G. Acosta-galvan, C. X. Yi, J. Van-der-vliet, J. H. Jhamandas, P. Panula et al., Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior, Proc. Natl. Acad. Sci. USA, pp.5813-5818, 2011.
DOI : 10.1371/journal.pone.0004860

B. Adolf, P. Chapouton, C. S. Lam, S. Topp, B. Tannhauser et al., Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon, Developmental Biology, vol.295, issue.1, pp.278-293, 2006.
DOI : 10.1016/j.ydbio.2006.03.023

L. Alonso and E. Fuchs, The hair cycle, Journal of Cell Science, vol.119, issue.3, pp.391-393, 2006.
DOI : 10.1242/jcs.02793

T. Amano, A. Matsushita, Y. Hatanaka, T. Watanabe, K. Oishi et al., Expression and Functional Analyses of Circadian Genes in Mouse Oocytes and Preimplantation Embryos: Cry1 Is Involved in the Meiotic Process Independently of Circadian Clock Regulation1, Biology of Reproduction, vol.22, issue.3, pp.473-483, 2009.
DOI : 10.1016/j.tcb.2007.07.001

J. L. Andrews, X. Zhang, J. J. Mccarthy, E. L. Mcdearmon, T. A. Hornberger et al., CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function, Proc. Natl. Acad. Sci. USA, 2010.
DOI : 10.1073/pnas.012248599

Y. Aratani, E. Sugimoto, and Y. Kitagawa, Lithium ion reversibly inhibits inducer-stimulated adipose conversion of 3T3-L1 cells, FEBS Letters, vol.23, issue.1, pp.47-51, 1987.
DOI : 10.1016/0092-8674(81)90442-6

A. Asakura, M. Komaki, and M. Rudnicki, Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation, Differentiation, vol.68, issue.4-5, pp.245-253, 2001.
DOI : 10.1046/j.1432-0436.2001.680412.x

F. Atger, D. Mauvoisin, B. Weger, C. Gobet, and F. Gachon, Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms, Frontiers in Endocrinology, vol.3, p.42, 2017.
DOI : 10.1007/s13668-014-0082-6

D. Bell-pedersen, V. M. Cassone, D. J. Earnest, S. S. Golden, P. E. Hardin et al., Circadian rhythms from multiple oscillators: lessons from diverse organisms, Nature Reviews Genetics, vol.12, issue.7, pp.544-556, 2005.
DOI : 10.1104/pp.005405

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735866/pdf

D. A. Berg, L. Belnoue, H. Song, and A. Simon, Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain, Development, vol.140, issue.12, pp.2548-2561, 2013.
DOI : 10.1242/dev.088005

G. A. Bjarnason and R. Jordan, Rhythms in Human Gastrointestinal Mucosa and Skin, Chronobiology International, vol.53, issue.1, pp.129-140, 2002.
DOI : 10.1080/09553008814551091

G. A. Bjarnason, R. C. Jordan, P. A. Wood, Q. Li, D. W. Lincoln et al., Circadian Expression of Clock Genes in Human Oral Mucosa and Skin, The American Journal of Pathology, vol.158, issue.5, pp.1793-1801, 2001.
DOI : 10.1016/S0002-9440(10)64135-1

C. Blanpain and E. Fuchs, Epidermal homeostasis: a balancing act of stem cells in the skin, Nature Reviews Molecular Cell Biology, vol.8, issue.3, pp.207-217, 2009.
DOI : 10.1016/0168-9525(92)90044-5

L. Borgs, P. Beukelaers, R. Vandenbosch, L. Nguyen, G. Moonen et al., Period 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus, BMC Neuroscience, vol.10, issue.1, p.30, 2009.
DOI : 10.1186/1471-2202-10-30

P. Bouchard-cannon, L. Mendoza-viveros, A. Yuen, M. Kaern, and H. Y. Cheng, The Circadian Molecular Clock Regulates Adult Hippocampal Neurogenesis by Controlling the Timing of Cell-Cycle Entry and Exit, Cell Reports, vol.5, issue.4, pp.961-973, 2013.
DOI : 10.1016/j.celrep.2013.10.037

M. Brancaccio, R. Enoki, C. N. Mazuski, J. Jones, J. A. Evans et al., Networkmediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes M, Developmental Biology, vol.431, pp.111-123, 2014.

S. M. Braun and S. Jessberger, Review: Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function, Neuropathology and Applied Neurobiology, vol.4, issue.1, pp.3-12, 2014.
DOI : 10.1126/scitranslmed.3004373

S. M. Braun and S. Jessberger, Adult neurogenesis: mechanisms and functional significance, Development, vol.141, issue.10, pp.1983-1986, 2014.
DOI : 10.1242/dev.104596

URL : http://dev.biologists.org/content/141/10/1983.full.pdf

S. A. Brown, F. Fleury-olela, E. Nagoshi, C. Hauser, C. Juge et al., The Period Length of Fibroblast Circadian Gene Expression Varies Widely among Human Individuals, PLoS Biology, vol.17, issue.10, p.338, 2005.
DOI : 10.1371/journal.pbio.0030338.t001

W. R. Brown, A Review and Mathematical Analysis of Circadian Rhythms in Cell Proliferation in Mouse, Rat, and Human Epidermis, Journal of Investigative Dermatology, vol.97, issue.2, pp.273-280, 1991.
DOI : 10.1111/1523-1747.ep12480379

D. Bryder, D. J. Rossi, and I. L. Weissman, Hematopoietic Stem Cells, The American Journal of Pathology, vol.169, issue.2, pp.338-346, 2006.
DOI : 10.2353/ajpath.2006.060312

A. Bugge, D. Feng, L. J. Everett, E. R. Briggs, S. E. Mullican et al., Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function, Genes Dev, vol.2012, issue.26, pp.657-667
DOI : 10.1101/gad.186858.112

URL : http://genesdev.cshlp.org/content/26/7/657.full.pdf

G. M. Cahill, Clock mechanisms in zebrafish, Cell and Tissue Research, vol.309, issue.1, pp.27-34, 2002.
DOI : 10.1007/s00441-002-0570-7

D. P. Cardinali and D. A. Golombek, The rhythmic GABAergic system, Neurochemical Research, vol.23, issue.5, pp.607-614, 1998.
DOI : 10.1023/A:1022426519297

M. Casanova-acebes, C. Pitaval, L. A. Weiss, C. Nombela-arrieta, R. Chevre et al., Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance, Cell, vol.153, issue.5, pp.1025-1035, 2013.
DOI : 10.1016/j.cell.2013.04.040

T. R. Castaneda, B. M. De-prado, D. Prieto, and F. Mora, Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light, Journal of Pineal Research, vol.49, issue.3, pp.177-185, 2004.
DOI : 10.1046/j.1471-4159.2003.01692.x

H. C. Causton, K. A. Feeney, C. A. Ziegler, and J. S. O-'neill, Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms, Current Biology, vol.25, issue.8, pp.1056-1062, 2015.
DOI : 10.1016/j.cub.2015.02.035

N. Cavallari, E. Frigato, D. Vallone, N. Frohlich, J. F. Lopez-olmeda et al., A Blind Circadian Clock in Cavefish Reveals that Opsins Mediate Peripheral Clock Photoreception, PLoS Biology, vol.305, issue.9, p.1001142, 2011.
DOI : 10.1371/journal.pbio.1001142.s012

P. Chapouton, R. Jagasia, and L. Bally-cuif, Adult neurogenesis in non-mammalian vertebrates, BioEssays, vol.16, issue.8, pp.745-757, 2007.
DOI : 10.1007/978-3-540-46041-1_12

S. Chatterjee, D. Nam, B. Guo, J. M. Kim, G. E. Winnier et al., Brain and muscle Arnt-like 1 is a key regulator of myogenesis, Journal of Cell Science, vol.126, issue.10, pp.2213-2224, 2013.
DOI : 10.1242/jcs.120519

S. Chatterjee, H. Yin, D. Nam, Y. Li, and K. Ma, Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion, Experimental Cell Research, vol.331, issue.1, pp.200-210, 2015.
DOI : 10.1016/j.yexcr.2014.08.041

Z. Chen and S. L. Mcknight, A Conserved DNA Damage Response Pathway Responsible for Coupling the Cell Division Cycle to the Circadian and Metabolic Cycles, Cell Cycle, vol.6, issue.23, pp.2906-2912, 2007.
DOI : 10.4161/cc.6.23.5041

Z. Chen, E. A. Odstrcil, B. P. Tu, and S. L. Mcknight, Restriction of DNA Replication to the Reductive Phase of the Metabolic Cycle Protects Genome Integrity, Science, vol.22, issue.3, pp.1916-1919, 2007.
DOI : 10.1016/j.molcel.2006.03.038

H. Cho, X. Zhao, M. Hatori, R. T. Yu, G. D. Barish et al., Regulation of circadian behaviour and metabolism by REV-ERB-?? and REV-ERB-??, Nature, vol.6, issue.7396, pp.123-127, 2012.
DOI : 10.1021/cb1002575

M. J. Costa, A. Y. So, K. Kaasik, K. C. Krueger, M. L. Pillsbury et al., Circadian Rhythm Gene Period 3 Is an Inhibitor of the Adipocyte Cell Fate, Journal of Biological Chemistry, vol.285, issue.11, pp.9063-9070, 2011.
DOI : 10.1016/j.cmet.2010.10.005

R. Dallmann, S. A. Brown, and F. Gachon, Chronopharmacology: New Insights and Therapeutic Implications, Annual Review of Pharmacology and Toxicology, vol.54, issue.1, pp.339-361, 2014.
DOI : 10.1146/annurev-pharmtox-011613-135923

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885389/pdf

F. Damiola, L. Minh, N. Preitner, N. Kornmann, B. Fleury-olela et al., Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus, Genes & Development, vol.14, issue.23, pp.2950-2961, 2000.
DOI : 10.1101/gad.183500

M. P. Dekens and D. Whitmore, Autonomous onset of the circadian clock in the zebrafish embryo, The EMBO Journal, vol.112, issue.20, pp.2757-2765, 2008.
DOI : 10.1111/j.1365-2826.2005.01315.x

F. Delaunay, C. Thisse, B. Thisse, and V. Laudet, Differential regulation of Period 2 and Period 3 expression during development of the zebrafish circadian clock, Gene Expression Patterns, vol.3, issue.3, pp.319-324, 2003.
DOI : 10.1016/S1567-133X(03)00050-4

C. Dibner, U. Schibler, and U. Albrecht, The Mammalian Circadian Timing System: Organization and Coordination of Central and Peripheral Clocks, Annual Review of Physiology, vol.72, issue.1, pp.517-549, 2010.
DOI : 10.1146/annurev-physiol-021909-135821

T. Dickmeis and N. S. Foulkes, Glucocorticoids and circadian clock control of cell proliferation: At the interface between three dynamic systems, Molecular and Cellular Endocrinology, vol.331, issue.1, pp.11-22, 2011.
DOI : 10.1016/j.mce.2010.09.001

URL : https://hal.archives-ouvertes.fr/hal-00639781

T. Dickmeis, B. D. Weger, and M. Weger, The circadian clock and glucocorticoids ??? Interactions across many time scales, Molecular and Cellular Endocrinology, vol.380, issue.1-2, pp.2-15, 2013.
DOI : 10.1016/j.mce.2013.05.012

N. Diotel, C. Vaillant, M. M. Gueguen, S. Mironov, I. Anglade et al., Cxcr4 and Cxcl12 expression in radial glial cells of the brain of adult zebrafish, The Journal of Comparative Neurology, vol.159, issue.Suppl 1, pp.4855-4876, 2010.
DOI : 10.1007/978-3-0348-8979-7_1

URL : https://hal.archives-ouvertes.fr/inserm-00590787

J. Falcon, H. Migaud, J. A. Munoz-cueto, and M. Carrillo, Current knowledge on the melatonin system in teleost fish, General and Comparative Endocrinology, vol.165, issue.3, pp.469-482, 2010.
DOI : 10.1016/j.ygcen.2009.04.026

C. Fontaine, G. Dubois, Y. Duguay, T. Helledie, N. Vu-dac et al., The Orphan Nuclear Receptor Rev-Erb?? Is a Peroxisome Proliferator-activated Receptor (PPAR) ?? Target Gene and Promotes PPAR??-induced Adipocyte Differentiation, Journal of Biological Chemistry, vol.15, issue.39, pp.37672-37680, 2003.
DOI : 10.1016/S1534-5807(02)00360-X

M. F. Forni, M. Trombetta-lima, and M. C. Sogayar, Stem cells in embryonic skin development, Biological Research, vol.45, issue.3, pp.215-222, 2012.
DOI : 10.4067/S0716-97602012000300003

L. Fu, M. S. Patel, A. Bradley, E. F. Wagner, and G. Karsenty, The Molecular Clock Mediates Leptin-Regulated Bone Formation, Cell, vol.122, issue.5, pp.803-815, 2005.
DOI : 10.1016/j.cell.2005.06.028

S. Gaddameedhi, C. P. Selby, W. K. Kaufmann, R. C. Smart, and A. Sancar, Control of skin cancer by the circadian rhythm, Proc. Natl. Acad. Sci. USA, pp.18790-18795, 2011.
DOI : 10.1371/journal.pone.0009837

M. Geyfman, V. Kumar, Q. Liu, R. Ruiz, W. Gordon et al., Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVBinduced DNA damage in the epidermis, Proc. Natl. Acad. Sci. USA, pp.11758-11763, 2012.

E. M. Gibson, C. Wang, S. Tjho, N. Khattar, and L. J. Kriegsfeld, Experimental ???Jet Lag??? Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters, PLoS ONE, vol.57, issue.12, 2010.
DOI : 10.1371/journal.pone.0015267.s002

E. M. Goergen, L. A. Bagay, K. Rehm, J. L. Benton, and B. S. Beltz, Circadian control of neurogenesis, Journal of Neurobiology, vol.96, issue.1, pp.90-95, 2002.
DOI : 10.1073/pnas.96.23.13427

H. Grandel and M. Brand, Comparative aspects of adult neural stem cell activity in vertebrates, Development Genes and Evolution, vol.488, issue.3, pp.131-147, 2013.
DOI : 10.1002/cne.20571

B. Grimaldi, M. M. Bellet, S. Katada, G. Astarita, J. Hirayama et al., PER2 Controls Lipid Metabolism by Direct Regulation of PPAR??, Cell Metabolism, vol.12, issue.5, pp.509-520, 2010.
DOI : 10.1016/j.cmet.2010.10.005

C. Guilding and H. D. Piggins, Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?, European Journal of Neuroscience, vol.272, issue.Suppl. 1, pp.3195-3216, 2007.
DOI : 10.1177/074873002129002591

B. Guo, S. Chatterjee, L. Li, J. M. Kim, J. Lee et al., Wnt signaling pathway, The FASEB Journal, vol.26, issue.8, pp.3453-3463, 2012.
DOI : 10.1096/fj.12-205781

URL : https://hal.archives-ouvertes.fr/inserm-00106398

B. Haas, P. Schlinkert, P. Mayer, and N. Eckstein, Targeting adipose tissue, Diabetology & Metabolic Syndrome, vol.4, issue.1, p.43, 2012.
DOI : 10.1128/MCB.01899-08

T. Hamatani, M. G. Carter, A. A. Sharov, and M. S. Ko, Dynamics of Global Gene Expression Changes during Mouse Preimplantation Development, Developmental Cell, vol.6, issue.1, pp.117-131, 2004.
DOI : 10.1016/S1534-5807(03)00373-3

M. Hastings, J. S. O-'neill, and E. S. Maywood, Circadian clocks: regulators of endocrine and metabolic rhythms, Journal of Endocrinology, vol.195, issue.2, pp.187-198, 2007.
DOI : 10.1677/JOE-07-0378

M. H. Hastings, E. S. Maywood, and J. S. O-'neill, Cellular Circadian Pacemaking and the Role of Cytosolic Rhythms, Current Biology, vol.18, issue.17, pp.805-815, 2008.
DOI : 10.1016/j.cub.2008.07.021

E. Haus, D. J. Lakatua, J. Swoyer, and L. Sackett-lundeen, Chronobiology in hematology and immunology, American Journal of Anatomy, vol.2, issue.4, pp.467-517, 1983.
DOI : 10.2170/jjphysiol.8.165

E. Haus and M. H. Smolensky, Biologic Rhythms in the Immune System, Chronobiology International, vol.35, issue.1, pp.581-622, 1999.
DOI : 10.1007/BF01796513

Y. He, F. Lin, Y. Chen, Z. Tan, D. Bai et al., Affects Murine Bone Mesenchymal Stem Cell Proliferation and Osteogenesis, Stem Cells and Development, vol.24, issue.10, pp.1194-1204, 2015.
DOI : 10.1089/scd.2014.0437

J. Hoggatt, T. A. Tate, and L. M. Pelus, Hematopoietic Stem and Progenitor Cell Mobilization in Mice, Methods Mol. Biol, vol.1185, pp.43-64, 2014.
DOI : 10.1007/978-1-4939-1133-2_4

G. J. Huang and J. Herbert, Stimulation of Neurogenesis in the Hippocampus of the Adult Rat by Fluoxetine Requires Rhythmic Change in Corticosterone, Biological Psychiatry, vol.59, issue.7, pp.619-624, 2006.
DOI : 10.1016/j.biopsych.2005.09.016

K. Igura, X. Zhang, K. Takahashi, A. Mitsuru, S. Yamaguchi et al., Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta, Cytotherapy, vol.6, issue.6, pp.543-553, 2004.
DOI : 10.1080/14653240410005366-1

E. Iwahana, M. Akiyama, K. Miyakawa, A. Uchida, J. Kasahara et al., Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei, European Journal of Neuroscience, vol.9, issue.8, pp.2281-2287, 2004.
DOI : 10.1038/35088576

P. Janich, G. Pascual, A. Merlos-suarez, E. Batlle, J. Ripperger et al., The circadian molecular clock creates epidermal stem cell heterogeneity, Nature, vol.38, issue.7376, pp.209-214, 2011.
DOI : 10.1038/ng1738

P. Janich, K. Toufighi, G. Solanas, N. M. Luis, S. Minkwitz et al., Human Epidermal Stem Cell Function Is Regulated by Circadian Oscillations, Cell Stem Cell, vol.13, issue.6, pp.745-753, 2013.
DOI : 10.1016/j.stem.2013.09.004

C. H. Johnson, Circadian clocks and cell division, Cell Cycle, vol.167, issue.19, pp.3864-3873, 2010.
DOI : 10.1126/science.167.3926.1730

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.9.19.13205?needAccess=true

M. H. Johnson, A. Lim, D. Fernando, and M. L. Day, Circadian clockwork genes are expressed in the reproductive tract and conceptus of the early pregnant mouse, Reproductive BioMedicine Online, vol.4, issue.2, pp.140-145, 2002.
DOI : 10.1016/S1472-6483(10)61931-1

O. Kah, E. Pellegrini, K. Mouriec, N. Diotel, I. Anglade et al., ??strog??nes et neurogen??se??: de nouvelles fonctions pour une vieille hormone. Le??ons tir??es du poisson z??bre, Journal de la Soci??t?? de Biologie, vol.1, issue.1, pp.29-38, 2009.
DOI : 10.1051/jbio:2009007

A. Kalsbeek, I. F. Palm, L. Fleur, S. E. Scheer, F. A. Perreau-lenz et al., SCN Outputs and the Hypothalamic Balance of Life, Journal of Biological Rhythms, vol.12, issue.6, pp.458-469, 2006.
DOI : 10.1016/0006-8993(79)90437-2

G. Kaur, C. Phillips, K. Wong, and B. Saini, Timing is important in medication administration: a timely review of chronotherapy research, International Journal of Clinical Pharmacy, vol.28, issue.3, pp.344-358, 2013.
DOI : 10.3109/07420528.2011.553017

S. Kawara, R. Mydlarski, A. J. Mamelak, I. Freed, B. Wang et al., Low-dose Ultraviolet B Rays Alter the mRNA Expression of the Circadian Clock Genes in Cultured Human Keratinocytes, Journal of Investigative Dermatology, vol.119, issue.6, pp.1220-1223, 2002.
DOI : 10.1046/j.1523-1747.2002.19619.x

R. V. Khapre, W. E. Samsa, and R. V. Kondratov, Circadian regulation of cell cycle: Molecular connections between aging and the circadian clock, Annals of Medicine, vol.95, issue.6, pp.404-415, 2010.
DOI : 10.1093/jnci/95.11.825

R. R. Klevecz, J. Bolen, G. Forrest, and D. B. Murray, A genomewide oscillation in transcription gates DNA replication and cell cycle, Proc. Natl. Acad. Sci. USA 101, pp.1200-1205, 2004.
DOI : 10.1073/pnas.0530258100

M. Weger, Stem cells and the circadian clock, Developmental Biology, vol.431, issue.2, pp.111-123, 2017.
DOI : 10.1016/j.ydbio.2017.09.012

URL : https://hal.archives-ouvertes.fr/hal-01690373

M. S. Ko, J. R. Kitchen, X. Wang, T. A. Threat, X. Wang et al., Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development, Development, vol.127, pp.1737-1749, 2000.

L. J. Kochman, E. T. Weber, C. A. Fornal, and B. L. Jacobs, Circadian variation in mouse hippocampal cell proliferation, Neuroscience Letters, vol.406, issue.3, pp.256-259, 2006.
DOI : 10.1016/j.neulet.2006.07.058

O. Kollet, Y. Vagima, G. D-'uva, K. Golan, J. Canaani et al., Physiologic corticosterone oscillations regulate murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors, Leukemia, vol.121, issue.10, 2006.
DOI : 10.1172/JCI43868

R. V. Kondratov, A. A. Kondratova, V. Y. Gorbacheva, O. V. Vykhovanets, and M. P. Antoch, Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock, Genes & Development, vol.20, issue.14, pp.1868-1873, 2006.
DOI : 10.1101/gad.1432206

M. Korbonits, Obesity and Metabolism, 2008.
DOI : 10.1159/isbn.978-3-8055-8430-2

J. Kott, G. Leach, and L. Yan, Direction-dependent effects of chronic ???jet-lag??? on hippocampal neurogenesis, Neuroscience Letters, vol.515, issue.2, pp.177-180, 2012.
DOI : 10.1016/j.neulet.2012.03.048

E. Kowalska, E. Moriggi, C. Bauer, C. Dibner, and S. A. Brown, The Circadian Clock Starts Ticking at a Developmentally Early Stage, Journal of Biological Rhythms, vol.6, issue.6, pp.442-449, 2010.
DOI : 10.1073/pnas.0600571103

V. Kumar, B. Andersen, and J. S. Takahashi, Epidermal stem cells ride the circadian wave, Genome Biology, vol.14, issue.11, p.140, 2013.
DOI : 10.1073/pnas.1118641109

P. L. Lakin-thomas, Transcriptional Feedback Oscillators: Maybe, Maybe Not..., Journal of Biological Rhythms, vol.275, issue.2, pp.83-92, 2006.
DOI : 10.1038/22659

K. Lapid, T. Itkin, G. D-'uva, Y. Ovadya, A. Ludin et al., GSK3?? regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement, Journal of Clinical Investigation, vol.123, issue.4, pp.1705-1717, 2013.
DOI : 10.1172/JCI64149DS1

L. Vde, O. Mafra, and D. , Adipokines in obesity, Clin. Chim. Acta Int. J. Clin. Chem, vol.419, pp.87-94, 2013.

M. N. Lehman, R. Silver, W. R. Gladstone, R. M. Kahn, M. Gibson et al., Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain, J. Neurosci, vol.7, pp.1626-1638, 1987.

J. Lesauter and R. Silver, Lithium lengthens the period of circadian rhythms in lesioned hamsters bearing SCN grafts, Biological Psychiatry, vol.34, issue.1-2, pp.75-83, 1993.
DOI : 10.1016/0006-3223(93)90259-G

J. Li, W. Q. Lu, S. Beesley, A. S. Loudon, and Q. J. Meng, Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork, PLoS ONE, vol.14, issue.7, p.33292, 2012.
DOI : 10.1371/journal.pone.0033292.s003

C. Lim and R. Allada, Emerging roles for post-transcriptional regulation in circadian clocks, Nature Neuroscience, vol.135, issue.11, pp.1544-1550, 2013.
DOI : 10.1038/nrg3141

K. K. Lin, V. Kumar, M. Geyfman, D. Chudova, A. T. Ihler et al., Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling, PLoS Genetics, vol.17, issue.7, 2009.
DOI : 10.1371/journal.pgen.1000573.s010

B. W. Lindsey, A. Darabie, and V. Tropepe, The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain, The Journal of Comparative Neurology, vol.159, issue.10, pp.2275-2316, 2012.
DOI : 10.1016/j.neuroscience.2009.02.014

B. W. Lindsey and V. Tropepe, A comparative framework for understanding the biological principles of adult neurogenesis, Progress in Neurobiology, vol.80, issue.6, pp.281-307, 2006.
DOI : 10.1016/j.pneurobio.2006.11.007

D. Link, Stem cells on the move, Nature Medicine, vol.16, issue.10, pp.1073-1074, 2010.
DOI : 10.1038/nm1010-1073

A. C. Liu, D. K. Welsh, C. H. Ko, H. G. Tran, E. E. Zhang et al., Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network, Intercellular coupling confers robustness against mutations in the SCN circadian clock network, pp.605-616, 2007.
DOI : 10.1016/j.cell.2007.02.047

C. Lu, Y. Yang, R. Zhao, B. Hua, C. Xu et al., Role of circadian gene Clock during differentiation of mouse pluripotent stem cells, Protein & Cell, vol.8, issue.4a.8, pp.820-832, 2016.
DOI : 10.1111/febs.13760

D. Lucas, M. Battista, P. A. Shi, L. Isola, and P. S. Frenette, Mobilized Hematopoietic Stem Cell Yield Depends on Species-Specific Circadian Timing, Cell Stem Cell, vol.3, issue.4, pp.364-366, 2008.
DOI : 10.1016/j.stem.2008.09.004

URL : https://doi.org/10.1016/j.stem.2008.09.004

A. Malik, R. J. Jamasbi, R. V. Kondratov, and M. E. Geusz, Development of Circadian Oscillators in Neurosphere Cultures during Adult Neurogenesis, PLOS ONE, vol.13, issue.Suppl 1, 2015.
DOI : 10.1371/journal.pone.0122937.s002

A. Malik, R. V. Kondratov, R. J. Jamasbi, and M. E. Geusz, Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination, PLOS ONE, vol.24, issue.6, 2015.
DOI : 10.1371/journal.pone.0139655.t002

URL : https://doi.org/10.1371/journal.pone.0139655

B. Marcheva, K. M. Ramsey, C. B. Peek, A. Affinati, E. Maury et al., Circadian clocks and metabolismHandbook of Experimental Pharmacology, pp.127-155, 2013.

E. Maronde, A. F. Schilling, S. Seitz, T. Schinke, I. Schmutz et al., The Clock Genes Period 2 and Cryptochrome 2 Differentially Balance Bone Formation, PLoS ONE, vol.12, issue.7, 2010.
DOI : 10.1371/journal.pone.0011527.s007

A. J. Martin-robles, M. Aliaga-guerrero, D. Whitmore, C. Pendon, and J. A. Munoz-cueto, ): Effects of Constant Light and Dark Conditions, Chronobiology International, vol.17, issue.9, pp.1195-1205, 2012.
DOI : 10.1111/j.1365-2826.2005.01315.x

M. Marz, P. Chapouton, N. Diotel, C. Vaillant, B. Hesl et al., Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon, Glia, vol.43, pp.870-888, 2010.
DOI : 10.1007/978-3-0348-8979-7

URL : https://hal.archives-ouvertes.fr/hal-00477506

S. Massberg, P. Schaerli, I. Knezevic-maramica, M. Kollnberger, N. Tubo et al., Immunosurveillance by Hematopoietic Progenitor Cells Trafficking through Blood, Lymph, and Peripheral Tissues, Cell, vol.131, issue.5, pp.994-1008, 2007.
DOI : 10.1016/j.cell.2007.09.047

URL : https://doi.org/10.1016/j.cell.2007.09.047

S. Masubuchi, S. Honma, H. Abe, K. Ishizaki, M. Namihira et al., Clock genes outside the suprachiasmatic nucleus involved in manifestation of locomotor activity rhythm in rats, Eur. J. Neurosci, vol.12, pp.4206-4214, 2000.

A. Mauro, SATELLITE CELL OF SKELETAL MUSCLE FIBERS, The Journal of Cell Biology, vol.9, issue.2, pp.493-495, 1961.
DOI : 10.1083/jcb.9.2.493

P. A. Mckelvie, Autopsy evidence of pulmonary thromboembolism, Med. J. Aust, vol.160, pp.127-128, 1994.

M. Menaker, L. F. Moreira, and G. Tosini, Evolution of circadian organization in vertebrates, Brazilian Journal of Medical and Biological Research, vol.166, issue.3, pp.305-313, 1997.
DOI : 10.1177/074873049501000307

S. Mendez-ferrer, M. Battista, and P. S. Frenette, Cooperation of ??2- and ??3-adrenergic receptors in hematopoietic progenitor cell mobilization, Annals of the New York Academy of Sciences, vol.95, issue.1, pp.139-144, 2010.
DOI : 10.1172/JCI15994

S. Mendez-ferrer, A. Chow, M. Merad, and P. S. Frenette, Circadian rhythms influence hematopoietic stem cells, Current Opinion in Hematology, vol.16, issue.4, pp.235-242, 2009.
DOI : 10.1097/MOH.0b013e32832bd0f5

S. Mendez-ferrer, D. Lucas, M. Battista, and P. S. Frenette, Haematopoietic stem cell release is regulated by circadian oscillations, Nature, vol.91, issue.7186, pp.442-447, 2008.
DOI : 10.1172/JCI15543

T. Meyer, M. Kneissel, J. Mariani, and B. Fournier, In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism, Proc. Natl. Acad. Sci. USA 97, pp.9197-9202, 2000.
DOI : 10.1073/pnas.94.9.4312

G. L. Ming and H. Song, ADULT NEUROGENESIS IN THE MAMMALIAN CENTRAL NERVOUS SYSTEM, Annual Review of Neuroscience, vol.28, issue.1, pp.223-250, 2005.
DOI : 10.1146/annurev.neuro.28.051804.101459

R. E. Mistlberger, Neurobiology of food anticipatory circadian rhythms, Physiology & Behavior, vol.104, issue.4, pp.535-545, 2011.
DOI : 10.1016/j.physbeh.2011.04.015

J. A. Mohawk, C. B. Green, and J. S. Takahashi, Central and Peripheral Circadian Clocks in Mammals, Annual Review of Neuroscience, vol.35, issue.1, pp.445-462, 2012.
DOI : 10.1146/annurev-neuro-060909-153128

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710582/pdf

H. A. Moore and D. Whitmore, Circadian Rhythmicity and Light Sensitivity of the Zebrafish Brain, PLoS ONE, vol.33, issue.1, p.86176, 2014.
DOI : 10.1371/journal.pone.0086176.s002

R. Y. Moore and V. B. Eichler, Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat, Brain Research, vol.42, issue.1, pp.201-206, 1972.
DOI : 10.1016/0006-8993(72)90054-6

S. J. Morrison and D. T. Scadden, The bone marrow niche for haematopoietic stem cells, Nature, vol.8, issue.7483, pp.327-334, 2014.
DOI : 10.1038/nri2279

I. R. Murray, C. C. West, W. R. Hardy, A. W. James, T. S. Park et al., Natural history of mesenchymal stem cells, from vessel walls to culture vessels, Cellular and Molecular Life Sciences, vol.214, issue.2, pp.1353-1374, 2014.
DOI : 10.1016/j.yexmp.2013.03.002

K. Nagai, T. Nishio, H. Nakagawa, S. Nakamura, and Y. Fukuda, Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake, Brain Research, vol.142, issue.2, pp.384-389, 1978.
DOI : 10.1016/0006-8993(78)90648-0

A. B. Reddy, N. A. Karp, E. S. Maywood, E. A. Sage, M. Deery et al., Circadian Orchestration of the Hepatic Proteome, Current Biology, vol.16, issue.11, pp.1107-1115, 2006.
DOI : 10.1016/j.cub.2006.04.026

D. Nam, B. Guo, S. Chatterjee, M. H. Chen, D. Nelson et al., The adipocyte clock controls brown adipogenesis through the TGF-?? and BMP signaling pathways, Journal of Cell Science, vol.128, issue.9, pp.1835-1847, 2015.
DOI : 10.1242/jcs.167643

M. A. Ndiaye, M. Nihal, G. S. Wood, and N. Ahmad, Skin, Reactive Oxygen Species, and Circadian Clocks, Antioxidants & Redox Signaling, vol.20, issue.18, pp.2982-2996, 2014.
DOI : 10.1089/ars.2013.5645

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038996/pdf

O. Neill, J. S. Reddy, and A. B. , Circadian clocks in human red blood cells, Nature, vol.469, pp.498-503, 2011.

D. T. Otway, G. Frost, and J. D. Johnston, CIRCADIAN RHYTHMICITY IN MURINE PRE-ADIPOCYTE AND ADIPOCYTE CELLS, Chronobiology International, vol.15, issue.7, pp.1340-1354, 2009.
DOI : 10.1038/oby.2007.544

N. Ouchi, J. L. Parker, J. J. Lugus, and K. Walsh, Adipokines in inflammation and metabolic disease, Nature Reviews Immunology, vol.38, issue.2, pp.85-97, 2011.
DOI : 10.1097/CCM.0b013e3181fa0561

R. Pardal and J. Lopez-barneo, Mature neurons modulate neurogenesis through chemical signals acting on neural stem cells, Development, Growth & Differentiation, vol.47, issue.48, pp.456-462, 2016.
DOI : 10.1016/j.npep.2013.10.002

P. K. Parekh, A. R. Ozburn, and C. A. Mcclung, Circadian clock genes: Effects on dopamine, reward and addiction, Alcohol, vol.49, issue.4, pp.341-349, 2015.
DOI : 10.1016/j.alcohol.2014.09.034

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457686/pdf

D. F. Patton and R. E. Mistlberger, Circadian adaptations to meal timing: neuroendocrine mechanisms, Frontiers in Neuroscience, vol.7, p.185, 2013.
DOI : 10.3389/fnins.2013.00185

URL : http://journal.frontiersin.org/article/10.3389/fnins.2013.00185/pdf

J. K. Paulose, E. B. Rucker, and V. M. Cassone, Toward the Beginning of Time: Circadian Rhythms in Metabolism Precede Rhythms in Clock Gene Expression in Mouse Embryonic Stem Cells, PLoS ONE, vol.2, issue.6, p.49555, 2012.
DOI : 10.1371/journal.pone.0049555.s001

E. Pellegrini, K. Mouriec, I. Anglade, A. Menuet, L. Page et al., Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish, The Journal of Comparative Neurology, vol.1334, issue.1, pp.150-167, 2007.
DOI : 10.1016/S0304-4165(96)00115-8

URL : https://hal.archives-ouvertes.fr/hal-00096389

M. V. Plikus, E. N. Van-spyk, K. Pham, M. Geyfman, V. Kumar et al., The Circadian Clock in Skin, Journal of Biological Rhythms, vol.7, issue.3, pp.163-182, 2015.
DOI : 10.1046/j.1523-1747.2000.00121.x

M. V. Plikus, C. Vollmers, D. De-la-cruz, A. Chaix, R. Ramos et al., Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling, Proc. Natl. Acad. Sci. USA, pp.2106-2115, 2013.
DOI : 10.1111/j.1365-2133.1992.tb14873.x

N. Preitner, F. Damiola, L. Lopez-molina, J. Zakany, D. Duboule et al., The Orphan Nuclear Receptor REV-ERB?? Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator, Cell, vol.110, issue.2, pp.251-260, 2002.
DOI : 10.1016/S0092-8674(02)00825-5

A. A. Ptitsyn, S. Zvonic, S. A. Conrad, L. K. Scott, R. L. Mynatt et al., Circadian Clocks Are Resounding in Peripheral Tissues, PLoS Computational Biology, vol.32, issue.3, p.16, 2006.
DOI : 10.1371/journal.pcbi.0020016.st002

URL : http://doi.org/10.1371/journal.pcbi.0020016

M. Putker and J. S. O-'neill, Reciprocal control of the circadian clock and cellular redox state -a critical appraisal, Mol. Cells, vol.39, pp.6-19, 2016.

B. D. Rakai, M. J. Chrusch, S. C. Spanswick, R. H. Dyck, and M. C. Antle, Survival of Adult Generated Hippocampal Neurons Is Altered in Circadian Arrhythmic Mice, PLoS ONE, vol.19, issue.6, p.99527, 2014.
DOI : 10.1371/journal.pone.0099527.g005

M. R. Ralph, R. G. Foster, F. C. Davis, and M. Menaker, Transplanted suprachiasmatic nucleus determines circadian period, Science, vol.247, issue.4945, pp.975-978, 1990.
DOI : 10.1126/science.2305266

A. B. Reddy, N. A. Karp, E. S. Maywood, E. A. Sage, M. Deery et al., Circadian Orchestration of the Hepatic Proteome, Current Biology, vol.16, issue.11, pp.1107-1115, 2006.
DOI : 10.1016/j.cub.2006.04.026

A. B. Reddy and G. Rey, Metabolic and Nontranscriptional Circadian Clocks: Eukaryotes, Annual Review of Biochemistry, vol.83, issue.1, pp.165-189, 2014.
DOI : 10.1146/annurev-biochem-060713-035623

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768355/pdf

S. Reischl and A. Kramer, Kinases and phosphatases in the mammalian circadian M. Weger et al, Developmental Biology, vol.431, pp.111-123, 2011.

I. Rogers and R. F. Casper, Umbilical cord blood stem cells. Best practice & research, Clin. Obstet. Gynaecol, vol.18, pp.893-908, 2004.

S. G. Roh, S. H. Song, K. C. Choi, K. Katoh, V. Wittamer et al., Chemerin???A new adipokine that modulates adipogenesis via its own receptor, Biochemical and Biophysical Research Communications, vol.362, issue.4, pp.1013-1018, 2007.
DOI : 10.1016/j.bbrc.2007.08.104

URL : https://soar-ir.repo.nii.ac.jp/?action=repository_action_common_download&item_id=10422&item_no=1&attribute_id=65&file_no=1

D. D. Ross, A. Pollak, S. A. Akman, and N. R. Bachur, Diurnal variation of circulating human myeloid progenitor cells, Exp. Hematol, vol.8, pp.954-960, 1980.

W. E. Samsa, A. Vasanji, R. J. Midura, and R. V. Kondratov, Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype, Bone, vol.84, pp.194-203, 2016.
DOI : 10.1016/j.bone.2016.01.006

C. Scheiermann, Y. Kunisaki, D. Lucas, A. Chow, J. E. Jang et al., Adrenergic Nerves Govern Circadian Leukocyte Recruitment to Tissues, Immunity, vol.37, issue.2, pp.290-301, 2012.
DOI : 10.1016/j.immuni.2012.05.021

URL : https://doi.org/10.1016/j.immuni.2012.05.021

L. E. Scheving, Mitotic activity in the human epidermis, The Anatomical Record, vol.40, issue.1, pp.7-19, 1959.
DOI : 10.1159/000248202

A. Schnell, S. Chappuis, I. Schmutz, E. Brai, J. A. Ripperger et al., The Nuclear Receptor REV-ERB?? Regulates Fabp7 and Modulates Adult Hippocampal Neurogenesis, PLoS ONE, vol.8, issue.6, p.99883, 2014.
DOI : 10.1371/journal.pone.0099883.s007

L. P. Shearman, X. Jin, C. Lee, S. M. Reppert, and D. R. Weaver, Targeted Disruption of the mPer3 Gene: Subtle Effects on Circadian Clock Function, Molecular and Cellular Biology, vol.20, issue.17, pp.6269-6275, 2000.
DOI : 10.1128/MCB.20.17.6269-6275.2000

S. Shi and S. Gronthos, Perivascular Niche of Postnatal Mesenchymal Stem Cells in Human Bone Marrow and Dental Pulp, Journal of Bone and Mineral Research, vol.263, issue.4, pp.696-704, 2003.
DOI : 10.1359/jbmr.2003.18.4.696

S. Shimba, N. Ishii, Y. Ohta, T. Ohno, Y. Watabe et al., Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis, Proc. Natl. Acad. Sci. USA, pp.12071-12076, 2005.
DOI : 10.1126/science.1060698

Y. Shiozawa and R. S. Taichman, Getting blood from bone: An emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche, Experimental Hematology, vol.40, issue.9, pp.685-694, 2012.
DOI : 10.1016/j.exphem.2012.05.004

N. D. Shiriaev, V. A. Kudriavtsev, N. V. Markov, L. S. Khodasevich, and N. F. Zykova, Surgical treatment of horseshoe kidney associated with uretero-hydronephrosis of its right half and non-functioning left half in an infant. Vestn. khirurgii Im. I. I. Grek, pp.102-103, 1990.

G. Solanas, F. O. Peixoto, E. Perdiguero, M. Jardí, V. Ruiz-bonilla et al., Aged Stem Cells Reprogram Their Daily Rhythmic Functions to Adapt to Stress, Cell, vol.170, issue.4, pp.678-692, 2017.
DOI : 10.1016/j.cell.2017.07.035

P. A. Sotiropoulou and C. Blanpain, Development and Homeostasis of the Skin Epidermis, Cold Spring Harbor Perspectives in Biology, vol.4, issue.7, p.8383, 2012.
DOI : 10.1101/cshperspect.a008383

F. K. Stephan and I. Zucker, Circadian Rhythms in Drinking Behavior and Locomotor Activity of Rats Are Eliminated by Hypothalamic Lesions, Proc. Natl. Acad. Sci. USA 69, pp.1583-1586, 1972.
DOI : 10.1073/pnas.69.6.1583

C. Stringari, H. Wang, M. Geyfman, V. Crosignani, V. Kumar et al., In??Vivo Single-Cell Detection of Metabolic Oscillations in Stem Cells, Cell Reports, vol.10, issue.1, pp.1-7, 2015.
DOI : 10.1016/j.celrep.2014.12.007

URL : https://hal.archives-ouvertes.fr/hal-01114435

Z. S. Sun, U. Albrecht, O. Zhuchenko, J. Bailey, G. Eichele et al., RIGUI, a Putative Mammalian Ortholog of the Drosophila period Gene, Cell, vol.90, issue.6, pp.1003-1011, 1997.
DOI : 10.1016/S0092-8674(00)80366-9

J. S. Takahashi, Molecular components of the circadian clock in mammals, Diabetes, Obesity and Metabolism, vol.35, pp.6-11, 2015.
DOI : 10.1146/annurev-neuro-060909-153128

S. Tamai, K. Sanada, and Y. Fukada, Time-of-Day-Dependent Enhancement of Adult Neurogenesis in the Hippocampus, PLoS ONE, vol.75, issue.12, p.3835, 2008.
DOI : 10.1371/journal.pone.0003835.s006

M. Tanioka, H. Yamada, M. Doi, H. Bando, Y. Yamaguchi et al., Molecular Clocks in Mouse Skin, Journal of Investigative Dermatology, vol.129, issue.5, pp.1225-1231, 2009.
DOI : 10.1038/jid.2008.345

I. Ullah, R. B. Subbarao, and G. J. Rho, Human mesenchymal stem cells - current trends and future prospective, Bioscience Reports, vol.25, issue.2, 2015.
DOI : 10.1634/stemcells.21-1-50

URL : http://www.bioscirep.org/content/ppbioscirep/35/2/e00191.full.pdf

Y. Umemura, N. Koike, T. Matsumoto, S. H. Yoo, Z. Chen et al., Transcriptional program of Kpna2/Importin-alpha2 regulates cellular differentiation-coupled circadian clock development in mammalian cells, Proc. Natl. Acad. Sci. USA, pp.5039-5048, 2014.

Y. Umemura, J. Yoshida, M. Wada, Y. Tsuchiya, Y. Minami et al., An In Vitro ES Cell-Based Clock Recapitulation Assay Model Identifies CK2?? as an Endogenous Clock Regulator, PLoS ONE, vol.42, issue.6, p.67241, 2013.
DOI : 10.1371/journal.pone.0067241.s003

D. Vallone, K. Lahiri, T. Dickmeis, and N. S. Foulkes, Start the clock! Circadian rhythms and development, Developmental Dynamics, vol.103, issue.1, pp.142-155, 2007.
DOI : 10.1016/0165-3806(87)90220-3

URL : http://onlinelibrary.wiley.com/doi/10.1002/dvdy.20998/pdf

R. Van-der-spek, F. Kreier, E. Fliers, and A. Kalsbeek, Circadian rhythms in white adipose tissue, Prog. Brain Res, vol.199, pp.183-201, 2012.
DOI : 10.1016/B978-0-444-59427-3.00011-3

D. S. Verma, R. Fisher, G. Spitzer, A. R. Zander, K. B. Mccredie et al., Diurnal changes in circulating myeloid progenitor cells in man, American Journal of Hematology, vol.26, issue.2, pp.185-192, 1980.
DOI : 10.1002/ajh.2830090206

R. I. Versteeg, M. J. Serlie, A. Kalsbeek, and S. E. La-fleur, Serotonin, a possible intermediate between disturbed circadian rhythms and metabolic disease, Neuroscience, vol.301, pp.155-167, 2015.
DOI : 10.1016/j.neuroscience.2015.05.067

C. Voermans, E. C. Anthony, E. Mul, E. Van-der-schoot, and P. Hordijk, SDF-1??????induced actin polymerization and migration in human hematopoietic progenitor cells, Experimental Hematology, vol.29, issue.12, pp.1456-1464, 2001.
DOI : 10.1016/S0301-472X(01)00740-8

J. Wang and M. A. Lazar, Bifunctional Role of Rev-erb?? in Adipocyte Differentiation, Molecular and Cellular Biology, vol.28, issue.7, pp.2213-2220, 2008.
DOI : 10.1128/MCB.01608-07

L. M. Wang, J. M. Dragich, T. Kudo, I. H. Odom, D. K. Welsh et al., in the Hippocampus: Possible Implications for Synaptic Plasticity and Learned Behaviour, ASN Neuro, vol.22, issue.3, 2009.
DOI : 10.1007/s00702-005-0322-4

M. Weger, B. D. Weger, N. Diotel, S. Rastegar, T. Hirota et al., Real-time in vivo monitoring of circadian E-box enhancer activity: A robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock, Developmental Biology, vol.380, issue.2, pp.259-273, 2013.
DOI : 10.1016/j.ydbio.2013.04.035

D. K. Welsh and M. C. Moore-ede, Lithium lengthens circadian period in a diurnal primate, Saimiri sciureus, Biological Psychiatry, vol.28, issue.2, pp.117-126, 1990.
DOI : 10.1016/0006-3223(90)90629-G

D. Whitmore, N. S. Foulkes, and P. Sassone-corsi, Light acts directly on organs and cells in culture to set the vertebrate circadian clock, Nature, vol.272, issue.6773, pp.87-91, 2000.
DOI : 10.1126/science.272.5260.419

L. D. Wilsbacher, S. Yamazaki, E. D. Herzog, E. J. Song, L. A. Radcliffe et al., Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo, Proc. Natl. Acad. Sci. USA 99, pp.489-494, 2002.

A. M. Wobus and K. R. Boheler, Embryonic Stem Cells: Prospects for Developmental Biology and Cell Therapy, Physiological Reviews, vol.85, issue.2, pp.635-678, 2005.
DOI : 10.1016/S0248-4900(03)00079-0

URL : http://physrev.physiology.org/content/physrev/85/2/635.full.pdf

X. Wu, G. Yu, H. Parks, T. Hebert, B. C. Goh et al., Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure, Bone, vol.42, issue.5, pp.861-870, 2008.
DOI : 10.1016/j.bone.2007.12.226

X. Wu, S. Zvonic, Z. E. Floyd, G. Kilroy, B. C. Goh et al., Induction of Circadian Gene Expression in Human Subcutaneous Adipose-derived Stem Cells**, Obesity, vol.15, issue.11, pp.2560-2570, 2007.
DOI : 10.1038/oby.2007.308

Y. Xu, P. Malladi, D. R. Wagner, and M. T. Longaker, Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration, Curr. Opin. Mol. Ther, vol.7, pp.300-305, 2005.

K. Yagita, K. Horie, S. Koinuma, W. Nakamura, I. Yamanaka et al., Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro, Proc. Natl. Acad. Sci. USA, pp.3846-3851, 2010.
DOI : 10.1158/0008-5472.CAN-04-0674

L. Yan, S. Miyake, and H. Okamura, Distribution and circadian expression ofdbp in SCN and extra-SCN areas in the mouse brain, Journal of Neuroscience Research, vol.20, issue.2, pp.291-295, 2000.
DOI : 10.1016/S0896-6273(00)80492-4

S. B. Zanello, D. M. Jackson, and M. F. Holick, Expression of the Circadian Clock Genes clock and period1 in Human Skin, Journal of Investigative Dermatology, vol.115, issue.4, pp.757-760, 2000.
DOI : 10.1046/j.1523-1747.2000.00121.x

B. Zheng, D. W. Larkin, U. Albrecht, Z. S. Sun, M. Sage et al., The mPer2 gene encodes a functional component of the mammalian circadian clock, Nature, vol.72, issue.6740, pp.169-173, 1999.
DOI : 10.1016/0022-5193(78)90022-X

P. A. Zuk, M. Zhu, P. Ashjian, D. A. De-ugarte, J. I. Huang et al., Human Adipose Tissue Is a Source of Multipotent Stem Cells, Molecular Biology of the Cell, vol.13, issue.12, pp.4279-4295, 2002.
DOI : 10.1091/mbc.E02-02-0105

G. K. Zupanc, Towards brain repair: Insights from teleost fish, Seminars in Cell & Developmental Biology, vol.20, issue.6, 2008.
DOI : 10.1016/j.semcdb.2008.12.001

S. Zvonic, A. A. Ptitsyn, S. A. Conrad, L. K. Scott, Z. E. Floyd et al., Characterization of Peripheral Circadian Clocks in Adipose Tissues, Diabetes, vol.55, issue.4, pp.962-970, 2006.
DOI : 10.2337/diabetes.55.04.06.db05-0873

M. Weger, Stem cells and the circadian clock, Developmental Biology, vol.431, issue.2, pp.111-123, 2017.
DOI : 10.1016/j.ydbio.2017.09.012

URL : https://hal.archives-ouvertes.fr/hal-01690373