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A multi-objective optimization problem in natural
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aUniversité de La Réunion, Laboratoire PIMENT, 117 Avenue du Général Ailleret,
97430 Le Tampon, France

Abstract

This paper deals with a multi-objective topology optimization problem in

an asymmetrically heated channel, considering both pressure drop mini-

mization and heat transfer maximization. The problem is modeled under

the assumptions of steady-state laminar flow dominated by natural con-

vection forces. The incompressible Navier-Stokes equations coupled to the

convection-diffusion equation through the Boussinesq approximation are em-

ployed and are solved with the finite volume method. In this paper, we

propose two new objective functions: the first one takes into account work

of pressure forces and contributes to the loss of mechanical power while the

second one is related to thermal power and is linked to the maximization

of heat exchanges. In order to obtain a well-defined fluid-solid interface in

the optimized design, we use a sigmoid interpolation function for both the

design variable field and the effective diffusivity. We also use adjoint sensi-

tivity analysis to compute the gradient of the cost functional. Results are

obtained for various Richardson (Ri) number such that 100 < Ri < 400 and
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for a Reynolds (Re) number set to Re = 400. In all considered cases, our

algorithm succeeds to enhance one of the phenomenon modeled by our new

cost functions without deteriorating the other one. We also show that the

reversal flow is suppressed at the exit of the channel, the thermal exchanges

are improved by our optimized designs. We also compare the results of stan-

dard cost functions from the literature to those of our cost functions. We

show that the new objective functions reached stable values in less iteration

number and allow best connectivity of solid elements. As a result the new

objective functions proposed in this paper are well suited to deal with natural

convection optimization problem.

Keywords: Natural convection, Vertical channel, Topology optimization,

Objective functions, Adjoint sensitivity analysis, Sigmoid function
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Nomenclature

List of abbreviations

b Channel width

d Width of circulation flow

g Gravitational acceleration

hτ Ratio between a kinematic viscosity and a permeability

kτ Effective diffusivity, dimensionless

p Pressure, dimensionless

u Velocity vector, dimensionless

Grb Grashof number

H Height of heated plate, channel height A = 2H

Nu2 Nusselt number based on θb

Pr Prandtl number

Qt Proportion of material added in Ω at the end of optimization pro-

cess

Rab Rayleigh number based on b

Re Reynolds number

Ri Richardson number

T Fluid temperature

U Average velocity at the entrance of the channel
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J Objective function

L Lagrangian function

Greek symbols

α Design parameter

ν Kinematic viscosity

Φ Heat flux at the hot plate

Ω Computational domain

α0, τ Parameters of sigmoid functions

β Thermal expansion coefficient

γ1,γ2 Weighting coefficients

Γ Frontiers of the domain

∆ Variation

ε Stopping criterion in optimization algorithm

θ Temperature, dimensionless

λf Thermal conductivity of fluid

Subscripts

b bulk

o outlet

i inlet

max maximum value
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1. Introduction1

Topology optimization is a powerful and a popular tool for designers and2

engineers to design process. Its notion was initially introduced in structural3

mechanics by Bendsøe and Kikuchi [1]. In order to increase the structural4

stiffness under certain load, they targeted the optimal material density dis-5

tribution by identifying areas in which material should be added. They6

expressed the design problem in terms of real valued continuous function per7

point, with values ranging from zero (indicating the presence of void/absence8

of material) to unity (indicating solid). The method has then been devel-9

oped to numerous problems in structural mechanics [2, 3, 4, 5, 6, 7, 8]. In10

fluid mechanics, the same idea was adapted to Stokes flows by Borrvall and11

Petersson [9], by introducing a real-valued inverse permeability multiplied by12

a kinematic viscosity dependent term into the flow equations. Domain areas13

corresponding to the fluid flow are those where α is equal to 0 while areas14

where α is not equal to 0 define the part of the domain to be solidified. The15

optimal solid walls to be designed correspond to the interfaces between the16

two aforementioned areas. So, the goal of topology optimization is to com-17

pute the optimal α field in order to minimize some objective function under18

consideration. Contrary to topology optimization applied to design structure,19

research on topology optimization applied to heat transfer and fluid dynamics20

is quite recent. Dbouk [10] presented a review about topology optimization21

design methods that have been developed for heat transfer systems, and for22

each of them, he presented their advantages, limitations and perspectives.23

In topology optimization problems with large number of design variables,24

gradient-based algorithms are frequently used to compute accurate solutions25
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efficiently [11, 12, 13, 14, 15, 16]. This algorithm starts with a given geometry26

and iterates with information related to the derivatives (sensitivity deriva-27

tives) of the objective function with respect to the design variables. Among28

the methods used to compute the sensitivity derivatives required by gradient-29

based methods, the adjoint method [11, 17, 18, 19, 12, 20] has been receiving30

a lot of attention since the cost of computing the necessary derivatives is31

independent from the number of design variables. Papoutsis-Kiachagias and32

Giannakoglou [18] present a review on continuous adjoint method applied33

to topology optimization for turbulent flows. Tong et al. [21] have recently34

discussed on the optimization of thermal conductivity distribution for heat35

conduction enhancement. They considered different optimization objectives36

and demonstrate that they should be carefully chosen when heat conduction37

is involved. Othmer [19] derived the continuous adjoint formulations and the38

boundary conditions on ducted flows for typical cost functions. He proposed39

an objective function to reduce pressure drops in open cavity. The origi-40

nality of his method is the versatility of the formulation where the adjoint41

boundary conditions were expressed in a form that can be adapted to any42

commonly used objective function. Then, for the automotive industry, Oth-43

mer et al. [22] implemented several objective functions like dissipated power,44

equal mass flow through different outlets and flow uniformity. To describe45

the transition and interface between fluid and solid regions in the domain,46

the Solid Isotropic Material with Penalization (SIMP) technique [1, 23] is47

the mostly used in the literature as the interpolation technique in topology48

optimization. This approach represents the non-fluid regions as infinitely49

stiff, a penalty to the flow, such that no interaction is modeled. Yoon [16]50
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presented a method for solving static fluid-structure interaction problems by51

converting the stresses at the fluid-solid interfaces into a volume integral rep-52

resentation. A new method of interpolation was presented by Ramalingom53

et al. [24] in order to improve the interface fluid-solid during the optimiza-54

tion process. They proposed two sigmoid functions to interpolate material55

distribution and effective diffusivity. They showed that transition zones, i.e.56

zones where the velocity of fluid is too large to be considered as solid, can57

be made arbitrary small.58

Convection typically is categorized, according to fluid motion origins, as59

forced, mixed or natural [25, 26]. All aforementioned references on heat60

transfer problems deal with forced or mixed convection. This means that61

the fluid motion is driven by a fan, pump or pressure gradient often modeled62

by a non-null velocity at entrance of the studied domain. Although nat-63

ural convection is often used for the passive cooling of industrial systems,64

very few studies have been investigated for topology optimization problem65

in natural convection case. Natural convection involves a heat dissipation66

mechanism where the fluid motion is governed by differences in buoyancy67

arising from temperature gradients. More precisely, the fluid is submitted68

to a small velocity, the corresponding heat rates are also much lower than69

those associated with forced convection. Coffin and Maute [27] introduced70

a topology optimization method for 2D and 3D, steady-state and transient71

heat transfer problems that are dominated by natural convection in the fluid72

phase. The geometry of the fluid-solid interface is described by an explicit73

level set method. Alexandersen et al. [13] applied topology optimization to74

natural convection problems. Its study shows that topology optimization is75
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a viable approach for designing heat sink geometries cooled by natural con-76

vection and micropumps powered by natural convection. He treated several77

difficulties that would be encountered when dealing with natural convection78

problems as the oscillatory behavior of the solver, namely a damped Newton79

method, used for the optimization computations. He also reported intermedi-80

ate relative densities that amplified the natural convection effects leading to81

non-vanishing velocity in some solid parts of the computational domain. As a82

result, those zones are considered as solid by the optimization algorithm while83

they should be treated as fluid. Bruns [15] applied topology optimization to84

convection-dominated heat transfer problems. He highlighted numerical in-85

stabilities in convection-dominated diffusion problems and justified them by86

the density-design-variable-based topology optimization.87

Other numerical issues are encountered in topology optimization prob-88

lems, as checkerboards pattern and intermediate density regions. Authors89

usually adopted a continuation strategy where the parameter involved in the90

SIMP interpolation of the effective diffusivity is gradually increased during91

the optimization process. These values are chosen to aggressively penalize92

intermediate densities with respect to effective diffusivity and to confine the93

maximum impermeability to the fully solid parts of the domain. Similarly,94

authors used filtering techniques [28, 29, 30, 12, 13] to overcome checker-95

boards. The filtering is done by looking at the ”neighborhood” of the indi-96

vidual element which is defined as the set of elements with centers within the97

filter radius. Bruns [29] explained that the main disadvantage of filtering the98

sensitivities is that the approach is heuristic because the sensitivities are not99

consistent with the primal analysis. Therefore, the optimization problem is100
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not well posed in a rigorous sense. Alexandersen et al. [31] explained that101

some form of filtering can be beneficial for some topology optimization prob-102

lems. Minimizing the dissipate energy in fluid flow problems are generally103

well posed and no filtering is needed. In contrarily, alternating solid and104

fluid elements can exist in structural and heat transfer problems. That cre-105

ates areas of solid elements not correctly connected. Sigmund [32] described106

various filters type to fix this problem.107

In this paper, we deal with some topology optimization problems for heat108

and mass transfers, considering the physical case of an asymmetrically heated109

vertical channel. This geometry has been subject to numerous studies in the110

literature [33, 34, 35, 36]. The first investigations date back to 1942 with the111

works of Martinelli and Boelter [37] according to the comprehensive review112

of Jackson et al. [38]. Developing and fully developed laminar free convection113

within heated vertical plates were subsequently investigated numerically by114

Bodoia and Osterle [39] and was experienced by Elenbaas [40]. Since then,115

many studies were carried out. This great interest can be explained by116

the fact that this configuration is encountered in several industrial devices117

such as solar chimney, energy collectors, electronic components and even in118

nuclear reactors. The optimization of these systems simultaneously demands119

compactness, efficiency and control of heat and mass transfers.120

This paper investigates new objective functions to optimize heat transfer121

in convection-dominated diffusion problems. Instead of proposing methods122

to improve filtering techniques and avoid some non-physical solutions re-123

lated in literature [41, 15], we propose new expressions of objective functions124

within the framework of topology optimization applied to an asymmetrically125
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heated vertical channel. Furthermore, no filtering techniques have been used126

during the optimization process.The geometry considered here is the model127

proposed by Desrayaud et al. [42] and corresponds to a boundary layer flow128

with a reversal flow at the exit [43]. We study the influence of Richardson129

number, which represents the importance of natural convection relative to130

the forced convection, in the optimized design. This adimensional number131

is chosen such as natural convection forces are dominant. Our optimization132

algorithm succeeds especially to suppress the reversal flow. We show that our133

optimized design increase thermal exchanges by computing the Nusselt num-134

bers for the range of Richardson numbers considered. We finally compare our135

results at the end of the optimization process to those obtained with classical136

objective functions of the literature. We conclude that our expression of cost137

functions are best suited to the optimization of convection-dominated diffu-138

sion problems which agrees closely with Tong et al. [21] about the importance139

of the choice of objective function in optimization problem.140

2. Governing equations141

The flows considered in this paper are assumed to be in a steady-state142

laminar regime, newtonian and incompressible. Figure 1 shows the configu-143

ration of the computational domain Ω.144

Physical properties of the fluid are kinematic viscosity ν and thermal145

conductivity λf . First, parameters governing the flow is the Reynolds number146

defined as Re = U b/ν, with b being the width of the channel and U the147

reference velocity based on the average velocity at the channel entrance. The148

Prandtl number is defined as Pr = ν/k. It describes the ratio between the149
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Figure 1: Geometry of the problem

momentum and thermal diffusivities of the fluid. In this paper, we consider150

only fluids with small Prandtl as Pr < 1. The Grashof number is defined as151

Grb = g β ∆T b3/ν2 and represents the ratio between buoyancy and viscous152

force. ∆T = −φ/λf , φ is the thermal flux on Γ1. In thermal convection153

problems, Richardson number Ri = Grb/Re2 represents the importance of154

natural convection relative to the forced convection. For values greater than155

unity, we know that the flow is dominated by natural convection. Under these156

assumptions and thanks to a method given in Borrvall and Petersson [9], the157

porosity field is introduced in the steady-state Navier-Stokes equation as a158

source term hτ (α)u which yields a Brinkman-like model with a convection159
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term [24]. Therefore, the dimensionless form of the Navier-Stokes and energy160

equations are written as follows:161

∇ · u = 0 in Ω,

(u · ∇) u = −∇p+ Re−1∆u− hτ (α)u + Ri θ −→ey in Ω,

∇ · (uθ) = ∇ · (Re−1Pr−1kτ (α)∇θ) in Ω,

(1)162

where (u, p, θ) correspond respectively to dimensionless velocity, pressure and163

temperature and are usually referred as the primal variable in the current set-164

ting. Parameter α is the spatially varying design variable field determined by165

the optimization algorithm. For the natural-dominated convection problem,166

we consider the following boundary conditions:167

u = 0, ∇p = 0, ∂nθ = −1 on Γ1,

u = 0, ∇p = 0, ∂nθ = 0 on Γ2,

u = uiey, ∇p = 0, θ = 0 on Γi,

∂nu = 0, p = 0, ∂nθ = 0 on Γo,

(2)168

where ∂n is the normal derivative defined as ∂n = n · ∇.169

3. Topology optimization formulation170

The main goal of this paper is to deal with a multi-objective optimization171

problem in the asymmetrically heated channel, considering both pressure172

drop minimization described by a first objective function J1 and heat transfer173

maximization described by a second objective function J2. The optimization174
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problem can then be stated as:175

minimize: J (u, p, θ) = γ1 J1(u, p, θ) + γ2 J2(u, p, θ),

subject to: Governing equations (1),

Boundary conditions (2).

(3)176

where the cost function J is the combination of the two objectives functions,177

γ1 and γ2 are weighting coefficients. It is easy to observe that, for γ1 � γ2, the178

multi-objective function is directed to a minimum power dissipation problem,179

while for γ1 � γ2, a maximum heat dissipation problem arises.180

3.1. Definition of the cost functions181

As indicated by several authors [30, 12, 17, 14], cost functions J1 and J2182

are often expressions of the work of forces or powers that one either wish183

to minimize or to maximize. A classical cost function used by Marck et al.184

[12], Othmer [19] for evaluating total pressure losses is :185

f(u, p) =

∫
Γ

−n · u
(
p+

1

2
|u|2
)

dS. (4)186

Also, Marck et al. [12], Kontoleontos et al. [17] evaluate the thermal power187

by the next expression:188

f(u, θ) =

∫
Γ

n · u θ dS. (5)189

In our study, we propose to evaluate mechanical power and thermal power190

via two new expressions of both cost functions. As we will show below,191

these functions give an optimal design in less iteration number and do not192

require the use of filtering techniques. They will also allow to obtain a good193

connectivity between elements of solid regions. For a system with an inlet,194
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an outlet, an average velocity and an average temperature, we define the195

thermal power as the product of the mass flow, the volume heat capacity196

and the difference of temperature between the entrance and the exit of the197

system. Likewise, mechanical power is defined as the product of mass flow198

rate and the difference of total pressure between the entrance and the exit199

of the system. In that way, we chose the work of pressure forces to minimize200

the power dissipated in the channel as used in systemic approach. Hence,201

the first cost function can be written as:202

J1(u, p) = − 1

|Γi|

∫
Γi

pt dS

∫
Γi

u · n dS

− 1

|Γo|

∫
Γo

pt dS

∫
Γo

u · n dS,
(6)203

where pt = p + 1/2 |u|2 is the total pressure, Γi and Γo are respectively the204

entrance (inlet) and the exit (outlet) of the channel.205

The second cost function concerns thermal exchange maximization and206

is given by:207

J2(u, θ) =
1

|Γi|

∫
Γi

θ dS

∫
Γi

u · n dS

+
1

|Γo|

∫
Γo

θ dS

∫
Γo

u · n dS.
(7)208

We can observe that this systemic approach for defining our cost functions209

enables to dissociate total pressure or temperature from the mass flow rate,210

since velocity profile is imposed at the entrance. Besides, minimizing (Eq.211

7) is equivalent to minimize the mean temperature at apertures. On the212

contrary, minimizing (Eq. 5) is equivalent to minimize the bulk temperature213

which is defined as:214

θb =
1∫

Γi
u · n dΓ

∫
Γi

θ u · n dΓ. (8)215
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One can finally remark that, our expression of thermal power consists in the216

mean temperature whereas expressions used by Marck et al. [12], Kontoleon-217

tos et al. [17] corresponds to the bulk temperature.218

3.2. Multi-objective optimization219

In multi-objective optimization, the challenge is to benefit from both ob-220

jective functions. As introduced in previous subsection, the objective func-221

tion based on maximization of thermal exchanges can involve the increase of222

pressure drop and conversely for the objective function relative to the dissi-223

pation of power. Before combining linearly the two functions, they must then224

be rescaled to have the same order of magnitude. This can be done by using225

an Aggregate Objective Function (AOF), also known as the weighted-sum226

approach, which is based on a linear combination of both objective functions227

[44, 45]. The latter reads:228

f̂ =
f − fmin

fmax − fmin
(9)229

where f is either J1 or J2. As explained by Marck et al. [12], the other four230

parameters are determined by solving both optimization problems indepen-231

dently (3) for min J1 and max J2. Consequently, both rescaled objective232

functions are ranged between 0 and 1. Such a rescaling allows to consider233

the following linear combination:234

Ĵ = ω Ĵ1 − (1− ω)Ĵ2 (10)235

where ω ∈ [0, 1] is the weight balancing the influence of each objective func-236

tion. Note that this combination involves the opposite of J2 since one aims237

at minimizing the combinatory function Ĵ . Thereafter, Ĵ1 and Ĵ2 are used238

only during the optimization process.239
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4. Topology optimization methods240

Applying topology optimization to this problem aims to minimize an241

objective function J by finding an optimal distribution of solid and fluid242

element in the computational domain. The goal of topology optimization is243

to end up with binary designs, i.e avoid that the design variables take other244

value than those representing the fluid or the solid. This is usually carried245

out by penalizing the intermediate densities with respect to the material246

parameters, such as inverse permeability and effective diffusivity. A standard247

approach is to use interpolation functions. We are also going to use gradient-248

based algorithm that relies on the continuous adjoint method.249

4.1. Interpolation functions250

The additional term hτ (α) in (Eq. 1) physically corresponds to the ratio251

of a kinematic viscosity and a permeability. As proposed by Guest et al.252

[46], Sigmund [32], Zhao et al. [47], a projection approach is employed to253

relate the element-based design variables to the physical densities firstly and254

to the thermal diffusivity, secondly. We defined two smooth regularization of255

Heaviside functions for these interpolations. The interpolation function for256

the thermal diffusivity of each element is kτ (α), both functions were defined257

in Ramalingom et al. [24] where it is shown that the intermediate zones can258

be as small as wanted. Regions with very high permeability can be considered259

as solid regions, and those with low permeability regions are interpreted as260

pure fluid.261
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Inverse permeability is thus interpolated with the following formula262

hτ (α) = αmax

 1

1 + exp (−τ(α− α0))
− 1

1 + exp (τα0)

 , (11)263

where α0 is the abscissa slope of the sigmoid function, αmax is the maximum264

value that the design parameter α can take and is set to 2 105. In the present265

study, we chose α0 = 20 and α ∈ [0, αmax].266

The difference in the adimensional thermal diffusivities of the fluid and267

solid regions in considered through the interpolation of effective diffusivity268

kτ as follows:269

kτ (α) =
1

kf

kf + (ks − kf )

 1

1 + exp (−τ(α− α0))
−

1

1 + exp (τα0)

 , (12)270

where ks and kf are respectively the thermal diffusivity of solid domains and271

the thermal diffusivity of the fluid domains.272

4.2. Adjoint problem273

The Lagrange multiplier method [48] is used to get an optimization prob-274

lem without constraints and can be used to get the sensitivity of the cost275

function J . The Lagrangian is defined as276

L(u, p, θ,u∗, p∗, θ∗, α) = J (u, p, θ)

+
∫

Ω
R(u, p, θ) · (u∗, p∗, θ∗)dΩ,

(13)277

where (u∗, p∗, θ∗) are the adjoint variables and R(u, p, θ) = 0 corresponds278

to the governing equations (1). The critical points of L with respect to the279

adjoint variables give the constraint of the optimization problem (3) while the280

critical point with respect to the primal variable yield the so-called adjoint281
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problem. The latter can be derived as in Othmer [19] (see also [24]) and is282

given by283

∇p∗ − hτ (α)u∗ + θ ∇θ∗ + Re−1∆u∗ +∇u∗ u− (u∗ · ∇)u = 0 in Ω,

∇ · u∗ = 0 in Ω,

Ri u∗ · −→ey + u · ∇θ∗ +∇ · (Re−1Pr−1kτ (α)∇θ∗) = 0 in Ω,

(14)284

together with the boundary conditions285

u∗ = 0, ∂nθ
∗ = 0, ∂np

∗ = 0 on Γ1 ∪ Γ2,

u∗t = 0, θ∗ = 0,
∂J
∂p

= −u∗n, ∂np∗ = 0 on Γi,

u∗t = 0,
∂J
∂θ

= −θ∗ un −Re−1Pr−1kτ (α)∂nθ
∗ on Γo,

∂J
∂u
· n = −p∗ − θ∗ θ −Re−1 ∂nu

∗ · n− u∗n un − u · u∗ on Γo,

(15)286

where un = u · n and the derivatives of J defined in (3) with respect to287

(u, p, θ) are given by288

∂J
∂p

∣∣∣∣
Γi

= −γ1
1

|Γi|

∫
Γi

u · n dS

∂J
∂θ

∣∣∣∣
Γo

= γ2
1

|Γo|

∫
Γo

u · n dS

∂J
∂u

∣∣∣∣
Γo

= −γ1
1

|Γo|
n

∫
Γo

pt dS − γ1 u ·
∫

Γo

u · n dS

+ γ2
1

|Γo|
n

∫
Γo

θ dS.

(16)289

We emphasize that the adjoint problem (14,15) has been derived for the290

cost function J given by (3). Nevertheless, in the numerical result, we wish291

to minimize the rescaled cost function Ĵ whose derivatives with respect to292
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(u, p, θ) are obtained thanks to (16) with293

γ1 =
ω

J1,max − J1,min

, γ2 =
−(1− ω)

J2,max − J2,min

.294

4.3. Implementation295

Topology optimization problem is solved by iterative calculations as car-296

ried out by Ramalingom et al. [24]. The main steps of the algorithm for the297

topology optimization are summarized in Table 2. They consist to compute298

sensitivities by adjoint method and evaluate the optimality condition. If a299

stopping criterion is met, the computations are terminated. For our simula-300

tions, we used ε = 10−7. The forward problem (1) and the adjoint problem301

(14) are implemented using OpenFOAM [49]. The generalized Geometric-302

Algebraic Multi-Grid (GAMG) solver with a cell-centered colocalized finite303

volume approach is used. In Step 5, the design variables are evaluated by304

using the conjugated-gradient descent direction method associated to Polack-305

Ribiere method βPRk+1 =
∇J T

k+1 (∇Jk+1−∇Jk)

∇J T
k ∇Jk

. The optimality condition is given306

by the critical point of the Lagrangian with respect to the design parameter307

α as follows:308

∂hτ

∂α
u · u∗ +

∂kτ

∂α
∇θ · ∇θ∗ = 0 in Ω,

∂kτ

∂α
θ∗ = 0 with ∂nθ = −1 on Γ1.

(17)309

310

5. Results311

First of all, it is important to note that the problem is purely academic and312

the values of various parameters as Prandtl number set to 0.71 corresponding313
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Figure 2: Algorithm used to solve the topology optimization (3)
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to a fluid/liquid, and ks/kf have been therefore set to 3. As they are in314

the range of realistic problems, they are thought to be representative of the315

problems that can be physically encountered. The problem is investigated for316

Ri = {100, 200, 400} under constant Re = 400 which is equivalent to increase317

the dominance of natural convection in the conducto-convection problem.318

These values have been chosen in accordance with the study of Li et al. [50]319

on reversal flows in the asymmetrically heated channel. We chose α0 = 20320

and set αmax to 2 · 10 5, keeping in mind that similar results have been321

obtained for αmax = 10 6. A vertical velocity profile at the entrance of the322

channel is considered in accordance with the value of Re = 400. Its profile is323

defined by the following equation:324

ui(x) = − 6.1 x2 + 6.1 x.325

For this study, we chose different values of ω in line with the importance326

given to the different cost functions J1 or J2. All results performed in this327

paper correspond to the thermal and mechanical powers defined as J1 and328

J2. Moreover, in order to be sure that no material is added at the entrance329

of the channel during the optimization process, we solved the problem by330

imposing fluid domain at the lower part of the channel, i.e. α = 0 for the331

element in [0, 1] × [0, 1]. We compare first the various optimized designs332

obtained and the structure of the flow in new designs. For each value of333

Richardson number, we compute the proportion Qt of material added in the334

domain Ω as follows:335

Qt =

∫
Ω
hτ (α) dΩ

αmax Vtot
, where Vtot is the total volume of Ω. (18)336

In order to demonstrate the increase of heat transfer after optimization, we337
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compute the inverse of the difference between the temperature at the left338

wall and the bulk temperature, i.e the Nusselt number defined in Desrayaud339

et al. [42] by:340

Nu2(y) =
1

θ(0, y)− θbulk(y)

where θbulk(y) =
1

qin(y = 0)

∫ 1

0
u(x, y) θ(x, y) dx,

(19)341

y = 3H/2 corresponds to the end of the heated plate and qin is the mass flow342

rate entering the channel at y = 0.343

In a second time, we compare our results obtained for Ri=100 to those344

obtained with objectives function usually used in literature, i.e. J1 and J2345

are defined by (Eq. 4) and (Eq. 5).346

5.1. Varying Richardson number347

Figure 3 shows that the obtained designs at varying Ri differ from one348

to another, which is to be expected. When the natural convection forces349

become more dominant, the optimization algorithm adds more material in350

the channel. The proportion of material added in the vertical channel varies351

from 4.9% to 52.2%. So, the quantity of material increases when Richardson352

number increases. The structure of the flow in the channel is also modified.353

From Figure 3c, it can be seen that for Ri = 400, all of the material is kept354

close to the right wall of the domain and the flow circulation is obliged to355

be near the heated wall. This contributes to the second objective function356

corresponding to increase the thermal exchanges in the channel. Table 1357

gives the Nusselt number at the exit of the heated plate for each Richardson358
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number. Without optimization and whichever the Richardson number in the359

range considered, Nusselt number at the exit of hot plate is equal to 10.51360

and the bulk temperature to 0.07. After optimization, Nusselt number varies361

from 11.86 to 15.06. Hence, we obtained a rise between 12.8% and 43.3%. So,362

Nusselt number is more important in the optimized design and it increases363

when Richardson number increases. Hence, we successfully increase thermal364

exchanges in the channel.365

It can also be observed that the reversal flow is suppressed after opti-366

mization process. Indeed, material added by the algorithm at the end of the367

channel prevent the fluid from re-entering in the channel. As can be seen368

on Figure 5, vertical component of the velocity has a positive value in the369

channel after optimization and is null or very small in the solid region, as370

expected. That means our interpolation function gives an optimized design371

with no physical error as a non-null velocity in the solid regions without con-372

nectivity (Kreissl and Maute [51] and Lee [30]). Moreover, value of vertical373

component of the velocity increases when Ri increases (cf. Figure 4). That374

is due to the reduction of the section for the flow circulation which causes an375

acceleration of the fluid in the channel. The width of flow circulation after376

optimization for the case Ri = 100, ω = 0.5 is referenced on Figure 6, for ex-377

ample. This graph also demonstrates that the sigmoid function hτ (α) which378

interpolates the design variable α affects correctly volume elements to solid379

domains in order to avoid checkerboards. That brings to a well definition of380

the fluid-solid boundaries as obtained by Ramalingom et al. [24].381

With regards of cost functions computation, our algorithm reduces the382

value of
ˆ̃
J over iterations as can be seen on Figure 7 for the case Ri = 100.383
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Figure 3: Optimized designs and streamtraces at various Ri. Orange corresponds to solid

material and purple corresponds to the fluid domain.
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Figure 4: Adimensional vertical component of the velocity at the end of the hot plate of

the channel y = 3H/2

Table 2 highlights the influence of Ri on thermal power and mechanical power.384

Indeed, as the Richardson number increases, the power due to work forces385

decreases and the thermal power in the channel increases. J1 is reduced by386

a factor 1.64 and J2 is reduced by a factor 1.51 (Table 2) for Ri = 100.387

When we compare J1 to its value without optimization J1Ref, we notice388

that sometimes the optimization algorithm added material which contributes389

to rising friction forces and pressure losses as long as the heat dissipation390

increases. Hence, for the case Ri = 200, J1 is reduced by a factor 1.13391
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Figure 5: Adimensional vertical velocity field at various Ri
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Figure 6: α, hτ (α) and kτ (α) at the end section of the channel for Ri = 100 - annotation

d is used for the width of the flow section

while J2 is increased by a factor 0.46. On the contrary, for the case Ri =392

400, J1 is increased by a factor 0.26 while J2 is reduced by a factor 0.64.393

These cases illustrated that our algorithm enables to add material in the394

channel in order to contribute to one or other cost functions according to the395

weighted coefficient ω. Hence, for the case Ri = 200, we chose to prioritize396

the minimization of mechanical power with ω = 0.85. For the case Ri = 400,397

we chose to prioritize the maximization of heat transfer with ω = 0.15. We398

can conclude that the algorithm succeeds to minimize/maximize one or other399
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Iteration number

Figure 7: Evolution of Ĵ over iterations - Ri = 100, ω = 0.5

cost functions by adding material without penalizing too much the other.400

5.2. Comparison with classical functions of literature (Eq. 4) and (Eq. 5)401

In this section, we compare optimization results obtained with our cost402

functions to those obtained with classical cost functions referenced in the403

literature, i.e those defined by (Eq. 4) and (Eq. 5). First of all, Figure 11404

shows different snapshot of optimized designs obtained over iterations with405

classical cost functions (4) and (5). We stop the computation at iteration406

number 187500. We notice that our algorithm has a tendency to fill up the407
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Figure 8: Evolution of thermal power and mechanical power over iterations - Ri = 100, ω =

0.5

channel with material before suppresses it in order to achieve the goal defined408

by the classical cost functions. In the same way, Figure 9 shows different409

snapshots of optimized designs over iterations with the objective functions410

that we propose in this paper. We obtain the final optimized design at411

iteration number 84000, which is faster compared to the previous simulation.412

Ramalingom et al. [24] have used the same algorithm with the classical cost413

functions to deal with cases where Ri= 2.8. When Richardson number is more414

important (set to 100), the various designs obtained over iterations with these415
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θbulk Nu2(3H/2)

Ri = 100 0.027 11.86

Ri = 200 0.034 12.99

Ri = 400 0.039 15.06

Table 1: Nusselt number and adimensional bulk temperature at the end of the hot plate

for various Richardson numbers

Ri = 100 Ri = 200 Ri = 400

J1ref/J1 1.64 1.13 0.26

J2ref/J2 1.51 0.46 0.64

Table 2: Reduction factor of cost functions - ref corresponds to the value of cost functions

without optimization

classical cost functions demonstrate that they are not appropriate to deal416

with heat transfer problem dominated by natural convection. Cost functions417

that dissociate pressure and temperature to the mass flow rate by considering418

average quantities essentially give stable optimized results. Moreover, we419

observe that the algorithm adds material just at the right plate on the top,420

this strategy is sufficient to prevent the fluid from re-entering at the top-end421

of the channel. Second, the channel is filled up at 45.03% with classical cost422

functions, while it is filled up at 4.9% with our cost functions. So, the new423

expressions of mechanical and thermal power give optimized designs with424

less material. Finally, when we enlarge the top end of the optimized designs425

and we compare both in Figure 10, we can see that the new expressions426

of objective functions allow a best connectivity between solid elements. No427
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84000

Itération numbers

3500 4000 4500 5000 5500 7500 16500

Figure 9: Designs obtained over iterations with functional objectives defined in this paper

isolated material is added in the channel as encountered by some authors428

[41, 15, 12, 13] in the literature. Hence, that contributes to diminishing429

the first objective function, i.e pressure losses in the channel. So, for this430

configuration case of the channel, i.e. where the fluid flow moves essentially431

by natural convection, the classical cost functions of the literature seem to be432

inappropriate. With our new expressions of mechanical and thermal power,433

we obtain an optimized design in less time of computation and with less434

quantity of material. Moreover, connectivity in solid region is better.435

6. Conclusion436

An optimization problem considering both pressure drop minimization437

and heat transfer maximization in the asymmetrically heated channel has438

been examined. The problem is handled in natural convection with sev-439

eral values of Richardson number taken in {100, 200, 400}. First of all, two440

objective functions are investigated representing the work of forces for the441
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(1) (2)

Figure 10: Comparison of solid regions at the end of the channel for classical cost functions

of literature (1) and cost functions in this paper (2)

mechanical power and heat exchanges with the thermal power. In accordance442

with the physical problem considered, a weighted coefficient is chosen for the443

combined cost function. These functions allow to obtain optimal designs and444

they are relatively reduced in accordance with the weight affected to each of445

them. For Richardson number equal to 100, optimization results obtained446

with cost functions proposed in this paper are compared to those obtained447

with cost functions classically used in the literature. Several conclusions have448

been drawn. First of all, the reversal flow in the channel is suppressed at449

the end of the optimization. That contributes to reducing pressure losses in450

the channel. Then, the new expressions of cost functions avoid the use of451

filter techniques as no checkerboards pattern are observed. The values of cost452

functions converge asymptotically over iterations with the new expressions453

of mechanical and thermal powers, contrarily to those used in the litera-454

ture. This approach that consists of dissociating quantities in the expression455

of cost functions by considering average quantities is well adapted to natu-456
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Figure 11: Designs obtained over iterations with cost functions defined in this paper

ral convection phenomena. Moreover, the obtained designs with these new457

costs functions show a better connectivity in the solid region, contrarily to458

the design obtained with classical cost functions. Concerning the fluid-solid459

boundary, they are well-defined during the optimization process thanks to460

two sigmoid functions used for the interpolation of both the design variable461

and the effective diffusivity. Finally, the optimization algorithm is able to462

increase thermal exchanges while maintaining the pressure losses due to fric-463
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tion, thanks to the combined objective functions used. Thermal exchanges464

are evaluated by the calculation of Nusselt number based on the bulk tem-465

perature. They are more important with the obtained optimized designs and466

increase with Richardson number values. In conclusion, this study highlights467

the importance of the expression of cost functions in a topology optimiza-468

tion problem, dominated by natural convection forces. The influence of the469

Richardson is observed on the quantity of material added in the optimized470

channel. As future work, we suggest a more complete heat and mass transfer471

model might be considered, as pure natural convection problems and radia-472

tion problems.473
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