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ABSTRACT

The prevalence of diabetes rapidly increased during the last decades in association with important changes in 
lifestyle. Diabetes and hyperglycemia are well-known for inducing deleterious effects on physiologic processes, 
increasing for instance cardiovascular diseases, nephropathy, retinopathy and foot ulceration. Interestingly, 
diabetes also impairs brain morphology and functions such as (1) decreased neurogenesis (proliferation, 
differentiation and cell survival), (2) decreased brain volumes, (3) increased blood-brain barrier leakage, (4) 
increased cognitive impairments, as well as (5) increased stroke incidence and worse neurologic outcomes 
following stroke. Importantly, diabetes is positively associated with a higher risk to develop Alzheimer disease. In 
this context, we aim at reviewing the impact of diabetes on neural stem cell proliferation, newborn cell 
differentiation and survival in a homeostatic context or following stroke. We also report the effects of hyper- and 

hypoglycemia on the blood-brain barrier physiology through modifications of tight junctions and transporters. 
Finally, we discuss the implication of diabetes on cognition and behavior.

Introduction

Hyperglycemia is defined as a high blood glucose con-

centration (> 1.26 g/L in fasting conditions) reflecting

a failure in energy homeostasis and/or in glucose sens-

ing. It can result from chronic disorder of insulin secre-

tion and/or resistance (diabetes) or from acute stress. In

the context of diabetes, chronic hyperglycemia leads to

severe complications such as cardiovascular diseases,

diabetic nephropathy, foot ulceration, retinopathy, and

nerve damage.1More and more evidences document

the impact of metabolic disorders such as diabetes and

obesity on the central nervous system (CNS).2-6Diabe-

tes is notably linked to changes in the blood-brain bar-

rier (BBB) physiology of cerebral microvessels (barrier

and transport functions).7,8 Furthermore, diabetic

patients display lower brain volumes,9 and they

increase their vulnerability to cognitive deficits and/or

behavioral alterations.4,10

This review aims at further documenting the

impact of diabetes/hyperglycemia on the CNS. After

introducing the main experimental models of type 1

and type 2 diabetes (T1D and T2D), we will describe

the impact of diabetes on neurogenesis, stroke and

brain remodeling, as well as its impact on BBB physi-

ology, on cognitive functions and behavior in mam-

mals. Finally, we will discuss the use of zebrafish as an

emerging model for studying the impact of diabetes

on neurogenesis and brain remodeling.

Part 1: Insights of rodents and mammals

Models of type 1 and type 2 diabetes in rodents

The main models of type 1 diabetes (T1D) in the liter-

ature are non obese diabetic (NOD) mice and strepto-

zotocin (STZ)-induced diabetic rodent models. NOD

mice spontaneously develop T1D due to immune cell

infiltration in the pancreatic islets, leading to the

destruction of the insulin-synthesizing b cells.11

Despite divergences in the immune response of NOD

mice and T1D subjects, NOD mice remain a represen-

tative model of human T1D.11Another model for

inducing T1D in animals is the injection of drugs such
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as alloxan or streptozotocin, 2 toxic glucose analogs.

These compounds accumulate in pancreatic b-cells

through the glucose transporter GLUT2 and lead to

their destruction.12It consequently impairs insulin

synthesis and secretion and results in increased blood

glucose levels.

Several models have been also developed for study-

ing T2D in rodents. For example, db/db mice and

zucker diabetic fatty (ZDF) rats are models of T2D

and obesity in which the leptin receptor is deficient

due to a point mutation. These rodents display high

levels of fasted blood glucose. The Goto-Kakizaki

(GK) rats are a well-characterized model of non-obese

Wistar rats that spontaneous develop T2D.13,14High

fat diets (HFD) also allow the development of T2D in

mice and rats.15-17

Diabetes impairs adult neurogenesis in rodents

Adult neurogenesis is a physiologic process involving

the proliferation of adult neural progenitors, the gene-

sis of newborn neurons, their differentiation, their

migration, and their functional integration into neural

networks. Such a process is spatially and temporally

controlled by a wide variety of intrinsic and extrinsic

factors including transcriptional regulators and hor-

mones.18,19 In the brain of mammals, including

humans, adult neurogenesis is mainly detected in 2

regions of the brain: the subventricular zone (SVZ) of

the lateral ventricle and the subgranular region of the

dentate gyrus (DG) of the hippocampus.20,21Hippo-

campal adult neurogenesis appears to be important

for learning and memory processes.

Diabetes impairs brain cell proliferation in

neurogenic regions

To investigate the impact of diabetes on brain cell pro-

liferation, several studies have used BrdU (5-bromo-

20-deoxyuridine)  injection/detection  as  well  as

immunohistochemistry using antibodies raised against

well-characterized proliferative  markers such as

PCNA (Proliferative Cell Nuclear Antigen) and Ki-67.

In NOD mice, brain cell proliferation was reported to

be significantly decreased in the DG compared with

their control littermates.22 Similarly, using STZ-

induced T1D models of mice and rats, accumulating

data show that diabetes results in a decreased cell pro-

liferation in the DG by performing BrdU and Ki-67

stainings.10,23,24Interestingly, only 6 days after STZ

injection, diabetic mice already displayed a lower

number of proliferative cells in the DG.25

In a similar way, T2D models mainly exhibit a

decrease in brain cell proliferation in the DG, as

shown in db/db mice and in HFD mice and rats.17,26

Interestingly, HFD impairs neurogenesis in young rats

(when intake started at weaning) but not when it

started in adults as revealed by performing DCX-

immunostaining, a marker of newly generated neu-

rons.27It suggests that the hippocampus would be

more sensitive to HFD during a critical period of

development. In striking contrast, other studies

described an increase in hippocampal cell prolifera-

tion in both db/db and HFD mice as well as in GK

rats,10,28while another work shows the absence of

effects of the diabetic status on cell proliferation of the

DG.29To our knowledge, fewer studies investigate

the impact of diabetes on brain cell proliferation in

the SVZ. Six week-old GK rats and their respective

controls had a similar pattern of neural progenitor

proliferation in the SVZ, while 18 week-old GK rats

displayed a strong increase in dividing neural progeni-

tors compared with controls.30Proliferation of the

SVZ striatal wall of the lateral ventricle was also

reported to be not impacted in HFD rats (Rivera et al.,

2011), while a drastic decrease in cell proliferation was

observed after only 20 days of treatment STZ-injected

mice reported.31Such discrepancies could be attrib-

uted to differences in the age of the animals, the dura-

tion and the gravity of the diabetic status, and also the

species used.

Taken together, these data tend to show that T1D

and T2D mainly induce a significant decrease in cell

proliferation of the subgranular zone of the DG

(Fig. 1).

Diabetes impairs brain cell differentiation in

neurogenic regions

Although most studies show that diabetes impairs

brain cell proliferation in neurogenic niches, the pic-

ture appears more contrasted by investigating the

effects of diabetes on neural differentiation. Different

studies using BrdU experiments and co-staining with

mature and immature neuronal markers (i.e. double-

cortin -DCX-, Tuj-1/b-III tubulin) have documented

the negative impact of diabetes on neuronal differenti-

ation. For instance, the number of DCX-positive cells

in the granule cell layer did not show statistically



significant differences between experimental groups.32

However, in STZ-treated mice and rats, a significant

decrease  in  newly  generated  neurons  was

observed.24,33,34T2D models of mice (HFD) and rats

(ZDF) also display a reduced neuronal differentia-

tion.26,35However, few studies reported no change in

neuronal differentiation under type 1 and type 2 dia-

betic status;22,28,36and in striking contrast, a 2-fold

increase in neuronal differentiation was reported in

GK rats at 4 months of age compared with controls,

assuming a compensatory mechanism induced by

neuronal damage.37

In addition, STZ models of mice and rats as well as

HFD rats and db/db mice, display a consistent

decreased in dendritic density and branching.10For

instance, the dendritic length of pyramidal cells from

the prefrontal cortex, the occipital cortex, and the hip-

pocampus of T1D rats was decreased (from 20%

Figure 1.Diabetes impairs adult neurogenesis and brain functions. (A) Sagittal mouse brain section showing the main neurogenic
regions: the subventricular zone of the lateral ventricle (SVZ) and the subgranular region of the dentate gyrus of the hippocampus (DG).
(B) Coronal section through the dentate gyrus of the hippocampus corresponding to the most studied neurogenic region in diabetes.
(C) Neurogenic processes involve neural stem cell proliferation (including self-renewing) and the generation of young neurons that dif-
ferentiate into mature neurons and integrate preexisting neural networks. Diabetes/hyperglycemia has been shown to inhibit neural
stem cell proliferation and neuronal differentiation, and to promote apoptosis. (D) Effects of diabetes on brain functions and physiology.



to 45%) as well as their density (from 36% to 58%)

compared with controls.38Such an inhibition of syn-

aptogenesis was also reinforced in HFD model in rats

and db/db mouse.10,36

Taken together, these data highlight the fact that

diabetes impairs neuronal differentiation (Fig. 1),

including decreased hippocampal dendritic density

and branching leading to an overall decrease in hippo-

campal volume.39Such data probably argue in favor

of a link between diabetes and cognitive impairment,10

given that the hippocampus is involved in memory

processes.

Diabetes impairs brain cell survival

Most studies documented that T1D and T2D result in

a decreased survival of newborn cells,10except in GK

rats for which no significant difference was observed

in cell survival 3 weeks after BrdU injection, while

proliferation was impacted.37STZ models of rat have

shown that diabetes increases neuronal death through

apoptotic mechanisms in the hippocampus.40For

instance, the number of TUNEL-positive neurons

was increased,41-43and the expression of pro-apopto-

tic protein such as Caspase-3 and Bax was upregu-

lated.44-46Taken together, these data highlight that

diabetes impairs neuronal survival by increasing

Caspase-3 expression and activity, and apoptotic gene

regulators40(Fig. 1).

Hyperglycemia, stroke and injury-induced

neurogenesis in rodents and humans

Hyperglycemia and stroke

Hyperglycemia is an independent factor of poor out-

come after acute ischemic stroke (AIS). There is a

strong association between admission blood glucose

levels and intracerebral hemorrhage following throm-

bolytic therapy (recombinant tissue plasminogen acti-

vator, rtPA) after stroke.47Fig. 2shows the increase of

hemorrhagic transformation following middle cere-

bral artery occlusion (MCAO) in mouse. Recently,

hyperglycemia was shown to be independently associ-

ated with worse outcome at 3 months after mechanical

therapy (thrombectomy) in AIS patients.48The mech-

anisms by which hyperglycemia affects ischemic tis-

sues include glutamate accumulation, intracellular

acidosis, BBB disruption accompanied by an increased

matrix metalloprotease (MMP) activity, brain edema

formation, and inhibited plasma fibrinolysis.49-52

There is only few data showing deleterious effects of

hyperglycemia in very early reperfusion.53In clinical

conditions, the detrimental effect of acute hyperglyce-

mia was shown to be higher after early (< 3 hours)

than after delayed or no reperfusion.54Thesefindings

support the notion that acute hyperglycemia was suffi-

cient to increase infarct volume and that this detri-

mental effect was also dependent on the time of

reperfusion.

In a model of MCAO in db/db mice, increased

mortality, infarct volume and cerebral edema were

reported relative to db/C mice. This was associated

with a worsened neurologic status.55Wound healing

was reported to be impaired after cerebral ischemia

and hypoxia in db/db mice, potentially due to a

decreased inflammatory response in diabetic condi-

tions.56db/db mice had also increased brain hemor-

rhage and displayed more severely injured white

matter than nondiabetic mice after MCAO. MMP-9

as well as apoptotic markers were upregulated in

db/db mice and in primary cortical neuron culture.57

In a different model of hypoxia (8% O2) and ischemia

(carotid ligation), gelatinase activity (MMP-2 and 9)

was more increased in the infarcted hemisphere of

db/db relative to db/C mice, suggesting a protease-

mediated alteration of the BBB.58Other mechanisms

such as increased autophagy may participate in the

aggravation of the brain insult under diabetic condi-

tions as shown in a STZ-induced diabetes model in

mice.59In a similar model, microangiopathy associ-

ated with diabetes was shown to impact on post-stroke

remodeling (vasoreactivity was abolished and the

angiogenesis was delayed).60After ischemic stroke, a

decreased vascularization is also noticed in the

Figure 2.Hyperglycemia promotes hemorrhagic transformation
in MCAO models. Representative brain sections of mouse follow-
ing MCAO (3 hours) under control or hyperglycemic conditions.
Arrows highlight hemorrhagic transformation that is obviously
increased in hyperglycemia.



ischemic cortex and striatum of diabetic rats com-

pared with control.61 In addition, they displayed

increased swelling and number of astrocytic processes

highlighting that the healing process is impaired.

Beyond microvessels diabetic conditions also affect

the proliferation and survival of oligodendrocyte pro-

genitor cells that potentially reduce the white matter

response to ischemia.62Whereas epigenetic modifica-

tions may occur during diabetes and participate in

aggravating  ischemia-reperfusion  consequences,63

hyperglycemia induced by stress even in nondiabetic

condition is sufficient to worsen ischemic stroke

outcome.64

Hyperglycemia and injury-induced neurogenesis

Interestingly, neurogenesis plays a crucial role in cere-

bral recovery occurring after stroke; the formation of

new neurons in the SVZ and in the DG being pro-

moted in such a pathological condition.65-67Severe

hyperglycemia leads to a strong decrease in injury-

induced proliferation in the SVZ of rats following

MCAO.68The downregulation of CREB phosphoryla-

tion and the decrease of BDNF expression appear to

be involved in the injury-induced neurogenesis

impairment in a hyperglycemic context. In the same

line of evidences, diabetes inhibits BDNF expression

in the hippocampus and decreases the survival and

the differentiation of the newly generated neurons

after ischemia in rats.69Such adverse effects of hyper-

glycemia  in  reactive  neurogenesis  were  also

highlighted byin vitroischemia of adult rats neural

stem cells in which, hyperglycemia promotes apopto-

sis and decreases proliferation.70Hyperglycemia is

also known to promote the production of ROS and

free radicals and could thus promotes their formation

in the ischemic brain, leading to an increased cell

death.71

Hyperglycemia and blood-brain barrier in rodents

and humans

The BBB plays a key role in maintaining the CNS

homeostasis. The BBB separates the peripheral blood

circulation from the brain parenchyma. On the one

hand, the BBB prevents detrimental substances to

enter the brain, and on the other hand, the BBB will

facilitate nutrients and oxygen passage in the CNS.

The BBB is also involved in the water and electrolyte

equilibrium in the brain interstitial fluid.72 The

particular structure and the specific properties of the

vessels composing the BBB are responsible for the dif-

ferent functions of the BBB. Structurally, the BBB is

characterized by the presence of tight junctions, and it

has also specific transporters and electric properties.

Endothelial dysfunction is a hallmark of diabetes; it

has been linked to T2D and to insulin resistance in

experimental and clinical studies, and during the onset

of cerebral ischemia, the role of endothelial cells com-

posing the BBB is critical. The vasculature appears

also as an important component of the neurogenic

niches given that endothelial cells regulate neural stem

cell activity through diffusible signal that are not

clearly identified.73,74

Transporters

Glucose transporters. As recently reviewed, many

experimental studies report a downregulation of BBB

glucose transporters in hyperglycemic animals, how-

ever other works did not reveal significant changes in

the BBB glucose transporters expression in DM.75In

hypoglycemia conditions, glucose transporters such as

glut1, glut4 or SGLT-1 (NaC/glucose co-transporter)

have been reported to be upregulated.75,76

Efflux transporters.Glycemic changes have also been

studied on the ABC family transporters, which

includes the P-glycoprotein (Pgp) and multidrug resis-

tance-related proteins (MRPs). These transporters

play a key role in brain homeostasis and mediate

active efflux of many potential toxicants including

lipophilic compounds.77In the hCMEC/D3 BBB cellu-

lar model, acute hypoglycemic exposure upregulated

BBB endothelial expression of P-glycoprotein, breast

cancer resistance protein (BCRP) and MRP1 and 4

proteins, while acute hyperglycemic exposure induced

BCRP activity. Repeated hyperglycemic episodes up-

regulate P-glycoprotein activity.76In rat model of dia-

betes (STZ), contradictory results have been reported

in the brain with no change or a decrease of P-glyco-

protein expression.78-80Actually, the modulation of

efflux transporters expression in the brain is region

dependent, with an increase of P-glycoprotein expres-

sion in the hippocampus and in the striatum and a

decrease in the cerebral cortex of the diabetic rats

when compared with control.81,82 For BCRP, a

decrease in the cortex of diabetic rats has been

described.83It is likely that other transporter may be



affected in diabetes as expression of transporters such

as L-type amino acid transporter 1 (LAT1), have been

described to  be affected in an inflammatory

environment.84

Tight junctions and integrity

Variation of glycemia affects tight junction (VE-cad-

herin, claudin, zona-occludens (ZO)) and permeabil-

ity  on endothelial cells  mimicking the  BBB.

Hyperglycemia promotes cerebral-barrier dysfunction

through activation of PKC-band consequent stimula-

tions of oxidative stress and tight junction dissolu-

tion.85 Hyperglycemia increases VE-cadherin and

decreases claudin 5 expression, while hypoglycemia

modify ZO-1 localization and also decreases claudin 5

expression and increases the permeability of the

BBB.76

Taken together, these data highlight the impact of

hypo- and hyperglycemia on the integrity of the BBB

and its physiology (Fig. 3). It also suggests that under

pathological condition (diabetes), the microenviron-

ment regulating neural stem cell activity could be dis-

turbed,  impairing  neurogenesis  and  favoring

neurodegeneration. Such links between metabolic dis-

orders (diabetes and obesity) and BBB disruption

could favor cognitive impairment and modulation of

feeding neuronal networks.

Diabetes, neurotransmission, cognitive impairment

and behavior in rodents and humans

The brain is a glucose-dependent organ, which can be

damaged by both hypoglycemia and hyperglycemia.86

In the hippocampus, diabetes leads to a reduced hip-

pocampal volume due to a decrease in dendritic

branching.10The membrane potential, the membrane

input resistance, and membrane time constant, remain

unaffected in diabetes.10Still in the hippocampus, the

basal neurotransmission appears to be uncertain: (1)

long-term potentiation (LTP), a cellular mechanism

implied in learning and memory, is affected in CA1

neurons of the hippocampus in STZ and HFD treated

rodents, (2) LTP appears to be impacted by both the

duration and the severity of diabetes.87,88 The

impairment of LTP in the different diabetic models

results in cognitive impairments observed through dif-

ferent neurologic tests (Y-maze, Morris water maze,

novel recognition test). Functional  MRI studies

showed a dysfunction in glucose metabolism in

patient having Alzheimer disease and also in small

subcortical structures in patients with Parkinson

disease.89,90

Besides showing significantly more cognitive defi-

cits, T1D and T2D patients display equally more

behavioral alterations such as depression, related to

their condition.4,10In fact, depression is a risk factor

for developing diabetes91 as glycemic control is

affected by lifestyle (e.i. self-care, exercise, diet,

Figure 3.Hyperglycemia and hypoglycemia impairs BBB physiol-
ogy and integrity. (A) In normoglycemic context, tight junctions
strongly maintain endothelial cells between them avoiding para-
cellular transport. Efflux pumps, amino acids and glucose trans-
porters work in an appropriate fashion to maintain brain
homeostasis. (B) In hyperglycemic context, tight junction expres-
sion is decreased allowing paracellular transport leading to BBB
leakage. Glucose transporter expression appears to be reduced in
hyperglycemia while efflux pump expression is increased. (C) In
hypoglycemic context, tight junction expression is decreased
allowing paracellular transport leading also to BBB leakage. Glu-
cose transporters and efflux pump expression are increased.



medication outlet) which is often neglected in the case

of depression. Metabolic defects and neuropsychiatric

diseases consequently appear to be linked.92Through

ATP generation, glucose is the main source of energy

for the brain and a tight glucose regulation is required

for a suitable brain homeostasis, as well as neurotrans-

mitter biosynthesis.93As an illustration, a significant

increase in acetylcholinesterase activity was observed

in the hippocampus of diabetic rats induced by high

fat diet followed by STZ injection. These rats showed

reduced glutamate levels in their hippocampus and

increased GABA levels in their hippocampus and cor-

tex compared with normal animals. They also display

altered performance in various behavioral tests such

as Morris water maze, openfield and elevated plus

maze. A prolonged uncontrolled hyperglycemia and

impaired insulin function resulted in cognitive deficits

and altered behaviors.94

However, glucose is not only a nutrient, but also

an input for neuronal circuits located in the hypo-

thalamus(e.i. VMH, ARC, PVN)andcontaining

pro-opiomelanocortin (POMC), melanin concen-

trating hormone (MCH), and neuropeptide Y

(NPY)/agouti-related peptide (AgRP) neurons.95-97

These neuronal populations are involved in energy

storage/expenditure and food intake.98,99Numerous

study have proved that (1) mice lacking MCH are

hypophagic and lean, (2) direct injection of NPY

into the hypothalamus of rats stimulates food

intake, (3) mice lacking the POMC-derived pepti-

des become obese and present defective adrenal

development, (4) activation of AgRP neurons in

mice induced voracious feeding.100-104Interestingly,

it was recently demonstrated that the non-nutritive

sweetener sucralose promoted food intakeviaa

NPY-dependent  mechanism, supporting a link

between synthetic sweetener consumption and met-

abolic dysregulations.105 Consequently, disruption

of such feeding neural networks could result in an

increased risk to develop diabetes.

Part 2: Zebrafish as an emerging model for

studying the impact of diabetes on neurogenesis

and brain remodeling

In few years, zebrafish became a recognized model for

studying adult neurogenesis and brain repair mecha-

nisms. In contrast to mammals, the brain of adult

zebrafish maintains a lot of neurogenic niches across

the whole brain.21Such a strong neurogenic capacity is

due to the persistence of (a) radial glial cells, acting like

neural stem cells, and of (b) further committed progen-

itors (neuroblasts).106Teleostfish also display a strong

capability for brain regeneration.19,107,108Zebrafish is

also a common model for investigating a wide variety

of physiologic and physiopathological processes

including metabolic syndrome and diabetes.109-113T2D

has been developed by immersingfish in water supple-

mented with D-glucose,109,111,114and T1D has been set

up by STZ intraperitoneal (ip) injection.109Acute

hyperglycemia can be also mimicked by intraperitoneal

injection of D-glucose.112 Consequently, zebrafish

appear as interesting models for investigating the role

of metabolic disorders such as diabetes on the CNS.

The impact of hyperglycemia on the blood-brain

and blood-retinal barriers has been assessed in zebra-

fish. In our experimental conditions, we recently dem-

onstrated that acute hyperglycemia (2.5 g/kg of body

weight) leads to impaired expression of genes involved

in the establishment of blood-brain barrier (claudin 5a,

zo1aand1b).112In addition, Alvarez and colleagues

also showed that the blood-retinal barrier is compro-

mised in glucose-treated (110mM; 30 days)fish.115

Recent data also implies hyperglycemia in the dis-

ruption of neurogenic processes as well as in mem-

ory process in zebrafish. Chronic hyperglycemia

induced by puttingfish in water supplemented with

D-glucose (111mM, 14 days) impairs brain cell pro-

liferation along the neurogenic niches.34In the same

line of evidences, mechanical injury of the zebrafish

telencephalon under such chronic hyperglycemia

conditions leads to impaired injury-induced stem

cell proliferation at 7 days post-injury.34Until now,

the impact of acute and chronic hyperglycemia has

not yet been assessed for newborn cell migration and

cell survival under homeostatic and regenerative

conditions. Last but not least, chronic hyperglycemia

(111mM; 14 days) has been shown to impair mem-

ory in zebrafish through increased acethylcholines-

terase activity.116

Taken together, these data show that diabetes

impairs blood-brain and -retinal barriers, constitutive

and regenerative neurogenesis as well as cognitive

functions in zebrafish, similar to what was shown in

mammals. It consequently highlights the use of zebra-

fish as a model for investigating the impact of hyper-

glycemia on the CNS and for screening therapeutically

molecules to restore impaired functions.



Conclusion

Most studies using different models of diabetes tend to

show that diabetes impairs neurogenic processes includ-

ing neural stem cell proliferation, neuronal differentiation

and survival. Hyperglycemia is also a risk factor for stroke

and a predictor of bad neurologic outcomes, impairing

notably the injury-induced neurogenic process. In addi-

tion, diabetes is associated with morphological and func-

tional changes of the CNS. In the ADNI cohort, T2D

patients displayed a lower brain volume and a disturbed

brain glucose metabolism compared with non-diabetic

participants.9Another study involving 614 patients with

T2D has shown a significant association between the

duration of diabetes and an increase in abnormal gray

and white matters.117Interestingly, diabetes is implied in

cognitive impairment. Indeed, T1D patients exhibit

mainly modest, but sometimes severe, cognitive impair-

ments. In contrast, T2D patients display more consis-

tently  moderate cognitive impairments in verbal

memory tasks and complex information process-

ing.40,118-120An increasing number of data and epidemio-

logical studies also link diabetes and Alzheimer

disease;121,122T2D being associated with an almost 2-fold

increased risk of dementia.123,124By modifying the BBB

physiology, diabetes/hyperglycemia could disturb the

microenvironment of neural stem cell niches and impairs

neural stem cell activity and newborn cell survival. Diabe-

tes consequently disturbs brain functions and homeosta-

sis leading to cognitive impairment and impaired feeding

behavior reinforcing its deleterious impact through a

vicious circle.
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