Taki, S. Kinomura, K. Sato, K. Inoue, R. Goto et al., Relationship Between Body Mass Index and Gray Matter Volume in 1,428 Healthy Individuals, Obesity, vol.65, issue.1, pp.119-143, 2008.
DOI : 10.1212/01.WNL.0000141850.47773.5F

M. Ward, C. Carlsson, M. Trivedi, M. Sager, and S. Johnson, The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study, BMC Neurology, vol.58, issue.2, p.23, 2005.
DOI : 10.1093/gerona/58.2.M176

S. Debette, A. Beiser, U. Hoffmann, C. Decarli, O. Donnell et al., Visceral fat is associated with lower brain volume in healthy middle-aged adults, Annals of Neurology, vol.63, issue.suppl 7, pp.136-180, 2010.
DOI : 10.1212/WNL.45.1.178

D. Gustafson, L. Lissner, C. Bengtsson, C. Bjorkelund, and I. Skoog, A 24-year follow-up of body mass index and cerebral atrophy, Neurology, vol.63, issue.10, pp.1876-81, 2004.
DOI : 10.1212/01.WNL.0000141850.47773.5F

A. Ho, J. Stein, X. Hua, S. Lee, D. Hibar et al., A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly, Proceedings of the National Academy of Sciences, vol.43, issue.1, pp.8404-8413, 2010.
DOI : 10.1016/j.neuroimage.2008.07.003

M. Cournot, J. Marquie, D. Ansiau, C. Martinaud, H. Fonds et al., Relation between body mass index and cognitive function in healthy middle-aged men and women, Neurology, vol.67, issue.7, pp.1208-1222, 2006.
DOI : 10.1212/01.wnl.0000238082.13860.50

K. Lokken, A. Boeka, H. Austin, J. Gunstad, and C. Harmon, Evidence of executive dysfunction in extremely obese adolescents: a pilot study, Surgery for Obesity and Related Diseases, vol.5, issue.5, pp.547-52, 2009.
DOI : 10.1016/j.soard.2009.05.008

S. Sabia, M. Kivimaki, M. Shipley, M. Marmot, and A. Singh-manoux, Body mass index over the adult life course and cognition in late midlife: the Whitehall II Cohort Study, American Journal of Clinical Nutrition, vol.89, issue.2, pp.601-608, 2009.
DOI : 10.3945/ajcn.2008.26482

URL : https://hal.archives-ouvertes.fr/inserm-00353140

A. Mcneilly, R. Williamson, C. Sutherland, D. Balfour, and C. Stewart, High fat feeding promotes simultaneous decline in insulin sensitivity and cognitive performance in a delayed matching and non-matching to position task, Behavioural Brain Research, vol.217, issue.1, pp.134-175, 2011.
DOI : 10.1016/j.bbr.2010.10.017

A. Murray, N. Knight, L. Cochlin, S. Mcaleese, R. Deacon et al., Deterioration of physical performance and cognitive function in rats with short-term high-fat feeding, The FASEB Journal, vol.23, issue.12, pp.4353-60, 2009.
DOI : 10.1096/fj.09-139691

M. Morris, J. Beilharz, J. Maniam, A. Reichelt, and R. Westbrook, Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition, Neuroscience & Biobehavioral Reviews, vol.58, pp.36-45, 2015.
DOI : 10.1016/j.neubiorev.2014.12.002

C. Lynch, D. Kinzenbaw, X. Chen, S. Zhan, E. Mezzetti et al., Nox2-Derived Superoxide Contributes to Cerebral Vascular Dysfunction in Diet-Induced Obesity, Stroke, vol.44, issue.11, pp.3195-201, 2013.
DOI : 10.1161/STROKEAHA.113.001366

W. Li, R. Prakash, D. Chawla, W. Du, S. Didion et al., Early effects of high-fat diet on neurovascular function and focal ischemic brain injury, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.125, issue.11, pp.1001-1009, 2013.
DOI : 10.1523/JNEUROSCI.3574-09.2009

H. Zhou, J. Liu, L. Ren, W. Liu, Q. Xing et al., Relationship between [corrected] spatial memory in diabetic rats and protein kinase Cgamma, caveolin-1 in the hippocampus and neuroprotective effect of catalpol, Chin Med J (Engl), vol.127, pp.916-939, 2014.

R. Mccrimmon, C. Ryan, and B. Frier, Diabetes and cognitive dysfunction, The Lancet, vol.379, issue.9833, pp.2291-2300, 2012.
DOI : 10.1016/S0140-6736(12)60360-2

Y. Zhang, J. Zhang, C. Liu, P. Wei, X. Zhang et al., Memory dysfunction in type 2 diabetes mellitus correlates with reduced hippocampal CA1 and subiculum volumes, Chin Med J (Engl), vol.128, pp.465-71, 2015.

G. Biessels, I. Deary, and C. Ryan, Cognition and diabetes: a lifespan perspective, The Lancet Neurology, vol.7, issue.2, pp.184-90, 2008.
DOI : 10.1016/S1474-4422(08)70021-8

M. Haan, Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer's disease, Nature Clinical Practice Neurology, vol.14, issue.3, pp.159-66, 2006.
DOI : 10.1212/01.WNL.0000144281.38555.E3

G. Cheng, C. Huang, H. Deng, and H. Wang, Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies, Internal Medicine Journal, vol.361, issue.5, pp.484-91, 2012.
DOI : 10.1056/NEJMoa0809578

R. Whitmer, Type 2 diabetes and risk of cognitive impairment and dementia, Current Neurology and Neuroscience Reports, vol.292, issue.2Suppl1, pp.373-80, 2007.
DOI : 10.1212/01.WNL.0000073620.42047.D7

C. Macknight, K. Rockwood, E. Awalt, and I. Mcdowell, Diabetes mellitus and the Risk of Dementia, Alzheimer???s Disease and Vascular Cognitive Impairment in the Canadian Study of Health and Aging, Dementia and Geriatric Cognitive Disorders, vol.14, issue.2, pp.77-83, 2002.
DOI : 10.1159/000064928

N. Ho, M. Sommers, and I. Lucki, Effects of diabetes on hippocampal neurogenesis: Links to cognition and depression, Neuroscience & Biobehavioral Reviews, vol.37, issue.8, pp.1346-62, 2013.
DOI : 10.1016/j.neubiorev.2013.03.010

Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold et al., Positional cloning of the mouse obese gene and its human homologue, Nature, vol.372, issue.6505, pp.425-457, 1994.
DOI : 10.1038/372425a0

J. Friedman and J. Halaas, Leptin and the regulation of body weight in mammals, Nature, vol.333, issue.2, pp.763-70, 1998.
DOI : 10.1056/NEJM199509143331101

W. Banks, A. Kastin, W. Huang, J. Jaspan, and L. Maness, Leptin enters the brain by a saturable system independent of insulin, Peptides, vol.17, issue.2, pp.305-316, 1996.
DOI : 10.1016/0196-9781(96)00025-3

W. Banks, C. Clever, and C. Farrell, Partial saturation and regional variation in the blood-to-brain transport of leptin in normal weight mice, American Journal of Physiology-Endocrinology and Metabolism, vol.272, issue.6, pp.1158-65, 2000.
DOI : 10.1111/j.1471-4159.1988.tb04864.x

R. Devos, J. Richards, L. Campfield, L. Tartaglia, Y. Guisez et al., OB protein binds specifically to the choroid plexus of mice and rats., Proceedings of the National Academy of Sciences, vol.93, issue.11, pp.5668-73, 1996.
DOI : 10.1073/pnas.93.11.5668

M. Wilkinson, B. Morash, and E. Ur, The Brain is a Source of Leptin, Front Horm Res, vol.26, pp.106-131, 2000.
DOI : 10.1159/000061018

B. Morash, A. Li, P. Murphy, M. Wilkinson, and E. Ur, Leptin Gene Expression in the Brain and Pituitary Gland, Endocrinology, vol.140, issue.12, pp.5995-6003, 1999.
DOI : 10.1210/endo.140.12.7288

R. Brown, S. Imran, D. Belsham, E. Ur, and M. Wilkinson, Adipokine Gene Expression in a Novel Hypothalamic Neuronal Cell Line: Resistin-Dependent Regulation of Fasting-Induced Adipose Factor and SOCS-3, Neuroendocrinology, vol.55, issue.4, pp.232-273, 2007.
DOI : 10.1194/jlr.M400373-JLR200

R. Brown, H. Thompson, S. Imran, E. Ur, and M. Wilkinson, Traumatic brain injury induces adipokine gene expression in rat brain, Neuroscience Letters, vol.432, issue.1, pp.73-81, 2008.
DOI : 10.1016/j.neulet.2007.12.008

E. Gorska, K. Popko, A. Stelmaszczyk-emmel, O. Ciepiela, A. Kucharska et al., Leptin receptors, Eur J Med Res, vol.15, issue.2, pp.50-54, 2010.

L. Tartaglia, The Leptin Receptor, Journal of Biological Chemistry, vol.19, issue.10, pp.6093-6099, 1997.
DOI : 10.2337/diab.45.7.992

L. Tartaglia, M. Dembski, X. Weng, N. Deng, J. Culpepper et al., Identification and expression cloning of a leptin receptor, OB-R, Cell, vol.83, issue.7, pp.1263-71, 1995.
DOI : 10.1016/0092-8674(95)90151-5

J. Mercer, N. Hoggard, L. Williams, C. Lawrence, L. Hannah et al., Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization, FEBS Letters, vol.219, issue.2-3, pp.113-119, 1996.
DOI : 10.1006/bbrc.1996.0328

C. Yi, C. Meyer, and M. Jastroch, Leptin action in the brain: How (and when) it makes fat burn, Molecular Metabolism, vol.2, issue.2, pp.63-67, 2013.
DOI : 10.1016/j.molmet.2013.03.002

B. Burguera, M. Couce, J. Long, J. Lamsam, K. Laakso et al., The Long Form of the Leptin Receptor (OB-Rb) Is Widely Expressed in the Human Brain, Neuroendocrinology, vol.71, issue.3, pp.187-95, 2000.
DOI : 10.1159/000054536

A. Savioz, Y. Charnay, C. Huguenin, C. Graviou, B. Greggio et al., Expression of leptin receptor mRNA (long form splice variant) in the human cerebellum, NeuroReport, vol.8, issue.14, pp.3123-3129, 1997.
DOI : 10.1097/00001756-199709290-00023

L. Shanley, O. Malley, D. Irving, A. Ashford, M. Harvey et al., Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels, The Journal of Physiology, vol.275, issue.suppl. 582, pp.933-977, 2002.
DOI : 10.1074/jbc.275.15.11348

M. Scott, K. Williams, J. Rossi, C. Lee, and J. Elmquist, Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice, Journal of Clinical Investigation, vol.121, issue.6, pp.2413-2434, 2011.
DOI : 10.1172/JCI43703DS1

M. Scott, J. Lachey, S. Sternson, C. Lee, C. Elias et al., Leptin targets in the mouse brain, The Journal of Comparative Neurology, vol.141, issue.5, pp.518-550, 2009.
DOI : 10.1179/his.1989.12.3.169

M. Cowley, J. Smart, M. Rubinstein, M. Cerdan, S. Diano et al., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus, Nature, vol.411, issue.6836, pp.480-484, 2001.
DOI : 10.1038/35078085

D. Baskin, T. Hahn, and M. Schwartz, Leptin Sensitive Neurons in the Hypothalamus, Hormone and Metabolic Research, vol.31, issue.05, pp.345-50, 1999.
DOI : 10.1055/s-2007-978751

P. Enriori, A. Evans, P. Sinnayah, E. Jobst, L. Tonelli-lemos et al., Diet-Induced Obesity Causes Severe but Reversible Leptin Resistance in Arcuate Melanocortin Neurons, Cell Metabolism, vol.5, issue.3, pp.181-94, 2007.
DOI : 10.1016/j.cmet.2007.02.004

URL : https://doi.org/10.1016/j.cmet.2007.02.004

L. Vong, C. Ye, Z. Yang, B. Choi, C. Jr et al., Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons, Neuron, vol.71, issue.1, pp.142-54, 2011.
DOI : 10.1016/j.neuron.2011.05.028

URL : https://doi.org/10.1016/j.neuron.2011.05.028

Y. Xu, E. Kim, R. Zhao, M. Jr, M. Munzberg et al., Glutamate release mediates leptin action on energy expenditure, Molecular Metabolism, vol.2, issue.2, pp.109-124, 2013.
DOI : 10.1016/j.molmet.2013.01.004

URL : https://doi.org/10.1016/j.molmet.2013.01.004

S. Bouret, Neurodevelopmental actions of leptin, Brain Research, vol.1350, pp.2-9, 2010.
DOI : 10.1016/j.brainres.2010.04.011

G. Paz-filho, M. Wong, and J. Licinio, The procognitive effects of leptin in the brain and their clinical implications, International Journal of Clinical Practice, vol.14, issue.Suppl. 1, pp.1808-1820, 2010.
DOI : 10.1515/JPEM.2009.22.11.1069

G. Paz-filho, M. Wong, and J. Licinio, Leptin Levels and Alzheimer Disease, JAMA, vol.303, issue.15, pp.1478-1478, 2010.
DOI : 10.1001/jama.2010.436

D. Bonda, J. Stone, S. Torres, S. Siedlak, G. Perry et al., Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance, Journal of Neurochemistry, vol.44, issue.241, pp.162-72, 2014.
DOI : 10.1212/WNL.0b013e318238eec1

A. Fleisch, N. Agarwal, M. Roberts, J. Han, K. Theim et al., Influence of Serum Leptin on Weight and Body Fat Growth in Children at High Risk for Adult Obesity, The Journal of Clinical Endocrinology & Metabolism, vol.92, issue.3, pp.948-54, 2007.
DOI : 10.1210/jc.2006-1390

A. Salbe, C. Weyer, R. Lindsay, E. Ravussin, and P. Tataranni, Assessing Risk Factors for Obesity Between Childhood and Adolescence: I. Birth Weight, Childhood Adiposity, Parental Obesity, Insulin, and Leptin, PEDIATRICS, vol.110, issue.2, pp.299-306, 2002.
DOI : 10.1542/peds.110.2.299

H. Wang, W. Chu, C. Hemphill, and S. Elbein, Human Resistin Gene: Molecular Scanning and Evaluation of Association with Insulin Sensitivity and Type 2 Diabetes in Caucasians, The Journal of Clinical Endocrinology & Metabolism, vol.87, issue.6, pp.2520-2524, 2002.
DOI : 10.1210/jcem.87.6.8528

M. Degawa-yamauchi, J. Bovenkerk, B. Juliar, W. Watson, K. Kerr et al., Serum Resistin (FIZZ3) Protein Is Increased in Obese Humans, The Journal of Clinical Endocrinology & Metabolism, vol.88, issue.11, pp.5452-5457, 2003.
DOI : 10.1210/jc.2002-021808

J. Lee, B. Jr, J. Stoyneva, V. Mantzoros, and C. , Circulating resistin in lean, obese, and insulin-resistant mouse models: lack of association with insulinemia and glycemia, American Journal of Physiology-Endocrinology and Metabolism, vol.288, issue.3, pp.625-657, 2005.
DOI : 10.1152/ajpendo.2000.279.4.E838

J. Vendrell, M. Broch, N. Vilarrasa, A. Molina, J. Gomez et al., Resistin, Adiponectin, Ghrelin, Leptin, and Proinflammatory Cytokines: Relationships in Obesity, Obesity Research, vol.83, issue.6, pp.962-71, 2004.
DOI : 10.1210/jc.2003-030519

H. Park and R. Ahima, Resistin in Rodents and Humans, Diabetes & Metabolism Journal, vol.37, issue.6, pp.404-418, 2013.
DOI : 10.4093/dmj.2013.37.6.404

C. Broglio, A. Gómez, E. Durán, F. Ocaña, F. Jiménez-moya et al., Hallmarks of a common forebrain vertebrate plan: Specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish, Brain Research Bulletin, vol.66, issue.4-6, pp.277-81, 2005.
DOI : 10.1016/j.brainresbull.2005.03.021

S. Kosari, D. Camera, J. Hawley, M. Stebbing, and E. Badoer, ERK1/2 in the brain mediates the effects of central resistin on reducing thermogenesis in brown adipose tissue, Int J Physiol Pathophysiol Pharmacol, vol.5, pp.184-193, 2013.

S. Kosari, J. Rathner, and E. Badoer, Central resistin enhances renal sympathetic nerve activity via phosphatidylinositol 3-kinase but reduces the activity to brown adipose tissue via extracellular signal

C. Yi and M. Tschop, Brain-gut-adipose-tissue communication pathways at a glance, Disease Models & Mechanisms, vol.5, issue.5, pp.583-590, 2012.
DOI : 10.1242/dmm.009902

B. Sanchez-solana, J. Laborda, and V. Baladron, Mouse Resistin Modulates Adipogenesis and Glucose Uptake in 3T3-L1 Preadipocytes Through the ROR1 Receptor, Molecular Endocrinology, vol.26, issue.1, pp.110-137, 2012.
DOI : 10.1210/me.2011-1027

E. Böstrom, M. Svensson, S. Andersson, I. Jonsson, A. Ekwall et al., Resistin and insulin/insulin-like growth factor signaling in rheumatoid arthritis, Arthritis & Rheumatism, vol.40, issue.10, pp.2894-904, 2011.
DOI : 10.1016/j.cyto.2007.09.011

F. Rodriguez-pacheco, R. Vazquez-martinez, A. Martinez-fuentes, M. Pulido, M. Gahete et al., Resistin Regulates Pituitary Somatotrope Cell Function through the Activation of Multiple Signaling Pathways, Endocrinology, vol.150, issue.10, pp.4643-52, 2009.
DOI : 10.1210/en.2009-0116

M. Bokarewa, I. Nagaev, L. Dahlberg, U. Smith, and A. Tarkowski, Resistin, an Adipokine with Potent Proinflammatory Properties, The Journal of Immunology, vol.174, issue.9, pp.5789-95, 2005.
DOI : 10.4049/jimmunol.174.9.5789

URL : http://www.jimmunol.org/content/jimmunol/174/9/5789.full.pdf

J. Olefsky and C. Glass, Macrophages, Inflammation, and Insulin Resistance, Annual Review of Physiology, vol.72, issue.1, pp.219-265, 2010.
DOI : 10.1146/annurev-physiol-021909-135846

N. Silswal, A. Singh, B. Aruna, S. Mukhopadhyay, S. Ghosh et al., Human resistin stimulates the pro-inflammatory cytokines TNF-?? and IL-12 in macrophages by NF-??B-dependent pathway, Biochemical and Biophysical Research Communications, vol.334, issue.4, pp.1092-101, 2005.
DOI : 10.1016/j.bbrc.2005.06.202

Y. Benomar, A. Gertler, D. Lacy, P. Crepin, D. et al., Central Resistin Overexposure Induces Insulin Resistance Through Toll-Like Receptor 4, Diabetes, vol.62, issue.1, pp.102-116, 2013.
DOI : 10.2337/db12-0237

URL : https://hal.archives-ouvertes.fr/hal-01179371

R. Brown, G. Wiesner, E. Ur, and M. Wilkinson, Pituitary Resistin Gene Expression Is Upregulated in vitro and in vivo by Dexamethasone but Is Unaffected by Rosiglitazone, Neuroendocrinology, vol.283, issue.1, pp.41-49, 2005.
DOI : 10.1016/j.bbrc.2003.09.093

B. Morash, D. Willkinson, E. Ur, and M. Wilkinson, Resistin expression and regulation in mouse pituitary, FEBS Letters, vol.256, issue.1-3, pp.26-30, 2002.
DOI : 10.1006/bbrc.1999.0382

M. Wilkinson, R. Brown, S. Imran, and E. Ur, Adipokine Gene Expression in Brain and Pituitary Gland, Neuroendocrinology, vol.35, issue.3, pp.191-209, 2007.
DOI : 10.1016/j.ygcen.2005.08.001

G. Wiesner, R. Brown, G. Robertson, S. Imran, E. Ur et al., Increased expression of the adipokine genes resistin and fasting-induced adipose factor in hypoxic/ischaemic mouse brain, NeuroReport, vol.17, issue.11, pp.1195-1203, 2006.
DOI : 10.1097/01.wnr.0000224776.12647.ba

J. Miralbell, E. Lopez-cancio, J. Lopez-oloriz, J. Arenillas, M. Barrios et al., Cognitive Patterns in Relation to Biomarkers of Cerebrovascular Disease and Vascular Risk Factors, Cerebrovascular Diseases, vol.36, issue.2, pp.98-105, 2013.
DOI : 10.1159/000352059

P. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. Lodish, A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes, Journal of Biological Chemistry, vol.268, issue.45, pp.26746-26755, 1995.
DOI : 10.1038/369493a0

Y. Matsuzawa, Adiponectin: Identification, physiology and clinical relevance in metabolic and vascular disease, Atherosclerosis Supplements, vol.6, issue.2, pp.7-14, 2005.
DOI : 10.1016/j.atherosclerosissup.2005.02.003

J. Thundyil, D. Pavlovski, C. Sobey, and T. Arumugam, Adiponectin receptor signalling in the brain, British Journal of Pharmacology, vol.80, issue.2, pp.313-340, 2012.
DOI : 10.1016/j.lfs.2006.09.031

H. Waki, T. Yamauchi, J. Kamon, Y. Ito, S. Uchida et al., Impaired Multimerization of Human Adiponectin Mutants Associated with Diabetes, Journal of Biological Chemistry, vol.84, issue.41, pp.40352-63, 2003.
DOI : 10.1073/pnas.87.2.658

URL : https://hal.archives-ouvertes.fr/hal-00174569

A. Psilopanagioti, H. Papadaki, E. Kranioti, T. Alexandrides, and J. Varakis, Expression of Adiponectin and Adiponectin Receptors in Human Pituitary Gland and Brain, Neuroendocrinology, vol.89, issue.1, pp.38-47, 2009.
DOI : 10.1159/000151396

S. Maddineni, S. Metzger, O. Ocon, G. Hendricks-3rd, and R. Ramachandran, Adiponectin Gene Is Expressed in Multiple Tissues in the Chicken: Food Deprivation Influences Adiponectin Messenger Ribonucleic Acid Expression, Endocrinology, vol.146, issue.10, pp.4250-4256, 2005.
DOI : 10.1210/en.2005-0254

A. Berg, T. Combs, and P. Scherer, ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism, Trends in Endocrinology & Metabolism, vol.13, issue.2, pp.84-93, 2002.
DOI : 10.1016/S1043-2760(01)00524-0

Y. Okamoto, S. Kihara, N. Ouchi, M. Nishida, Y. Arita et al., Adiponectin Reduces Atherosclerosis in Apolipoprotein E-Deficient Mice, Circulation, vol.106, issue.22, pp.2767-70, 2002.
DOI : 10.1161/01.CIR.0000042707.50032.19

N. Stefan and M. Stumvoll, Adiponectin - Its Role in Metabolism and Beyond, Hormone and Metabolic Research, vol.34, issue.9, pp.469-74, 2002.
DOI : 10.1055/s-2002-34785

J. Whitehead, A. Richards, I. Hickman, G. Macdonald, and J. Prins, Adiponectin - a key adipokine in the metabolic syndrome, Diabetes, Obesity and Metabolism, vol.96, issue.3, pp.264-80, 2006.
DOI : 10.1038/sj.ijo.0802494

M. Fry, P. Smith, T. Hoyda, M. Duncan, R. Ahima et al., Area Postrema Neurons Are Modulated by the Adipocyte Hormone Adiponectin, Journal of Neuroscience, vol.26, issue.38, pp.9695-702, 2006.
DOI : 10.1523/JNEUROSCI.2014-06.2006

T. Hoyda, M. Fry, R. Ahima, and A. Ferguson, Adiponectin selectively inhibits oxytocin neurons of the paraventricular nucleus of the hypothalamus, The Journal of Physiology, vol.7, issue.3, pp.805-821, 2007.
DOI : 10.1038/90984

J. Thundyil, S. Tang, E. Okun, K. Shah, V. Karamyan et al., Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death, Experimental & Translational Stroke Medicine, vol.2, issue.1, p.15, 2010.
DOI : 10.1186/2040-7378-2-15

URL : http://etsmjournal.biomedcentral.com/track/pdf/10.1186/2040-7378-2-15?site=etsmjournal.biomedcentral.com

V. Repunte-canonigo, F. Berton, P. Cottone, A. Reifel-miller, A. Roberts et al., A potential role for adiponectin receptor 2 (AdipoR2) in the regulation of alcohol intake, Brain Research, vol.1339, pp.11-18, 2010.
DOI : 10.1016/j.brainres.2010.03.060

T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo et al., Cloning of adiponectin receptors that mediate antidiabetic metabolic effects, Nature, vol.423, issue.6941, pp.762-771, 2003.
DOI : 10.1038/nature01705

URL : https://hal.archives-ouvertes.fr/hal-00174581

B. Ranscht and M. Dours-zimmermann, T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region, Neuron, vol.7, issue.3, pp.391-402, 1991.
DOI : 10.1016/0896-6273(91)90291-7

E. Matsunaga, S. Nambu, M. Oka, and A. Iriki, Differential cadherin expression in the developing postnatal telencephalon of a new world monkey, Journal of Comparative Neurology, vol.521, pp.4027-60, 2013.
DOI : 10.1002/cne.23389

B. Venkatesh, I. Hickman, J. Nisbet, J. Cohen, and J. Prins, Changes in serum adiponectin concentrations in critical illness: a preliminary investigation, Critical Care, vol.13, issue.4, p.105, 2009.
DOI : 10.1186/cc7941

A. Hillenbrand, U. Knippschild, M. Weiss, H. Schrezenmeier, D. Henne-bruns et al., Sepsis induced changes of adipokines and cytokines - septic patients compared to morbidly obese patients, BMC Surgery, vol.18, issue.Suppl 5, p.26, 2010.
DOI : 10.1016/S0749-0704(02)00007-6

A. Hillenbrand, M. Weiss, U. Knippschild, A. Wolf, and M. Huber-lang, Sepsis-Induced Adipokine Change with regard to Insulin Resistance, International Journal of Inflammation, vol.89, issue.1
DOI : 10.1210/en.2009-0926

URL : https://doi.org/10.1155/2012/972368

Z. Wan, D. Mah, S. Simtchouk, A. Klegeris, and J. Little, Globular adiponectin induces a pro-inflammatory response in human astrocytic cells, Biochemical and Biophysical Research Communications, vol.446, issue.1, pp.37-42, 2014.
DOI : 10.1016/j.bbrc.2014.02.077

J. Spranger, S. Verma, I. Gohring, T. Bobbert, J. Seifert et al., Adiponectin Does Not Cross the Blood-Brain Barrier but Modifies Cytokine Expression of Brain Endothelial Cells, Diabetes, vol.55, issue.1, pp.141-148, 2006.
DOI : 10.2337/diabetes.55.01.06.db05-1077

G. Qiu, R. Wan, J. Hu, M. Mattson, E. Spangler et al., Adiponectin protects rat hippocampal neurons against excitotoxicity, AGE, vol.42, issue.5, pp.155-65, 2011.
DOI : 10.1016/j.exger.2007.05.011

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127462/pdf

M. Nishimura, Y. Izumiya, A. Higuchi, R. Shibata, J. Qiu et al., Adiponectin Prevents Cerebral Ischemic Injury Through Endothelial Nitric Oxide Synthase-Dependent Mechanisms, Circulation, vol.117, issue.2, pp.216-239, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.725044

URL : http://circ.ahajournals.org/content/circulationaha/117/2/216.full.pdf

J. Thaler, C. Yi, E. Schur, S. Guyenet, B. Hwang et al., Obesity is associated with hypothalamic injury in rodents and humans, Journal of Clinical Investigation, vol.122, issue.1, pp.153-62, 2012.
DOI : 10.1172/JCI59660DS1

M. Kriegler, C. Perez, K. Defay, I. Albert, and S. Lu, A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: Ramifications for the complex physiology of TNF, Cell, vol.53, issue.1, pp.45-53, 1988.
DOI : 10.1016/0092-8674(88)90486-2

P. Tang, M. Hung, and J. Klostergaard, TNF cytotoxicity: effects of HER-2/neu expression and inhibitors of ADP-ribosylation, Lymphokine Cytokine Res, vol.13, pp.117-140, 1994.

R. Black, C. Rauch, C. Kozlosky, J. Peschon, J. Slack et al., A metalloproteinase disintegrin that releases tumour-necrosis factor-?? from cells, Nature, vol.385, issue.6618, pp.729-762, 1997.
DOI : 10.1038/385729a0

G. Hotamisligil, N. Shargill, and B. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance, Science, vol.259, issue.5091, pp.87-91, 1993.
DOI : 10.1126/science.7678183

M. Morganti-kossman, P. Lenzlinger, V. Hans, P. Stahel, E. Csuka et al., Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue, Molecular Psychiatry, vol.2, issue.2, pp.133-139, 1997.
DOI : 10.1038/sj.mp.4000227

I. Chung and E. Benveniste, Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta, J Immunol, vol.144, pp.2999-3007, 1990.

A. Lieberman, P. Pitha, H. Shin, and M. Shin, Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus., Proceedings of the National Academy of Sciences, vol.86, issue.16, pp.6348-52, 1989.
DOI : 10.1073/pnas.86.16.6348

S. Montgomery and W. Bowers, Tumor Necrosis Factor-alpha and the Roles it Plays in Homeostatic and Degenerative Processes Within the Central Nervous System, Journal of Neuroimmune Pharmacology, vol.64, issue.Suppl 6, pp.42-59, 2012.
DOI : 10.1002/jnr.1059

M. Pickering, D. Cumiskey, O. Connor, and J. , Actions of TNF-?? on glutamatergic synaptic transmission in the central nervous system, Experimental Physiology, vol.1034, issue.5, pp.663-70, 2005.
DOI : 10.1016/j.brainres.2004.11.014

I. Clark and B. Vissel, A Neurologist???s Guide to TNF Biology and to the Principles behind the Therapeutic Removal of Excess TNF in Disease, Neural Plasticity, vol.25, issue.1, p.358263, 2015.
DOI : 10.1093/brain/aws322

R. Fischer and O. Maier, Interrelation of Oxidative Stress and Inflammation in Neurodegenerative Disease: Role of TNF, Oxidative Medicine and Cellular Longevity, vol.19, issue.9, p.610813, 2015.
DOI : 10.1007/978-1-4419-6612-4_59

G. Harry, J. Funk, C. Lefebvre-d-'hellencourt, C. Mcpherson, and M. Aoyama, The type 1 interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation, Brain Research, vol.1194, pp.8-20, 2008.
DOI : 10.1016/j.brainres.2007.11.076

URL : https://hal.archives-ouvertes.fr/hal-01198354

L. Probert, TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects, Neuroscience, vol.302, pp.2-22, 2015.
DOI : 10.1016/j.neuroscience.2015.06.038

S. Barger, D. Horster, K. Furukawa, Y. Goodman, J. Krieglstein et al., Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation., Proceedings of the National Academy of Sciences, vol.92, issue.20, pp.9328-9360, 1995.
DOI : 10.1073/pnas.92.20.9328

E. Beattie, D. Stellwagen, W. Morishita, J. Bresnahan, B. Ha et al., Control of Synaptic Strength by Glial TNFalpha, Science, vol.295, issue.5563, pp.2282-2287, 2002.
DOI : 10.1126/science.1067859

L. Marchetti, M. Klein, K. Schlett, K. Pfizenmaier, and U. Eisel, -Methyl-D-aspartate Receptor Activation, Journal of Biological Chemistry, vol.21, issue.31, pp.32869-81, 2004.
DOI : 10.1084/jem.193.4.427

U. Heldmann, P. Thored, J. Claasen, A. Arvidsson, Z. Kokaia et al., TNF-?? antibody infusion impairs survival of stroke-generated neuroblasts in adult rat brain, Experimental Neurology, vol.196, issue.1, pp.204-212, 2005.
DOI : 10.1016/j.expneurol.2005.07.024

B. Baune, F. Wiede, A. Braun, J. Golledge, V. Arolt et al., Cognitive dysfunction in mice deficient for TNF- and its receptors, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.9, issue.6, pp.1056-64, 2008.
DOI : 10.4049/jimmunol.166.6.4012

K. Selmaj and C. Raine, Tumor Necrosis Factor Mediates Myelin Damage in Organotypic Cultures of Nervous Tissue, Annals of the New York Academy of Sciences, vol.316, issue.1 Advances in N, pp.568-70, 1988.
DOI : 10.1007/BF01611858

G. Hermann, R. Rogers, J. Bresnahan, and M. Beattie, Tumor Necrosis Factor-?? Induces cFOS and Strongly Potentiates Glutamate-Mediated Cell Death in the Rat Spinal Cord, Neurobiology of Disease, vol.8, issue.4, pp.590-599, 2001.
DOI : 10.1006/nbdi.2001.0414

M. Butler, O. Connor, J. Moynagh, and P. , Dissection of tumor-necrosis factor-?? inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early???but not late???phase LTP, Neuroscience, vol.124, issue.2, pp.319-345, 2004.
DOI : 10.1016/j.neuroscience.2003.11.040

A. Cunningham, C. Murray, O. Neill, L. Lynch, M. et al., Interleukin-1?? (IL-1??) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro, Neuroscience Letters, vol.203, issue.1, pp.17-20, 1996.
DOI : 10.1016/0304-3940(95)12252-4

X. Lan, Q. Chen, Y. Wang, B. Jia, L. Sun et al., TNF-?? Affects Human Cortical Neural Progenitor Cell Differentiation through the Autocrine Secretion of Leukemia Inhibitory Factor, PLoS ONE, vol.11, issue.12, p.50783, 2012.
DOI : 10.1371/journal.pone.0050783.g006

R. Iosif, C. Ekdahl, H. Ahlenius, C. Pronk, S. Bonde et al., Tumor Necrosis Factor Receptor 1 Is a Negative Regulator of Progenitor Proliferation in Adult Hippocampal Neurogenesis, Journal of Neuroscience, vol.26, issue.38, pp.9703-9715, 2006.
DOI : 10.1523/JNEUROSCI.2723-06.2006

F. Frisca, R. Sabbadini, Y. Goldshmit, and A. Pebay, Biological Effects of Lysophosphatidic Acid in the Nervous System, Int Rev Cell Mol Biol, vol.296, pp.273-322, 2012.
DOI : 10.1016/B978-0-12-394307-1.00005-9

A. Tokumura, Metabolic pathways and physiological and pathological significances of lysolipid phosphate mediators, Journal of Cellular Biochemistry, vol.278, issue.5, pp.869-81, 2004.
DOI : 10.1016/S1388-1981(02)00140-3

K. Noguchi, D. Herr, T. Mutoh, and J. Chun, Lysophosphatidic acid (LPA) and its receptors, Current Opinion in Pharmacology, vol.9, issue.1, pp.15-23, 2009.
DOI : 10.1016/j.coph.2008.11.010

K. Kotarsky, A. Boketoft, J. Bristulf, N. Nilsson, A. Norberg et al., Lysophosphatidic Acid Binds to and Activates GPR92, a G Protein-Coupled Receptor Highly Expressed in Gastrointestinal Lymphocytes, Journal of Pharmacology and Experimental Therapeutics, vol.318, issue.2, pp.619-647, 2006.
DOI : 10.1124/jpet.105.098848

K. Noguchi, S. Ishii, and T. Shimizu, /GPR23 as a Novel G Protein-coupled Receptor for Lysophosphatidic Acid, Structurally Distant from the Edg Family, Journal of Biological Chemistry, vol.1582, issue.28, pp.25600-25606, 2003.
DOI : 10.1073/pnas.0135855100

Y. Zhao and V. Natarajan, Lysophosphatidic acid (LPA) and its receptors: Role in airway inflammation and remodeling, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1831, issue.1, pp.86-92, 1831.
DOI : 10.1016/j.bbalip.2012.06.014

Y. Chen, D. Ramakrishnan, and B. Ren, Regulation of angiogenesis by phospholipid lysophosphatidic acid, Front Biosci, vol.18, pp.852-61, 2013.

X. Ye, M. Skinner, G. Kennedy, and J. Chun, Age-Dependent Loss of Sperm Production in Mice via Impaired Lysophosphatidic Acid Signaling1, Biology of Reproduction, vol.16, issue.2, pp.328-364, 2008.
DOI : 10.1016/j.cellsig.2003.08.012

X. Ye, K. Hama, J. Contos, B. Anliker, A. Inoue et al., LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing, Nature, vol.276, issue.7038, pp.104-112, 2005.
DOI : 10.1074/jbc.M104441200

X. Ye and J. Chun, Lysophosphatidic acid (LPA) signaling in vertebrate reproduction, Trends in Endocrinology & Metabolism, vol.21, issue.1, pp.17-24, 2010.
DOI : 10.1016/j.tem.2009.08.003

E. Matas-rico, B. Garcia-diaz, P. Llebrez-zayas, D. Lopez-barroso, L. Santin et al., Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus, Molecular and Cellular Neuroscience, vol.39, issue.3, pp.342-55, 2008.
DOI : 10.1016/j.mcn.2008.07.014

G. Estivill-torrus, P. Llebrez-zayas, E. Matas-rico, L. Santin, C. Pedraza et al., Absence of LPA1 Signaling Results in Defective Cortical Development, Cerebral Cortex, vol.1585, issue.4, pp.938-50, 2008.
DOI : 10.1016/S1388-1981(02)00330-X

A. Dubin, D. Herr, and J. Chun, Diversity of Lysophosphatidic Acid Receptor-Mediated Intracellular Calcium Signaling in Early Cortical Neurogenesis, Journal of Neuroscience, vol.30, issue.21, pp.7300-7309, 2010.
DOI : 10.1523/JNEUROSCI.6151-09.2010

M. Kingsbury, S. Rehen, J. Contos, C. Higgins, and J. Chun, Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding, Nature Neuroscience, vol.6, issue.12, pp.1292-1301, 2003.
DOI : 10.1038/nn1157

N. Fukushima, S. Shano, R. Moriyama, and J. Chun, Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1???Gi/o pathway, Neurochemistry International, vol.50, issue.2, pp.302-309, 2007.
DOI : 10.1016/j.neuint.2006.09.008

S. Svetlov, T. Ignatova, K. Wang, R. Hayes, D. English et al., Lysophosphatidic Acid Induces Clonal Generation of Mouse Neurospheres via Proliferation of Sca-1- and AC133-Positive Neural Progenitors, Stem Cells and Development, vol.13, issue.6, pp.685-93, 2004.
DOI : 10.1089/scd.2004.13.685

F. Holtsberg, M. Steiner, J. Keller, R. Mark, M. Mattson et al., Lysophosphatidic Acid Induces Necrosis and Apoptosis in Hippocampal Neurons, Journal of Neurochemistry, vol.70, issue.1, pp.66-76, 1998.
DOI : 10.1046/j.1471-4159.1998.70010066.x

Z. Zheng, X. Fang, Y. Zhang, and J. Qiao, Neuroprotective effect of lysophosphatidic acid on AbetaP31-35-induced apoptosis in cultured cortical neurons, Sheng Li Xue Bao, vol.57, pp.289-94, 2005.

Z. Zheng, X. Fang, and J. Qiao, Dual action of lysophosphatidic acid in cultured cortical neurons: survival and apoptogenic, Sheng Li Xue Bao, vol.56, pp.163-71, 2004.

J. Keller, M. Steiner, F. Holtsberg, M. Mattson, and S. Steiner, Lysophosphatidic Acid-Induced Proliferation-Related Signals in Astrocytes, Journal of Neurochemistry, vol.69, issue.3, pp.1073-84, 1997.
DOI : 10.1046/j.1471-4159.1997.69031073.x

T. Moller, J. Contos, D. Musante, C. J. Ransom, and B. , Expression and Function of Lysophosphatidic Acid Receptors in Cultured Rodent Microglial Cells, Journal of Biological Chemistry, vol.13, issue.28, pp.25946-52, 2001.
DOI : 10.1007/BF00792609

R. Awada, P. Rondeau, S. Gres, J. Saulnier-blache, C. Lefebvre-d-'hellencourt et al., Autotaxin protects microglial cells against oxidative stress, Free Radical Biology and Medicine, vol.52, issue.2, pp.516-542, 2012.
DOI : 10.1016/j.freeradbiomed.2011.11.014

URL : https://hal.archives-ouvertes.fr/hal-01198333

R. Awada, J. Saulnier-blache, S. Gres, E. Bourdon, P. Rondeau et al., Autotaxin Downregulates LPS-Induced Microglia Activation and Pro-Inflammatory Cytokines Production, Journal of Cellular Biochemistry, vol.1831, issue.12, pp.2123-2155, 2014.
DOI : 10.1016/j.bbalip.2012.06.014

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275303/pdf

T. Frugier, D. Crombie, A. Conquest, F. Tjhong, C. Taylor et al., Modulation of LPA Receptor Expression in the Human Brain Following Neurotrauma, Cellular and Molecular Neurobiology, vol.45, issue.Pt 3, pp.569-77, 2011.
DOI : 10.1002/glia.10297

J. Hecht, J. Weiner, S. Post, and J. Chun, Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex, The Journal of Cell Biology, vol.135, issue.4, pp.1071-83, 1996.
DOI : 10.1083/jcb.135.4.1071

S. Yau, A. Li, R. Hoo, Y. Ching, B. Christie et al., Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin, Proceedings of the National Academy of Sciences, vol.150, issue.2, pp.15810-15815, 2014.
DOI : 10.1210/en.2008-0999

S. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, Journal of Clinical Investigation, vol.112, issue.12, pp.1796-808, 2003.
DOI : 10.1172/JCI19246DS1

A. Greenberg and M. Obin, Obesity and the role of adipose tissue in inflammation and metabolism, Am J Clin Nutr, vol.83, pp.461-466, 2006.

A. Moschen, A. Kaser, B. Enrich, B. Mosheimer, M. Theurl et al., Visfatin, an Adipocytokine with Proinflammatory and Immunomodulating Properties, The Journal of Immunology, vol.178, issue.3, pp.1748-58, 2007.
DOI : 10.4049/jimmunol.178.3.1748

H. Tilg and A. Moschen, Adipocytokines: mediators linking adipose tissue, inflammation and immunity, Nature Reviews Immunology, vol.187, issue.10, pp.772-83, 2006.
DOI : 10.1067/mob.2002.126295

K. Clement, N. Viguerie, C. Poitou, C. Carette, V. Pelloux et al., Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects, The FASEB Journal, vol.18, issue.14, pp.1657-69, 2004.
DOI : 10.1096/fj.04-2204com

A. Berg and P. Scherer, Adipose Tissue, Inflammation, and Cardiovascular Disease, Circulation Research, vol.96, issue.9, pp.939-988, 2005.
DOI : 10.1161/01.RES.0000163635.62927.34

S. Takeda, N. Sato, and R. Morishita, Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy, Frontiers in Aging Neuroscience, vol.12, p.171, 2014.
DOI : 10.10381/nrn3114

C. Mauro, D. Rosa, V. Marelli-berg, F. Solito, and E. , Metabolic syndrome and the immunological affair with the blood-brain barrier, Front Immunol, vol.5, p.677, 2014.

D. Gustafson, C. Karlsson, I. Skoog, L. Rosengren, L. Lissner et al., Mid-life adiposity factors relate to blood-brain barrier integrity in late life, Journal of Internal Medicine, vol.26, issue.Suppl., pp.643-50, 2007.
DOI : 10.3109/00365517709091498

S. Kanoski, Y. Zhang, W. Zheng, and T. Davidson, The Effects of a High-Energy Diet on Hippocampal Function and Blood-Brain Barrier Integrity in the Rat, Journal of Alzheimer's Disease, vol.21, issue.1, pp.207-226, 2010.
DOI : 10.3233/JAD-2010-091414

L. Wisse, Y. Reijmer, A. Ter-telgte, H. Kuijf, A. Leemans et al., Utrecht Vascular Cognitive Impairment Study G. Hippocampal disconnection in early Alzheimer's disease: a 7 tesla MRI study, J Alzheimers Dis, vol.45, pp.1247-1256, 2015.

F. Remy, N. Vayssiere, L. Saint-aubert, E. Barbeau, and J. Pariente, White matter disruption at the prodromal stage of Alzheimer's disease: Relationships with hippocampal atrophy and episodic memory performance, NeuroImage: Clinical, vol.7, pp.482-92, 2015.
DOI : 10.1016/j.nicl.2015.01.014

J. Whitwell, Progression of Atrophy in Alzheimer???s Disease and Related Disorders, Neurotoxicity Research, vol.70, issue.Pt 6, pp.339-385, 2010.
DOI : 10.1212/01.WNL.0000079053.77227.14

G. Bowman, J. Kaye, M. Moore, D. Waichunas, N. Carlson et al., Blood-brain barrier impairment in Alzheimer disease: Stability and functional significance, Neurology, vol.68, issue.21, pp.1809-1823, 2007.
DOI : 10.1212/01.wnl.0000262031.18018.1a

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668699/pdf

M. Ujiie, D. Dickstein, D. Carlow, and W. Jefferies, Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model, Microcirculation, vol.10, pp.463-70, 2003.

S. Gardener, S. Rainey-smith, and R. Martins, Diet and Inflammation in Alzheimer???s Disease and Related Chronic Diseases: A Review, Journal of Alzheimer's Disease, vol.62, issue.Suppl 1, pp.301-335, 2015.
DOI : 10.1079/PNS2003252

M. Matsuda and I. Shimomura, Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases, Reviews in Endocrine and Metabolic Disorders, vol.16, issue.2, pp.1-10, 2014.
DOI : 10.1038/oby.2007.53

A. Laurikka, K. Vuolteenaho, V. Toikkanen, T. Rinne, T. Leppanen et al., Adipocytokine resistin correlates with oxidative stress and myocardial injury in patients undergoing cardiac surgery, European Journal of Cardio-Thoracic Surgery, vol.94, issue.2, pp.729-765, 2014.
DOI : 10.1093/cvr/cvs018

S. Furukawa, T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada et al., Increased oxidative stress in obesity and its impact on metabolic syndrome, Journal of Clinical Investigation, vol.114, issue.12, pp.1752-61, 2004.
DOI : 10.1172/JCI21625DS1

V. Vachharajani and D. Granger, Adipose tissue: A motor for the inflammation associated with obesity, IUBMB Life, vol.291, issue.4, pp.424-454, 2009.
DOI : 10.1002/ar.20715

A. Fernandez-sanchez, E. Madrigal-santillan, M. Bautista, J. Esquivel-soto, A. Morales-gonzalez et al., Inflammation, Oxidative Stress, and Obesity, International Journal of Molecular Sciences, vol.292, issue.Suppl., pp.3117-3149, 2011.
DOI : 10.1152/ajpheart.00628.2006

M. Ozata, M. Mergen, C. Oktenli, A. Aydin, S. Sanisoglu et al., Increased oxidative stress and hypozincemia in male obesity, Clinical Biochemistry, vol.35, issue.8, pp.627-658, 2002.
DOI : 10.1016/S0009-9120(02)00363-6

H. Vincent, K. Vincent, C. Bourguignon, and R. Braith, Obesity and Postexercise Oxidative Stress in Older Women, Medicine & Science in Sports & Exercise, vol.37, issue.2, pp.213-222, 2005.
DOI : 10.1249/01.MSS.0000152705.77073.B3

E. Pihl, K. Zilmer, T. Kullisaar, C. Kairane, A. Magi et al., Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes, International Journal of Obesity, vol.282, issue.1, pp.141-147, 2006.
DOI : 10.1001/jama.282.22.2131

S. Gandhi and A. Abramov, Mechanism of Oxidative Stress in Neurodegeneration, Oxidative Medicine and Cellular Longevity, vol.18, issue.2, p.428010, 2012.
DOI : 10.1515/BC.2003.059

J. Morrow, Is Oxidant Stress a Connection Between Obesity and Atherosclerosis?, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.3, pp.368-70, 2003.
DOI : 10.1161/01.ATV.0000063107.86298.FD

A. Rodriguez-rodriguez, J. Egea-guerrero, F. Murillo-cabezas, and A. Carrillo-vico, Oxidative Stress in Traumatic Brain Injury, Current Medicinal Chemistry, vol.21, issue.10, pp.1201-1212, 2014.
DOI : 10.2174/0929867321666131217153310

J. Ruszkiewicz and A. J. , Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders, Neurochemistry International, vol.88, pp.66-72, 2015.
DOI : 10.1016/j.neuint.2014.12.012

K. Esposito, M. Ciotola, B. Schisano, L. Misso, G. Giannetti et al., Oxidative stress in the metabolic syndrome, Journal of Endocrinological Investigation, vol.111, issue.9, pp.791-796, 2006.
DOI : 10.1016/S0939-4753(04)80048-6

L. Freeman and J. Keller, Oxidative stress and cerebral endothelial cells: Regulation of the blood???brain-barrier and antioxidant based interventions, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1822, issue.5, pp.822-831, 1822.
DOI : 10.1016/j.bbadis.2011.12.009

J. Lochhead, G. Mccaffrey, C. Quigley, J. Finch, K. Demarco et al., Oxidative Stress Increases Blood???Brain Barrier Permeability and Induces Alterations in Occludin during Hypoxia???Reoxygenation, Journal of Cerebral Blood Flow & Metabolism, vol.247, issue.9, pp.1625-1661, 2010.
DOI : 10.1074/jbc.272.37.23076

A. Enciu, M. Gherghiceanu, and B. Popescu, Triggers and Effectors of Oxidative Stress at Blood-Brain Barrier Level: Relevance for Brain Ageing and Neurodegeneration, Oxidative Medicine and Cellular Longevity, vol.282, issue.4, p.297512, 2013.
DOI : 10.1371/journal.pone.0020599