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Abstract

This paper deals with a multi-physics topology optimization problem in

an asymmetrically heated channel, considering both pressure drop mini-

mization and heat transfer maximization. The problem is modeled under

the assumptions of steady-state laminar flow dominated by natural con-

vection forces. The incompressible Navier-Stokes equations coupled to the

convection-diffusion equation through the Boussinesq approximation are em-

ployed and are solved with the finite volume method. In this paper, we first

propose two new objective functions: the first one takes into account work

of pressures forces and contributes to the loss of mechanical power while the

second one is related to thermal power and is linked to the maximization of

heat exchanges. In order to obtain a well-defined fluid-solid interface during

the optimization process, we use a sigmoid interpolation function for both

the design variable field and the thermal diffusivity. We also use adjoint

sensitivity analysis to compute the gradient of the cost functional. Results

are obtained for various Richardson (Ri) and Reynolds (Re) number such
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that 100 < Ri < 400 and Re ∈ {200, 400}. In all considered cases, our al-

gorithm succeeds to enhance one of the phenomenon modelled by our new

cost functions without deteriorating the other one. We also compare the

values of standard cost functions from the litterature over iteration of our

optimization algorithm and show that our new cost functions have no oscil-

latory behavior. As an additional effect to the resolution of the multi-physics

optimization problem, we finally show that the reversal flow is suppressed at

the exit of the channel.

Keywords: Natural convection, Mixed convection, Thermal power,

Mechanical power, Sigmoid function, Vertical channel

1. Introduction1

Topology optimization is a powerful and a popular tool for designers and2

engineers to design process. Its notion was initially introduced in structural3

mechanics by Bendsøe et al. [1]. In order to increase the structural stiffness4

under certain load, they targeted the optimal material density distribution5

by identifying areas in which material should be added. They expressed6

the design problem in terms of real valued continuous function per point,7

with values ranging from zero (indicating the presence of void/absence of8

material) to unity (indicating solid). The method has then been developed9

to numerous problems in structural mechanics [2, 3, 4, 5, 6, 7, 8]. In fluid10

mechanics, the same idea was adapted to Stokes flows by Borrvall and Pe-11

tersson [9], by introducing a real-valued inverse permeability multiplied by12

a kinematic viscosity dependent term into the flow equations. Domain areas13

corresponding to the fluid flow are those where α is equal to 0 or, in practice,14
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inferior or equal to a user-defined positive number α0. Domain areas where15

α value are not equal to 0 or superior to α0 define the part of the domain to16

be solidified [10]. The optimal solid walls to be designed correspond to the17

interfaces between the two aforementioned areas. So, the goal of topology18

optimization is to compute the optimal α field in order to minimize some19

objective function under consideration.20

Contrary to topology optimization applied to design structure, research21

on topology optimization applied to heat transfer and fluid dynamics is quite22

recent. Dbouk [11] presented a review about topology optimization design23

methods that have been developed for heat transfer systems, and for each of24

them, he presented their advantages, limitations and perspectives. In topol-25

ogy optimization problems with large number of design variables, gradient-26

based algorithms are frequently used to compute accurate solutions efficiently27

[12, 13, 14, 15, 16, 17]. This algorithm starts with a given geometry and it-28

erates with information related to the derivatives (sensitivity derivatives)29

of the objective function with respect to the design variables. Among the30

methods used to compute the sensitivity derivatives required by gradient-31

based methods, the adjoint method [12, 18, 19, 20, 13] has been receiving32

a lot of attention since the cost of computing the necessary derivatives is33

independent from the number of design variables. Papoutsis-Kiachagias and34

Giannakoglou [19] present a review on continuous adjoint method applied to35

topology optimization for turbulent flows. Othmer [20] derived the contin-36

uous adjoint formulations and the boundary conditions on ducted flows for37

typical cost functions. He proposed an objective function that conduct to38

reduce pressure drop in open cavity. The originality of his method is the39

3



versatility of the formulation where the adjoint boundary conditions were40

expressed in a form that can be adapted to any commonly used objective41

function. Then, for the automotive industry, Othmer et al. [21] implemented42

several objective functions like dissipated power, equal mass flow through dif-43

ferent outlets and flow uniformity. To describe the transition and interface44

between two different materials in the domain, the Solid Isotropic Material45

with Penalization (SIMP) technique [1, 22] is the mostly used in the litera-46

ture as the interpolation technique in topology optimization. This approach47

represents the non-fluid regions as infinitely stiff, a penalty to the flow, such48

that no interaction is modeled. Yoon [17] presented a method for solving49

static fluid-structure interaction problems by converting the stresses at the50

fluid/solid interfaces into a volume integral representation. A new method51

of interpolation in order to improve the interface fluid/solid during the opti-52

mization process was presented by Ramalingom et al. [10]. They proposed to53

use two sigmoid functions in order to interpolate material distribution and54

thermal conductivity and show that the transition zones, that is the zones55

where the velocity of the fluid is too large to be considered as solid, can be56

made arbitrary small.57

Convection typically is categorized, according to fluid motion origins, as58

forced, mixed or natural [23, 24]. All aforementioned references on heat trans-59

fer problems are dealt in case of forced or mixed convection. This means that60

the fluid motion is driven by a fan, pump or pressure gradient often modeled61

by a non-null velocity at entrance of the studied domain. Natural convection62

involves a heat dissipation mechanism where the fluid motion is governed by63

differences in buoyancy arising from temperature gradients. More precisely,64
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the fluid is submitted to a small velocity, the corresponding heat rates are also65

much lower than those associated with forced convection. Bruns [16] applied66

topology optimization to convection-dominated heat transfer problems. He67

highlighted numerical instabilities in convection-dominated diffusion prob-68

lems and justified them by the density-design-variable-based topology opti-69

mization. Alexandersen et al. [25] applied topology optimization to natural70

convection problems. He obtained complex geometries that improved the71

cooling of heat sinks. They encountered difficulties as oscillatory behaviour72

of the solver, namely a damped Newton method, used for the optimization73

computations. They also reported intermediate relative densities that ampli-74

fied the natural convection effects leading to non-vanishing velocity in some75

solid parts of the computational domain. As a result, those zones are con-76

sidered as solid by the optimization algorithm while they should be treated77

as fluid. Both authors used filtering techniques in order to avoid numerical78

instabilities [26, 27, 28, 13, 14].79

In this paper, we deal with some topology optimization problems for heat80

and mass transfers, considering the physical case of an asymmetrically heated81

vertical channel. This geometry has been subject to numerous studies in the82

literature [29, 30, 31, 32]. The first investigations date back to 1942 with the83

works of Martinelli and Boelter [33] according to the comprehensive review84

of Jackson et al. [34]. Developing and fully developed laminar free convection85

within heated vertical plates was subsequently investigated numerically by86

Bodoia and Osterle [35] and was experienced by Elenbaas [36]. Since then,87

many studies were carried out. This great interest can be explained by88

the fact that this configuration is encountered in several industrial devices89
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such as solar chimney, energy collectors, electronic components and even in90

nuclear reactors. The optimization of these systems simultaneously demands91

compactness, efficiency and control of heat and mass transfers.92

This paper investigates numerical instabilities that can be developed in93

convection-dominated diffusion problems [37, 16]. Instead of proposing meth-94

ods to improve filtering techniques and avoid these instabilities, we propose95

a new expression of objective functions within the framework of topology96

optimization applied to an asymmetrically heated vertical channel. The ge-97

ometry considered here is the model proposed by Desrayaud et al. [38] and98

corresponding to a boundary layer flow with a reversal flow at the exit [39] .99

We study the influence of Richardson number, which represents the impor-100

tance of natural convection relative to the forced convection, in the optimized101

design. Our optimization algorithm succeeds especially to suppress the rever-102

sal flow and to increase the thermal exchanges in the channel for the range of103

Richardson numbers considered. Moreover, no numerical instabilities have104

been encountered during the optimization process and no filter techniques105

have been used. We finally compare the stability of our results at the end106

of the optimization process to those obtained with classical cost functions of107

the literature.108

2. Governing equations109

The flows considered in this paper are assumed to be in a steady-state110

laminar regime, newtonian and incompressible. Figure 1 shows the configu-111

ration of the computational domain Ω.112

Physical properties of the fluid are kinematic viscosity ν and thermal113
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Figure 1: Geometry of the problem

conductivity λf . First, parameters governing the flow is the Reynolds num-114

ber defined as Re = U b/ν, with b being the width of the channel and U115

the reference velocity based on the average velocity at the channel entrance.116

The Prandtl number is defined as Pr = ν/k. It describes the ratio between117

the momentum and thermal diffusivities of the fluid. For Pr < 1, the energy118

is transferred to the fluid by heat conduction since it prevails over convec-119

tion. For Pr > 1 the energy is transferred through the fluid mainly thanks120

to convection. In this paper, we consider only fluids with small Prandtl that121

is Pr < 1. The Grashof number is defined as Grb = g β ∆T b3/ν2 and rep-122

resents the ratio between buoyancy and viscous force. ∆T = −φ/λ, φ is the123

thermal flux on Γ1 and λ is the thermal conductivity of the fluid. In thermal124

convection problems, Richardson number Ri = Grb/Re2 represents the im-125

portance of natural convection relative to the forced convection. For values126
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superior to unity, we know that the flow is dominated by natural convection.127

Under these assumptions and thanks to a method given in Borrvall and Pe-128

tersson [9], the porosity field is introduced in the steady-state Navier-Stokes129

equation as a source term hτ (α)u which yields a Brinkman-like model with130

a convection term. Therefore, the dimensionless form of the Navier-Stokes131

and energy equations are written as follows:132

∇ · u = 0 in Ω

(u · ∇) u = −∇p+ Re−1∆u− hτ (α)u + Ri θ −→ey in Ω

∇ · (uθ) = ∇ · (Re−1Pr−1kτ (α)∇θ) in Ω

(1)133

where (u, p, θ) correspond respectively to dimensionless velocity, pression and134

temperature and are usually referred as the primal variable in the curent set-135

ting. Parameter α is the spatially varying design variable field determined by136

the optimization algorithm. For the natural-dominated convection problem,137

we consider the following boundary conditions:138

u = 0, ∇p = 0, ∂nθ = −1 on Γ1,

u = 0, ∇p = 0, ∂nθ = 0 on Γ2,

u = uiey, ∇p = 0, θ = 0 on Γi,

∂nu = 0, p = 0, ∂nθ = 0 on Γo,

(2)139

where ∂n is the normal derivative defined as ∂n = n · ∇.140

3. Topology optimization formulation141

The main goal of this paper is to solve a multi-physics optimization prob-142

lem in the asymmetrically heated channel, considering both pressure drop143
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minimization described by a first objective function J1 and heat transfer144

maximization described by a second objective function J2. The optimiza-145

tion problem can be stated as:146

minimize: J = γ1 J1 + γ2 J2,

subject to: Governing equations (1),

Boundary conditions (2).

(3)147

where the cost function J is the combination of the two objectives functions,148

γ1 and γ2 are weighting coefficients. It is easy to observe that, for γ1 � γ2, the149

multi-objective function is directed to a minimum power dissipation problem,150

while for γ1 � γ2, a maximum heat dissipation problem arises.151

3.1. Cost functions152

As indicated by several authors [28, 13, 18, 15], cost functions J1 and J2153

are expressions of multi-physics powers that one either wish to minimize or154

to maximize. A classical cost function used by Marck et al. [13], Othmer [20]155

for evaluating total pressure losses is :156

f(u, p) =

∫
Γ

−n · u
(
p+

1

2
|u|2
)

dS. (4)157

Also, Marck et al. [13], Kontoleontos et al. [18] evaluate the thermal power158

by this expression:159

f(u, θ) =

∫
Γ

n · u θ dS. (5)160

In our study, we propose to evaluate mechanical power and thermal power161

via two new expressions of both cost functions. As we will show below, these162

functions avoid numerical instabilities encountered in convection-dominated163
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diffusion optimization problems and do not require the use of filter tech-164

niques. They will also permit to stabilize the optimization process. For a165

system with an inlet, an outlet, an average velocity and an average tempera-166

ture, we define the thermal power as the product of the mass flow, the volume167

heat capacity and the difference of temperature between the entrance and the168

exit of the system. Likewise, mechanical power is defined as the product of169

mass flow rate and the difference of total pressure between the entrance and170

the exit of the system. In that way, we chose the work of pressure forces to171

minimize the power dissipated in the channel as used in systemic approach.172

Hence, the first cost function can be written as:173

J1(u, p) = − 1

|Γi|

∫
Γi

pt dS

∫
Γi

u · n dS

− 1

|Γo|

∫
Γo

pt dS

∫
Γo

u · n dS,
(6)174

where pt = p + 1/2 u2 is the total pressure, Γi and Γo are respectively the175

entrance and the exit of the channel.176

The second cost function concerns thermal exchange maximization and177

is given by:178

J2(u, p) =
1

|Γi|

∫
Γi

θ dS

∫
Γi

u · n dS

+
1

|Γo|

∫
Γo

θ dS

∫
Γo

u · n dS.
(7)179

3.2. Multi-objective optimization180

In multi-objective optimization, the challenge is to benefit from both ob-181

jective functions. As introduced in previous subsection, the objective func-182

tion based on maximization of thermal exchanges can involve the increase of183

pressure drop and conversely for the objective function relative to the dissi-184

pation of power. The set of solutions can be reached by using an Aggregate185
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Objective Function (AOF), also known as the weighted-sum approach, which186

is based on a linear combination of both objective functions [40, 41]. Before187

combining linearly the two functions, they must then be rescaled to have the188

same order of magnitude. This can be achieved as follows:189

f̂ =
f − fmin

fmax − fmin
(8)190

where f is either J1 or J2. As explicated by Marck et al. [13], the other four191

parameters are determined by solving both optimization problems indepen-192

dently (3) for min J1 and max J2 with maximal porosity (αmax). Conse-193

quently, both rescaled objective functions are ranged between 0 and 1. Such194

a rescaling allows to consider the following linear combination:195

Ĵ = ω Ĵ1 − (1− ω)Ĵ2 (9)196

where ω is the weight balancing the influence of each objective function197

(ω ∈ [0, 1]). Note that this combination involves the opposite of J2 since198

the optimization algorithm aims at minimizing the combinatory function Ĵ .199

Thereafter, Ĵ1 and Ĵ2 are used only during the optimization process.200

4. Topology optimization methods201

Applying topology optimization to this problem aims to minimize an202

objective function J by finding an optimal distribution of solid and fluid203

element in the computational domain. The goal of topology optimization is to204

end up with binary designs, i.e avoid that the design variables take other value205

than those representing the fluid or the solid. This is usually carried out by206

penalizing the intermediate densities with respect to the material parameters,207
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such as inverse permeability and effective conductivity. A standard approach208

is to use interpolation functions. We also use gradient-based algorithm that209

relies on the continuous adjoint method.210

4.1. Interpolation functions211

The additional term hτ (α) in (1) physically corresponds to the ratio of212

a kinematic viscosity and a permeability. The interpolation function for the213

thermal diffusivity of each element is kτ (α), both functions were defined in214

Ramalingom et al. [10]. Regions with very high permeability can be consid-215

ered as solid regions, and those with low permeability regions are interpreted216

as pure fluid.217

Inverse permeability is thus interpolated with the following formula218

hτ (α) = αmax

 1

1 + exp (−τ(α− α0))
− 1

1 + exp (τα0)

 , (10)219

where α0 is the abscissa slope of the sigmoid function, αmax is the maximum220

value that the design parameter α can take and is set to 2 105. In Ramalingom221

et al. [10], it is shown that the parameter α0 is linked to the quantity of222

material added in the domain Ω. In the present study, we chose α0 = 20.223

The difference in the adimensional thermal conductivities of the fluid and224

solid regions in considered through the interpolation of effective conductivity225

kτ as follows:226

kτ (α) =
1

kf

kf + (ks − kf )

 1

1 + exp (−τ(α− α0))
−

1

1 + exp (τα0)

 ,
(11)227

where ks and kf are respectively the thermal diffusivity of the fluid domains228

and the thermal conductivity of solid domains.229
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4.2. Adjoint problem230

The Lagrange multiplier method [42] is used to get an optimization prob-231

lem without constraints and can be used to get the sensitivity of the cost232

function J . The Lagrangian is defined as233

L(u, p, θ,u∗, p∗, θ∗, α) = J (u, p, θ)

+
∫

Ω
R(u, p, θ) · (u∗, p∗, θ∗)dΩ,

(12)234

where (u∗, p∗, θ∗) are the adjoint variables and R(u, p, θ) = 0 corresponds235

to the governing equations (1). The critical points of L with respect to the236

adjoint variables give the constraint of the optimization problem (3) while the237

critical point with respect to the primal variable yield the so-called adjoint238

problem. The latter can be derived as in Othmer [20] (see also [10]) and is239

given by240

∇p∗ − hτ (α)u∗ + θ ∇θ∗ + Re−1∆u∗ +∇u∗ u− (u∗ · ∇)u = 0 in Ω,

∇ · u∗ = 0 in Ω,

Ri u∗ · −→ey + u · ∇θ∗ +∇ · (Re−1Pr−1kτ (α)∇θ∗) = 0 in Ω,

(13)241

together with the boundary conditions242

u∗ = 0, ∂nθ
∗ = 0, ∂np

∗ = 0 on Γ1 ∪ Γ2,

u∗t = 0, θ∗ = 0,
∂J
∂p

= −u∗n, ∂np∗ = 0 on Γi,

u∗t = 0,
∂J
∂θ

= −θ∗ un −Re−1Pr−1kτ (α)∂nθ
∗ on Γo,

∂J
∂u
· n = −p∗ − θ∗ θ −Re−1 ∂nu

∗ · n− u∗n un − u · u∗ on Γo,

(14)243
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where un = u · n and the derivatives of J defined in (3) with respect to244

(u, p, θ) are given by245

∂J
∂p

∣∣∣∣
Γi

= −γ1
1

|Γi|

∫
Γi

u · n dS

∂J
∂θ

∣∣∣∣
Γo

= γ2
1

|Γo|

∫
Γo

u · n dS

∂J
∂u

∣∣∣∣
Γo

= −γ1
1

|Γo|
n

∫
Γo

pt dS − γ1 u ·
∫

Γo

u · n dS

+ γ2
1

|Γo|
n

∫
Γo

θ dS.

(15)246

We emphasize that the adjoint problem (13,14) has been derived for the

cost function J given by (3). Nevertheless, in the numerical result, we wish

to minimize the rescaled cost function Ĵ whose derivatives with respect to

(u, p, θ) are obtained thanks to (15) with

γ1 =
ω

J1,max − J1,min

, γ2 =
−(1− ω)

J2,max − J2,min

.

4.3. Implementation247

Topology optimization problem is solved by iterative calculations. The248

main steps of the algorithm for the topology optimization consist to compute249

sensitivities by adjoint method and evaluate the optimality condition. If250

a stopping criterion is met, the computation is terminated. The forward251

problem (1) and the adjoint problem (13) are implemented using OpenFOAM252

[43]. The optimality condition is given by the critical point of the Lagrangian253

with respect to the design parameter α as follows:254

∂hτ

∂α
u · u∗ +

∂kτ

∂α
∇θ · ∇θ∗ = 0 in Ω,

∂kτ

∂α
θ∗ = 0 with ∂nθ = −1 on Γ1.

(16)255
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The design variables are evaluated by using the conjugated-gradient descent256

direction method associated to Polack-Ribiere method. To summarize, the257

algorithm for the topology optimization is described in Table 1.

Step 0. Initialization: set all the constants Re, Ri, Pr

Step 1. Solve the forward problem (1),(2) problem with the Finite Volume Method

Step 2. Compute objective and constraint values

Step 3. Compute sensitivities by adjoint method

Step 4. Evaluate the optimality condition. If a stopping criterion is met, terminate the calculation.

Step 5. Project design variable α with αk = max (0,min(α, αmax))

Step 6. Update design variables α with αk+1 = −∇Jk+1 + βPRk+1 αk and return to step 1

Table 1: Algorithm of topology optimization

258

5. Results259

First of all, it is important to note that the problem is purely academic and260

the values of various parameters as Prandtl number set to 0.71 corresponding261

to a fluid/liquid, and ks/kf have been therefore set to three. As they are in262

the range of realistic problems, they are thought to be representative of the263

problems that can be physically encountered.264

The problem is investigated for Ri = {100, 200, 400} under constant Re =265

400 which is equivalent to increase the dominance of natural convection in the266

conducto-convection problem. These values have been chosen in accordance267

with the study of Li et al. [44] on reversal flows in the asymmetrically heated268

channel. The problem is also investigated for Re = 200 and Ri = 400 in269

order to highlight the effect of convection on the optimization results. We270
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(a) Ri = 100,

Qt = 4.9%

(b) Ri = 200,

Qt = 13.3%

(c) Ri = 400,

Qt = 52.2%

(d) Obtained

with (4) and (5)

Ri = 100, ω =

0.5

Figure 2: Optimized designs and streamtraces at various Ri for constant Re = 400. Orange

corresponds to solid material and purple corresponds to the fluid domain.

chose α0 = 20 and set αmax to 2 · 105 keeping in mind that similar results271

have been obtained for αmax = 106.272

Figure 3a shows the vertical velocity profile at the entrance of the channel273

for the two values of Re. For this study, we chose different values of ω in274

accordance with the importance given to the different costs function J1 or275

J2. All results performed in this paper correspond to physical quantities,276

that is J1 and J2. Moreover, in order to be sure that no material is added277

at the entrance of the channel during the optimization process, we solved278
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the problem by imposing fluid domain at the lower part of the channel, i.e.279

α = 0 for the element in [0, 1]× [0, 1].280

5.1. Varying Ri at constant Re = 400281

It can be seen that the obtained designs at varying Ri (Figure 2) differ282

from one another, which is to be expected.283

First of all, when the natural convection forces become more dominant,

the optimization algorithm adds more material in the channel. We compute

the proportion Qt of material added in the domain Ω as follows:

Qt =

∫
Ω
hτ (α) dΩ

αmax Vtot
, where Vtot is the total volume of Ω. (17)

The proportion of material added in the vertical channel varies from 4.9% to284

52.2%. It is referenced on Figure 2. Hence, the quantity of material increases285

when Richardson number increases.286

Secondly, we can observe that the structure of the flow in the channel is287

modified. From Figure 2c, it can be seen that for Ri = 400, all of the material288

is kept close to the right wall of the domain and the flow circulation is obliged289

to be near the heated wall. This contributes to the second objective function290

corresponding to increase the thermal exchanges in the channel. Besides,291

temperature profiles at the exit of the channel are shown on Figure 3b.292

It can also be observed that the flow reversal is suppressed after opti-293

mization process. Indeed, material added by the algorithm at the end of the294

channel prevent the fluid from re-entering in the channel. As can be seen295

on Figure 4, vertical component of the velocity has a positive value in the296

channel after optimization and is null or very small in the solid region, as297

expected. That means our interpolation function gives an optimized design298

17



with no physical error as a non-null velocity in the solid regions without con-299

nectivity (Kreissl and Maute [45] and Lee [28]). Moreover, value of vertical300

component of the velocity increases when Ri increases (cf. Figure 3b). That301

is due to the reduction of the section for the flow circulation which causes an302

acceleration of the fluid in the channel. The width of flow circulation after303

optimization is referenced on Figure 5. It demonstrates also that the sigmoid304

function hτ (α) which interpolates the design variable α affects correctly vol-305

ume elements to solid domains in order to avoid checkerboards. That brings306

to a well definition of the frontier fluid-solid as obtained by Ramalingom307

et al. [10].308

With regard to cost functions computation at the end of the optimization309

process, we highlight the influence of Ri on thermal power and mechanical310

power. Indeed, as the Richardson number increases, the power due to work311

forces decreases and the thermal power in the channel increases. Figure 6312

gives the computation of cost functions before optimization process and after313

the optimization. Hence, J1 is reduced by a factor 1.64 and J2 is reduced314

by a factor 1.51 (Table 2) for Re = 400 and for Ri = 100. When we compare315

J1 to its value without optimization J1Ref, we notice that sometimes the316

optimization algorithm added material which contributes to rising friction317

forces and pressure losses as long as the heat dissipation increases. Hence,318

for the case (Re,Ri) = (400, 200), J1 is reduced by a factor 1.13 while J2 is319

increased by a factor 0.46. On the contrary, for the case (Re,Ri) = (400, 400),320

J1 is increased by a factor 0.26 while J2 is reduced by a factor 0.64. These321

cases illustrated that our algorithm permits to add material in the channel in322

order to contribute to one or other cost functions according to the weighted323

18



coefficient ω. Hence, for the case (Re,Ri) = (400, 200), we chose to prioritize324

the minimization of mechanical power with ω = 0.85. For the case (Re,Ri) =325

(400, 400), we chose to prioritize the maximization of heat transfer with ω =326

0.15. We can conclude that the algorithm succeeds to minimize/maximize327

one or other cost functions by adding material without penalizing too much328

to one or other.329

Figure 7 shows the computation of thermal power and mechanical power330

at each iteration of the optimization process. We can compare the evolution331

throughout iterations for the classical cost functions of the literature (Figure332

7a) and for the cost functions proposed in our study (Figure 7a). Contrary333

to the cost functions (6) and (7), classical cost functions (4) and (5) present334

an oscillatory behavior when applied to our dominated-natural-convection335

problem. These instabilities lead to important oscillations of the adjoint336

pression and the adjoint velocity (cf. Equation (13)). Moreover, as mathe-337

matical sign of velocity switches, our algorithm adds material in the domain338

in accordance with the optimality condition (cf. Equation (3)). Therefore,339

these numerical instabilities lead to a optimized design with a lot of quantity340

of material (Figure 2d) evaluated at Qt = 45.03%. Hence, we can conclude341

that the new expression of both cost functions gives a better stability of the342

computation at the end of the optimization process.343

5.2. Constant Ri = 400 and Re = 200344

In Li et al. [44], the authors considered the case Re = 200 and Ri = 400,345

which gives a dimensionless length of the reversal flows the most important of346

their study. As for Re = 400, we observe that the reversal flow is suppressed347

(cf. Figure 8b). A lot of material is added in the channel computed at348
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(Re,Ri) (400, 100) (400, 200) (400, 400) (200, 400)

J1ref/J1 1.64 1.13 0.26 3.60

J2ref/J2 1.51 0.46 0.64 3.09

Table 2: Reduction factor of cost functions - ref corresponds to the value of cost functions

without optimization

Qt = 53.5% . The section for the circulation flow is also reduced. It is349

evaluated at d = 0.16, being the smallest width of circulation flow in this350

study. The flow circulation is thus imposed near the heated wall (cf. Figure351

8a). Temperature field Figure 8b shows that heat surface exchanges are352

increased thanks to the material added by the algorithm. This phenomenon353

contributes to the objective function J2. Table 2 indicates that J1 is reduced354

by a factor 3.6 and J2 is increased by a factor 3.09, knowing ω = 0.5 for this355

simulation case. It is important to note that for Re = 200, we can observe356

a very low vertical component of the velocity of 10−5 in some parts of the357

solid material (cf. 8b). So, when the vertical component of the velocity is358

higher, more material is added such as the section for the circulation flow is359

smaller. Velocity at the exit is higher and the thermal/mechanical power is360

respectively increased/reduced by a factor approximately 3.361

6. Conclusion362

A multi-physics optimization problem considering both pressure drop363

minimization and heat transfer maximization in the asymmetrically heated364

channel has been examined. The problem is handled in natural convection365

with several values of Richardson number. First of all, two objective func-366
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tions are investigated representing the work of forces for the mechanical power367

and heat exchanges with the thermal power. In accordance with the physical368

problem considered, a weighted coefficient is chosen for the combined cost369

function. These functions allow to obtain optimal designs and they are rela-370

tively reduced in accordance with the weight affected to each of them. Several371

conclusions have been drawn. First of all, the reversal flow in the channel is372

suppressed at the end of the optimization. That contributes to reducing the373

loss of charges in the channel. Then, the new cost functions contribute to374

avoid the use of filter techniques as no numerical instabilities are observed.375

The stability of the computation at the end of the optimization process is376

better than this obtained with classical cost functions of the literature. For377

Re = 400, vertical component of the velocity increases when Ri number in-378

creases. The section for the circulation of flow is reduced. Concerning the379

fluid-solid boundary, they are well-definited during the optimization process380

thanks to two sigmoid functions used for the interpolation of both the design381

variable and the thermal diffusivity. Finally, the optimization algorithm is382

able to increase thermal exchanges while maintaining the loss of charges due383

to friction, thanks to the combined objective functions used. In conclusion,384

this study highlights the importance of the expression of cost function in a385

topology optimization problem. The influence of the Richardson is observed386

on vertical velocity value and on the quantity of material added in the opti-387

mized channel. As future work, we suggest a more complete heat and mass388

transfer model might be considered, as pure natural convection problems and389

radiation problems.390
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(a)

(b)

Figure 3: Adimensional vertical component of the velocity for Re = {200, 400} (a), Tem-

perature and vertical component of the velocity (b) at the end of the hot plate of the

channel y = 3H/2
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(a) Ri = 100

ω = 0.5

(b) Ri = 200

ω = 0.85

(c) Ri = 400

ω = 0.15

Figure 4: Adimensional vertical velocity at various Ri for constant Re = 400
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(a) Re = 400, Ri = 100 (b) Re = 400, Ri = 200

(c) Re = 400, Ri = 400 (d) Re = 200, Ri = 400

Figure 5: Adimensional temperature, vertical velocity, α and h(α) at the end section of

the channel and for various Ri for constant Re = 400 - annotation d is used for the width

of the flow section
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(a) Values of classical cost functions (4) and (5) over it-

erations for the minimization of Ĵ

(b) Values of new cost functions (6) and (7)over iterations

for the minimization of Ĵ

Figure 7: Comparison of cost functions computations throughout iterations - Re =

400, Ri = 100, ω = 0.5
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(a) (b) (c)

Figure 8: Optimization results for constant Re = 200 and Ri = 400: Optimized design, ω =

0.5 (a), Adimensional vertical component of the velocity (b), Adimensional temperature

field (c)
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