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Abstract

This paper proposes a new interpolation technique based on density ap-

proach to solve topology optimization problems for heat transfer. Problems

are modeled under the assumptions of steady-state laminar flow using the

incompressible Navier-Stokes equations coupled to the convection-diffusion

equation through the Boussinesq approximation. The governing equations

are discretized using finite volume elements and topology optimization is

performed using adjoint sensitivity analysis. Material distribution and ef-

fective conductivity are interpolated by two sigmoid functions respectively

hτ (α) and kτ (α) in order to provide a continuous transition between the solid

and the fluid domains. Comparison with standard interpolation function of

the literature (RAMP function) shows a smaller transition zone between the

fluid and the solid thereby, avoiding some regularization techniques. In order

to validate the new method, numerical applications are investigated on some

cases from the literature, namely the single pipe and the bend pipe. Lastly, as
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two new parameters are introduced thanks to the interpolation functions, we

study their impact on results of the optimization problem. The study shows

that the proposed technique is a viable approach for designing geometries

and fluid-porous media interfaces are well-defined.

Keywords: Topology optimization, Heat transfer, Interpolation function,

Sigmoid function, Continuous adjoint method, Finite volume method

1. Introduction1

Since its introduction by Bendsoe and Sigmund [1] for solid mechanics2

problems, topology optimization has become a powerful and increasingly3

popular tool for designers and engineers for design process. Topology opti-4

mization is a material distribution method for finding the optimal structure,5

for a given problem subject to design constraints. Contrarily to shape op-6

timization where the topology (i.e. the number of boundaries and connec-7

tivity) is predetermined, topology optimization allows introduction of new8

boundaries during the design process.9

Topology optimization was pioneered for Stokes flow by Borrvall and10

Petersson [4]. They introduced a friction term yielding the generalized Stokes11

equations. Gersborg-Hansen [9] and Olesen et al. [8] extended topology12

optimization for fluid flow problems to the Navier-Stokes equations.13

In topology optimization, the material distribution is parametrized by14

defining a design variable α ∈ {0; 1}. This variable is discrete and should15

either represent solid material (α = 1) or fluid (α = 0). A common approach16

to solve the topology optimization problem with this discrete value as opti-17

mization parameter, is to change it into a continuous one by introducing a18
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porous media with a continuous permeability variable for each element. This19

method, known as the Brinkman penalization, leads to a problem where flow20

and (almost) non-flow regions are developed by allowing interpolation be-21

tween the lower and upper value of permeability. Generally, authors used22

the density interpolation function proposed by Borrvall and Petersson [4]23

or a reformulated version of their convex and q-parametrized interpolation24

function. The parameter q > 0 is a penalty parameter that is used to con-25

trol the level of ’gray’ in the optimal design. However, authors had also26

experienced problems with locally optimal solutions. Therefore, they con-27

sidered a two-steps solution procedure where the problem was first solved28

with a small penalty value of q = 0.01 for example and then the result is29

used as initial case for the problem with a penalty value of q = 0.1 [4, 8]30

or q = 1 [15]. The mathematical foundation of the interpolation of α was31

further investigated by Evgrafov [14] where the limiting cases of pure fluid32

and solid were included. Brinkman approach has since been used for several33

problems as transport problem [28], reactive [32] and transient flows [33, 3],34

fluid-structure interaction [36] and also flows driven by body forces [37].35

A variation of the approach is presented by Guest and Prevost [2]. They36

proposed to regularize the solid-fluid structure by treating the material phase37

as a porous medium where fluid flow is governed by Darcy’s law. In their38

approach, flows through voids are governed by Stokes flow and, when the39

solid phase is impermeable, discrete no-slip condition is simulated by assign-40

ing a low permeability to the solid phase. There exists other alternatives41

to Brinkman penalization in the literature. The level set approach to topol-42

ogy optimization has been applied to fluid flows problems [34, 46, 41], and43
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recently the level set approach was combined with the extended finite ele-44

ment method (XFEM) by Kreissl and Maute [5] and by Jenkins et al. [40].45

The main drawback of the level set appraoch is the constraint of remeshing46

throughout the optimization process.47

The second difficulty in topology optimization is to deal with the differ-48

ence in thermal conductivity in the solid and fluid domains. Most publica-49

tions interpolate the conductivity using the SIMP method (Solid Isotropic50

Material with penalization). This method allows to deal with the discrete51

nature of conductivity material distribution. So, authors [6, 15, 30, 36] con-52

sidered a continuous local thermal conductivity controlled by the design pa-53

rameter α ranging from 0 to 1. Thanks to this function, the optimization al-54

gorithm is able to reallocate thermal conductivity material, or creating holes55

in its structure to reach the objective function. Moreover, the convex and56

p-parametrized function interpolation is similar to the density interpolation57

function of Borrvall and Petersson [4] or the RAMP (Rational Approxima-58

tion of Material Properties)-style function as introduced by Stolpe [16, 30, 7] .59

Other methods have also been investigated. Matsumori et al. [19] presented60

results with a linear-interpolated design-dependant volumetric heat genera-61

tion. Dede [20] used a linear interpolation for thermal conductivity. Thus,62

the main issue is to deal with intermediate design variables and nonphysical63

flow solutions.64

There are three main categories of algorithms to solve topology optimiza-65

tion problems : gradient-free, gradient-based and hessian-based algorithms.66

In topology optimization problems with large number of design variables,67

gradient-based algorithms are used to find accurate solutions efficiently. One68
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of the advantages of the interpolation functions described above is the possi-69

bility of using gradient-based continuous optimization methods. These meth-70

ods are based on derivatives in order to find extrema, and are the so-called71

sensitivity analysis. It aims at evaluating the derivative of objective function72

with respect of α. Gradient-based algorithm is widely used by several au-73

thors [27, 21, 30, 35, 47]. Moreover, since most of the topology optimization74

problems involve a huge number of design variable, specific gradient-based75

optimization algorithms must be chosen to handle this difficulty. A famous76

algorithm from the literature is the MMA (Method of Moving Asymptotes)77

developed initially by Svanberg [43]. In order to reduce the computational78

costs, adjoint approach consisting to calculate the sensitivities of the objec-79

tive function by an adjoint state has been adopted. Other methods have80

been explored to reduce the computation cost: the multigrid preconditioned81

conjugate gradients (MGCC) by Amir et al. [22], multi-resolution multi-scale82

topology optimization technique by Kim et al. [23], the technique of using83

adaptive design variable fields by Guest et al. [26].84

Moreover, various regularization techniques based on filtering of either85

the design variable α or the sensitivity ∂f
∂α

[1, 10, 15, 30, 48] exist to ensure86

well-posed topology optimization problems. The regularization works by87

defining a certain length scale r0 below which any features in α or ∂f
∂α

are88

smeared out by the filter; that results in optimized structures with a minimal89

feature size r0 independent of the mesh refinement. As mentioned by some90

authors [15, 29], these regularization techniques allow to avoid checkerboard91

problems.92

This paper proposes a new interpolation technique in order to solve a93
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heat transfer topology optimization problem. Design material and effective94

conductivity are interpolated respectively by a function hτ (α) and another95

function kτ (α) in order to provide a continuous transition between the solid96

and the fluid domains. These interpolation functions avoid the use of some97

regularization techniques because the problem can be solved in one-step with-98

out a new value of the convexity parameter. Moreover, these interpolation99

functions allow a smaller transition zone between the fluid and solid regions.100

To prove this claim and get more qualitative results, the size of these tran-101

sition zones is explicitly computed and comparison with standard RAMP102

interpolation is lead. In order to validate the new method, some numerical103

applications are investigated on the single pipe and the bend pipe cases of the104

literature. Lastly, as two new parameters are introduced thanks to the in-105

terpolation functions, we study their impact on the results of a optimization106

problem.107

2. Governing equation108

The main goal of this paper is to solve topology optimization problems109

for heat transfer in fluid flow. The latter can be written in the general form110

below:111

Minimize J (u, p, θ) =

∫
Ω

JΩ(u, p, θ)dΩ +

∫
Γ

JΓ(u, p, θ)dΓ

Subject to Governing equation for (u, p, θ)

Boundary conditions on Γ

, (1)112

where u, p and θ are respectively the dimensionless velocity, pressure and113

temperature, Ω is a bounded open set of Rd, d = 2, 3, with boundary Γ =114

∂Ω. The function JΩ and JΓ are some cost functional modeling a physical115
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effect one wish to minimize. We assume that Γ can be decomposed as Γ =116

Γ1∪Γ2∪Γin∪Γout where Γin is the inlet, Γout the outlet and Γ1,Γ2 are going117

to be considered as walls.118

For the governing equation, the flows considered in this study are assumed119

Newtonian and incompressible, steady and laminar. The inverse permeability120

field is introduced in the steady-state Navier-Stokes equations as a source121

term hτ (α)u yielding a Brinkman model with a convection term. The set of122

dimensionless equations governing the conservation of momentum, mass and123

energy for incompressible steady-state fluid flow are the following:124

(u · ∇) u = −∇p+Re−1 ∆u− hτ (α) u +Ri θ −→ey in Ω,

∇ · u = 0 in Ω,

∇ · (u θ) = div (Re−1 Pr−1 kτ (α) ∇θ) in Ω.

(2)125

The reduced dimensionless temperature is θ = (T − T0)/∆T and the uni-126

form heat flux Φ = ∂nθ on some part of Γ1 is equal to λf∆T/l, with λf127

the thermal conductivity of the fluid. Parameters governing the flow are the128

Reynolds number defined as Re = U0 l/ν, with U the reference velocity (i.e129

mean velocity here) and l is the hydraulic diameter, the Richardson number130

Ri = Gr/Re2 where Gr is the Grashof number defined as Gr = g β ∆T l3/ν2.131

hτ (α) corresponds to the ratio between a kinematic viscosity and a perme-132

ability and α is the spatially varying design variable field determined by the133

optimization algorithm. Regions with low permeability can be considered as134

solid regions since (at least formally) the velocity of the fluid vanishes in such135

region, and those with very high permeability regions are interpreted as pure136

fluid. The interpolation function for the adimensional thermal conductivity137

is given by kτ (α).138
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We consider the following set of boundary conditions:139

u = 0, ∂nθ = −1 on Γ1,

u = 0, ∂nθ = 0 on Γ2,

un = 1, ut = 0 θ = 0 on Γin,

∂nu = 0, ∂nθ = 0, p = 0 on Γout,

(3)140

where un and ut are the normal and tangential components of primal veloc-141

ities, respectively. To summarize, we require a constant horizontal velocity142

and a constant temperature θ0 at the inlet, vanishing gradient for both ve-143

locity and temperature of fluid at the outlet. Homogeneous Dirichlet for the144

velocity and Neumann boundary condition are prescribed for the tempera-145

ture on the walls. It is worth noting that boundary conditions on the outlet146

have been considered in [39] and ensure that the fluid does not re-enter in147

the domain.148

3. Interpolation149

The goal of topology optimization is to end up with binary designs, i.e150

avoid that the design variables take other value than those representing the151

fluid or the solid. The most important thing is to be sure that the inter-152

mediate regions (the transition zones) are unattractive with respect to the153

optimization problem. This is usually carried out by penalizing the inter-154

mediate densities with respect to the material parameters, such as inverse155

permeability and effective conductivity. A standard approach is to use some156

convex interpolation (RAMP) function [4, 30, 15]. In this section, we propose157

to use another interpolation function hence interpolate the inverse permeabil-158

ity and the effective conductivity using sigmoid functions. After giving the159
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definition of our interpolation function, we show that the transition zones160

of the sigmoid are much smaller than those of the standard RAMP function161

therefore motivating the use of such method in topology optimization.162

3.1. Interpolation of porosity using a sigmoid function163

Inverse permeability is interpolated with a sigmoid function164

hτ (α, α0) = αmax

 1

1 + exp (−τ(α− α0))
− 1

1 + exp (τα0)

 (4)165

where α ∈ [0, αmax] with αmax being the maximal value hτ can reach. Direct166

computations show that hτ (0, α0) = 0 and that the following point-wise167

convergence holds168

lim
τ→+∞

hτ (α, α0) =


0 if α < α0,

α0/2 if α = α0,

αmax if α > α0.

(5)169

This shows that hτ is a smooth regularization of a Heaviside step function.170

From (5), one can see that α0 can be tuned to control the size of the fluid171

part in the computational domain. Finally, note that the definition of our172

interpolation function has to be changed when α0 = 0 since we require α ≥ 0173

and (4) would lead to a regularization of a step function satisfying hτ (0, 0) = 0174

and, for any α > 0, hτ (α, 0) → αmax/2 as τ → +∞. In order to cover this175

case, one can use the following interpolation function176

hτ (α, 0) = h̃τ (α) = 2 αmax

 1

1 + exp (−τα)
− 1

2

 ,177

which satisfies h̃τ (0) = 0 and, if α > 0, h̃τ (α)→ αmax as τ → +∞.178
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3.2. Comparison with standard RAMP interpolation function179

The RAMP function has been introduced in [4] and is defined as follows:180

hq,R(s) = αmax + (αmin − αmax)(1− s) 1 + q

1− s+ q
, (6)181

where s ∈ [0, 1] is the design parameter and αmin, αmax are respectively the182

minimal and maximal value the RAMP function can take. Again, some183

direct computations show that hq,R is a smooth and convex regularization184

of a Heaviside step function since hq,R(0) = αmin and, for any s > 0,185

limq→0 hq,R(s) = αmax. In the sequel, we use αmin = 0 since this does not186

add any difficulties nor plus to the discussion. We now compare the perfor-187

mances of our sigmoid (4) with the standard RAMP function (6) by focusing188

on the size of their so-called transition zones. First, note that they are both189

defined on Ω but the transition zone only depends on the value of the design190

parameter s(x) for x ∈ Ω. As a result, we are going to consider that both191

functions have real domain and act on the interval [0, 1]. Also, to compare192

functions having the same domain and being both smooth regularization of193

step function as q → 0, we rescale the sigmoids (4) thanks to the formula194

hq,S(s, α0) = h1/q(αmaxs, α0), hq,S,0(s) = h̃1/q(sαmax), s ∈ [0, 1].195

By definition, the transition zones are the undesirable values of the design196

variable s ∈ [0, 1] for which the velocity of the speed is not enough penalized197

to vanish or the value of the interpolation function is not small enough for198

considering these zones as fluid. As one can see from Figure 1, the sigmoid199

function has much smaller transition zone than the RAMP function.200

To prove this claim and get more qualitative results we are going to201

compute explicitly the size of these transition zones. For a given small enough202
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Figure 1: Interpolation functions with q = 1 and α0 = αmax/4. Left: αmax = 200. Right:

αmax = 2000.

ε > 0 and a large enough M > 0, the latter are defined by203

T (f, ε,M) = {s ∈ [0, 1] | ε ≤ f(s) ≤M} , f ∈ {hq,R, hq,S, hq,S,0} .204

Since both interpolation function are increasing, they admit an inverse func-205

tion f−1 and the transition zone is thus given by the interval T (f, ε,M) =206

[f−1(ε), f−1(M)] from which we infer that207

|T (f, ε,M) | = f−1(M)− f−1(ε). (7)208

It then only remains to compute the inverse of the sigmoid and RAMP func-209

tions. This is actually achieved by solving f(s) = y for a given y ∈ [0, αmax].210

These equations can be solved analytically using only direct computations211
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and give212

s = (hq,R)−1 (y) = 1− q y − αmax

αmax − y + (1 + q)(αmin − αmax)
= y

1 + q

αmaxq + y
213

(8)214

s = (hq,S)−1 (y) =
α0

αmax

−215

q

αmax


−log

(
αmax − y(1 + exp(−α0/q))

αmaxexp(−α0/q) + y(1 + exp(−α0/q))

)
if s ≤ α0/αmax

log

(
αmax − y(1 + exp(−α0/q))

αmaxexp(−α0/q) + y(1 + exp(−α0/q))

)
if s ≥ α0/αmax

216

s = (hq,S,0)−1 (y) = −log

(
αmax − y
αmax + y

)
q

αmax

.217

The constraint on s in the definition of the inverse of hq,S comes from the fact218

that we have to solve an equation of the form exp((α0 − sαmax)/q) = g(y)219

for a positive function g. Using (7) and (8), the size of the transition zones220

are finally221

|T (hq,R, ε,M) | := TR = qαmax
(1 + q)

(αmaxq +M)(αmaxq + ε)
(M − ε),222

|T (hq,S, ε,M) | := TS =
q

αmax

log

(
αmax −M(1 + exp(−α0/q))

αmaxexp(−α0/q) +M(1 + exp(−α0/q))

)
223

+
q

αmax

log

(
αmax − ε(1 + exp(−α0/q))

αmaxexp(−α0/q) + ε(1 + exp(−α0/q))

)
,224

|T (hq,S,0, ε,M) | := TS,0 =
q

αmax

log

(
(αmax −M)(αmax + ε)

(αmax +M)(αmax − ε)

)
.225

For α0 = 0, one can clearly see that TS,0 < TR. To deal with the case α0 > 0,226

note that the parameter q is small since we wish the interpolation function to227

be close to an ideal step function. Also, we emphasize that α0 > 0 is going to228

depend on αmax in order to control the percentage of fluid in Ω. Since αmax229

has to be large enough, one gets that z = exp(−α0/q) is a small parameter230
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and we can thus expand TS as z → 0. This gives231

TS =
q

αmax

log

(
(αmax −M)(αmax − ε)

Mε

)
+ O(exp(−α0/q)),232

from which one can see that TS < TR. Thanks to the factor q/αmax, we can see233

that the intermediate zones of the sigmoid are in fact much smaller than those234

of the RAMP function. Some numerical calculation of the size of transition

TR TS TS,0

q = 1 0.6657 0.0380 0.0055

q = 10−4 0.1665 3.8002× 10−6 5.4881× 10−7

q = 10−5 0.0196 3.8002× 10−7 5.4881× 10−8

Table 1: Size of the transition zones for αmax = 200, M = αmax/2, ε = 0.1 and α0 =

αmax/4.

TR TS TS,0

q = 1 0.6666 0.0050 5.4926× 10−4

q = 10−4 0.6665 4.9517× 10−7 5.4926× 10−8

q = 10−5 0.1666 4.9517× 10−8 5.4926× 10−9

Table 2: Size of the transition zones for αmax = 2000, M = αmax/2, ε = 0.1 and α0 =

αmax/4.

235

zone confirming this fact can be found in Table 1,2 for αmax ∈ {200, 2000}236

and q ∈ {1, 10−4, 10−5}.237
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3.3. Interpolation of the thermal conductivity238

The effective conductivity is interpolated using a sigmoid function similar239

to (4):240

kτ (α, α0) = (ks − kf )

 1

1 + exp (−τ(α− α0))
−

1

1 + exp (τα0)

+ kf (9)241

where α ∈ [0, αmax] is the design parameter, ks and kf are respectively the242

adimensional thermal diffusivity of the solid and of the fluid. Interpolation243

function (9) is again a smooth regularization of a Heaviside step function244

that satisfies kτ (0, α0) = kf together with the point-wise convergence245

lim
τ→+∞

kτ (α, α0) =


kf if α < α0,

(kf + ks)/2 if α = α0,

ks if α > α0.

246

Similarly to hτ , the case α0 = 0 needs the following slight modification to247

still have, when τ → +∞, a fluid-solid step function248

kτ (α, 0) = k̃τ (α) = 2(ks − kf )

 1

1 + exp (−τα)
− 1

2

+ kf .249

The previous function then satisfies k̃τ (0) = 0 and, for any α > 0, k̃τ (α)→ ks250

as τ → +∞. A RAMP-like interpolation function is also usually used for251

the thermal conductivity [30, 15]. Computations similar to those of Section252

3.2 can be done to prove that the transition zone of the sigmoid (9) are253

much smaller than those of the RAMP function hence motivating using such254

technique in topology optimization.255
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4. Gradient computation with the adjoint model256

We chose to solve the optimization problem (1) with gradient-based op-257

timization algorithm. The latter requires the computation of the gradient258

of the cost functional with respect to the design variable which needs the259

sensitivities of the solution to the state equation with respect to α. To do260

this, we are going to use the adjoint method (see e.g. [24, 12, 45]) since it261

allows to compute the gradient of J efficiently, only by solving the so-called262

direct problem (the governing equation) and the adjoint model.263

We adopt here the differentiate then discretize approach [25] which means264

that we need to compute the continuous adjoint model associated to (1) as265

done in [17, 18]. The Lagrangian associated to the optimization problem (1)266

can then be defined as follows267

L((u, θ, p), (u∗, θ∗, p∗), α) := J (u, θ, p)−
∫

Ω

p∗ div u dΩ

−
∫

Ω

u∗ ·
[
(u · ∇) u +∇p−Re−1∆u + hτ (α, α0) u−Ri θ −→ey

]
dΩ

−
∫

Ω

θ∗ ·
[
∇ · (u θ)− div(Re−1Pr−1 kτ (α, α0)∇θ)

]
dΩ

−
∫

Γ1

(u · Φ1 + (∂nθ − 1)ψ1) dΓ−
∫

Γ2

(u · Φ2 + ∂nθψ2) dΓ

−
∫

Γin

((u− uin) · Φin + θψin) dΓ−
∫

Γout

(∂nu · Φout + pqout + ∂nθψout) dΓ

(10)268

where (u∗, θ∗, p∗,Φl, ψl, qout), for l ∈ {1, 2, in, out}, can be seen as Lagrange269

multiplier (or adjoint variables). We emphasize that the variables (Φt, ψt, qout)270

are here to enforce the boundary conditions (3).271

The adjoint model is defined thanks to the critical point of L with respect272

to the state variables (u, θ, p). We use below the following notation for the273

derivative of an application F : x ∈ E 7→ F(x) ∈ F, where E,F are normed274
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spaces275

∂F
∂x

[δx] := lim
ε→0

F(x+ εδx)−F(x)

ε
. (11)276

First, since L is linear with respect to the adjoint variables, it is worth277

noting that we recover the state equation (2)-(3) if, for l ∈ {1, 2, in, out}, we278

solve279

∂L
∂(u∗, θ∗, p∗,Φl, ψl, qout)

[δu∗, δθ∗, δp∗, δΦl, δψl, δqout] = 0.280

Using now (11) to differentiate the Lagrangian (10) with respect to the281

state variables, and integrating by parts to have no terms involving derivative282

of (δu, δθ, δp), we end up with283

∂L
∂(u, θ, p)

[δu, δθ, δp] =

∫
Ω

∂JΩ

∂(u, θ, p)
[δu, δθ, δp] dΩ +

∫
Γ

∂JΓ

∂(u, θ, p)
[δu, δθ, δp] dΓ+∫

Ω

δu ·
(
∇p∗ − hτ (α, α0)u∗ − (∇u)Tu∗ +∇u∗u + θ∇θ∗ +Re−1∆u∗

)
dΩ

+

∫
Ω

δθ
(
div(Re−1Pr−1kτ (α, α0)∇θ∗) + u · ∇θ∗ +Ri u∗ · ey

)
dΩ

+

∫
Ω

δp div u∗ dΩ−
∫

Γ

δp (u∗ · n) dΓ

+

∫
Γ

δu ·
(
−n p∗ − n θ θ∗ +Re−1∂nu

∗ − (u · n)u∗
)
dΓ−

∫
Γ

Re−1∂nδu · u∗ dΓ

+

∫
Γ

δθ
(
(−u · n) θ∗ −Re−1Pr−1kτ (α, α0) ∂nθ

∗) dΓ +

∫
Γ

θ∗ Re−1Pr−1kτ (α, α0)∂nδθ dΓ

−
∫

Γ1

(δu · Φ1 + ∂nδθψ1) dΓ−
∫

Γ2

(δu · Φ2 + ∂nδθψ2) dΓ

−
∫

Γin

(δu · Φin + δθψin) dΓ−
∫

Γout

(∂nδu · Φout + δpqout + ∂nδθψout) dΓ

(12)284

Assuming that (δu, δθ, δp,Φl, ψl, qout) = 0 for l ∈ {1, 2, in, out}, that the first285

derivatives of δu, δθ vanish on Γ and solving (∂L/∂(u, θ, p)) [δu, δθ, δp] = 0286
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yield the adjoint problem:287

∇p∗ − hτ (α) u∗ + θ ∇θ∗ +Re−1∆u∗ +∇u∗ u− (∇u)Tu∗ = −∂JΩ

∂u
in Ω

div u∗ = −∂JΩ

∂p
in Ω

Ri u∗ · −→ey + u · ∇θ∗ + div (Re−1Pr−1kτ (α)∇θ∗) = −∂JΩ

∂θ
in Ω.

(13)288

For the adjoint boundary condition, we are going to show how to obtain289

them on Γ1 ∪ Γ2 since the other part of Γ can be done in the same spirit.290

On both walls, the primal velocity is fixed to zero (no-slip condition on the291

walls) and the heat flux either vanishes or is constant. Since div u = 0 and292

u is prescribed or null value, there will be δu = 0, div δu = 0 and ∂nδθ = 0.293

We recall a formula from [11, Lemma 7] that holds for any vector fields w294

and reads295

∂nw · n = divw|Γ − divΓ wt − κw · n, (14)296

where κ = div n is the curvature of Γ and divΓ is the surface divergence297

operator. Since ∂nδu · u∗ = (∂nδu)n · u∗n + (∂nδu)t · u∗t and δu = 0 and298

div δu = 0, formula (14) gives that299

∂nδu · u∗ = (∂nδu)t u
∗
t .300

The boundary conditions on Γ1 ∪ Γ2 are then obtained from (12) by consid-301

ering, for l = 1, 2, the following vanishing terms302 ∫
Γl

Re−1∂nδu · u∗ dΓ =

∫
Γ

Re−1(∂nδu)t · u∗t dΓ = 0,∫
Γl

δp

(
u∗ · n− ∂JΓ

∂p

)
dΓ = 0, (15)∫

Γl

δθ

(
(−u · n) θ∗ −Re−1Pr−1kτ (α, α0) ∂nθ

∗ +
∂JΓ

∂θ

)
dΓ = 0.
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The adjoint boundary conditions on Γin are obtained as above by taking303

δθ = 0. For the outlet, we use ∂nδθ = 0, ∂nδu = 0 and δp = 0. Finally, we304

end up with the adjoint boundary condition305

On Γ1 ∪ Γ2 : u∗t = 0, unθ
∗ +Re−1Pr−1kτ (α, α0) ∂nθ

∗ = ∂JΩ

∂θ
, u∗n = ∂JΩ

∂p
,

On Γin : u∗n = ∂JΓ

∂p
u∗t = 0, θ∗ = 0,

On Γout : un θ
∗ +Re−1Pr−1kτ (α, α0) ∂nθ

∗ = ∂JΓ

∂θ
,

n p∗ + n θ θ∗ +Re−1∂nu
∗ + un u∗ = ∂JΓ

∂u
.

(16)306

Now solving (∂L/∂α) [δα] = 0 for all δα yields307

∂hτ,α0

∂α
u · u∗ +Re−1Pr−1

∂kτ,α0

∂α
∇θ · ∇θ∗ = 0 in Ω

∂kτ,α0

∂α
θ∗ = 0 on Γ1,

(17)308

which is the optimality condition. Finally, according to the adjoint method309

(see e.g. [24, 12, 25]), the gradient of the cost functional J (u, θ, p) at some310

α is given by311

∂J
∂α

(α) =
∂hτ,α0

∂α
u · u∗ +Re−1Pr−1

∂kτ,α0

∂α
∇θ · ∇θ∗, in Ω,

∂J
∂α

(α) =
∂kτ,α0

∂α
θ∗ on Γ1,

(18)312

where (u, θ, p) satisfy (2-3) and (u∗, θ∗, p∗) satisfy the adjoint problem (13-313

16).314

Remark 1. The adjoint variables (Φl, ψl, pout) used to enforce the boundary315

conditions (3) of the primal problem are not needed to solve the adjoint prob-316

lem. Nevertheless, they can be determined using (13,15) which cancel many317
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terms in (12) and gives318

Φl = −n p∗ − n θ θ∗ +Re−1∂nu
∗ − (u · n)u∗ +

∂JΓ

∂u
on Γl319

ψl = θ∗Re−1Pr−1kτ (α, α0) +
∂JΓ

∂θ
on Γl, l ∈ {1, 2, in},320

Φout = −Re−1u∗, ψout = θ∗Re−1Pr−1kτ (α, α0), qout = −u∗n −
∂JΓ

∂p
.321

Note finally that these adjoint variables are also not needed to compute the322

gradient of the cost functional with respect to the design variable since they323

does not appear in (18).324

5. Numerical example325

This section aims to validate the new interpolation technique. To do so,326

we investigate two objective functions. First objective function is related to327

the power dissipated by the fluid through the domain Ω and can be evaluated328

on the basis of total pressure losses as follows:329

J1(u, p, θ) = −
∫

Γ

pt u · n dΓ where pt = p+
1

2
u2 (19)330

The second cost function is related to the maximization of the recoverable331

thermal power from the domain Ω and is given by332

J2(u, p, θ) =

∫
Γ

θ u · n dΓ (20)333

We finally consider the following objective functional334

minimize: J (u, p, θ) = J1(u, p, θ)− J2(u, p, θ),

= −
∫

Γ

(pt + θ) u · n dΓ

subject to: Governing equation (2),

Boundary conditions (3).

(21)335
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We notice that the objective function J is a linear combination of both336

objective functions described above. It’s taking place at the inlet and outlet337

flow boundary conditions and the combination involves the opposite of J2338

since the optimization problem aims at minimizing the combinatory function339

J . Using the notation from the general optimization problem (1), we have340

JΩ = 0 and JΓ(u, p, θ) = (p + θ) u · n. The adjoint model is then given by341

(13)-(16) where all the partial derivative of JΩ are zero and the following342

boundary conditions hold343

u∗ = 0, ∂nθ
∗ = 0 on Γ1 ∪ Γ2,

u∗t = 0, θ∗ = 0, u∗n = −un on Γin,

θ∗ un +Re−1Pr−1 kτ (α) ∂nθ
∗ = −un on Γout,

p∗ + θ∗ θ +Re−1 ∇nu
∗ · n+ u∗n un = −(θ + p) on Γout.

(22)344

As said in section 4, we propose to solve the topology optimization problem345

with a steepest descent algorithm where the gradient is computed thanks to346

the adjoint method. The main flow of the algorithm for the topology opti-347

mization is described in Table 3. The forward problem and the optimization

Step 0. Initialization: set all the constants Re, Ri, Pr

Step 1. Solve the forward problem (2),(3) problem with the Finite Volume Method

Step 2. Compute objective and constraint values

Step 3. Compute sensitivities by adjoint method

Step 4. Evaluate the optimality condition. If a stopping criterion is met, terminate the calculation

Step 5. Update design variables α with αk+1 = −∇Jk+1 + βPRk+1 αk and return to step 1

Table 3: Algorithm of topology optimization

348

processes are implemented using OpenFOAM [44]. In Step 5, the design349
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variables are evaluated by using the conjugated-gradient descent direction350

method associated to Polack-Ribiere method βPRk+1 =
∇J T

k+1 (∇Jk+1−∇Jk)

∇J T
k ∇Jk

.351

After optimization process, several results are compared as optimized de-352

signs, velocity magnitude distribution, temperature distribution, and lastly,353

we focus on fluid-solid interfaces. We also presents the objective function354

values for each simulation case. Finally, we investigate to vary the slope355

abscissa and the curve of sigmoid functions in order to evaluate their impact356

on the optimization problem. That corresponds to consider different values357

of α0 and τ . In our study, α0 will vary in {25, 50, 100} which correspond re-358

spectively to {αmax/8, αmax/4, αmax/2} and τ will vary in {0.3, 0.7, 1.0}. In359

order to perform topology optimization, the α term may take a finite value360

between 0 and αmax = 200.361

5.1. Studied Cases362

Two representative cases of topology optimization in fluid dynamics are363

investigated : the single pipe case and the bend pipe case. Figure 2 shows364

schematic illustrations of the two studied cases.365

5.1.1. Design of a single pipe.366

We present here a benchmark numerical example used recently by Marck367

[15] to illustrate the viability and efficiency of the methodology presented in368

this paper. The design domain consists in a cavity of side L. The compu-369

tational domain is discretized using 100 × 100 elements. The inlet flow is370

located in the center of the west edge for a length of L/5. The outlet flow371

is lining up with it on the east edge. The rest of west and east edges are372

assumed to be adiabatic and will be called Γ2, whereas the whole north and373
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Figure 2: Single pipe and Bend pipe

south walls are subjected to a constant flux of temperature, called thereafter374

Γ1.375

5.1.2. Design of a bend pipe.376

The second example has been studied by several authors as [4] and [15].377

The computational domain is also square-shaped, with a adimensional side378

L = 1, and the design grid is made of 100 × 100 elements. The inlet flow379

is located at L/5 of the west edge. The outlet flow is located on the south380

edge, at L/5 from the east edge.The length of both flow boundary conditions381

is set to 2L/5. The part of the south edge located on the left of the outlet is382

subjected to a constant flux of temperature and will be called Γ1. The rest383

of the edges are assumed to be adiabatic and will be designated as Γ2.384

5.1.3. Physical parameters.385

For the two representative cases studied in this section, the inlet flow386

is prescribed with a constant horizontal velocity equal to U0 = 0.04 m.s−1
387
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used in Reynolds number. The inlet temperature is fixed to θ = 0. The388

outflow temperature condition is fixed to a zero gradient, as well as the389

velocity gradient. Hot walls are subject to a constant flux of temperature390

∂nθ = −1. The Reynolds number based on the characteristic dimension of391

the inlet length and the average inlet velocity is Re = 500. The Rayleigh392

number is fixed to Ra = 5 × 105. Prandtl number is set to 0.71. Grashof393

number has the following expression Gr = Ra/Pr. Adimensional thermal394

parameters are the following: ks = (9.88×10−5 m2.s−1)/(2.25×10−5 m2.s−1)395

[(Aluminum/Air) Diffusivities], kf = 1.396

5.2. Results397

The aim of the problems defined above is to determine the optimal design398

that connects the inlet to the outlet of the cavity and that minimizes the399

objective function J subjected to the constraints (2) and (3).400

First of all, we compute J without optimization for the two studied401

cases and we obtained respectively for the single pipe J = 9.07 10−3 and for402

the bend pipe J = 6.38 10−3. Compared to values issued from optimization403

process and referenced in Figure 8 and 11, they are reduced between 23% and404

42% for the single pipe case, and between 18% and 19% for the bend pipe.405

So, the new method investigated here allows to both minimize the power406

dissipated by the fluid through the domain Ω and maximize the recoverable407

thermal power from the domain to the fluid.408

Secondly, we plot velocity magnitude for various α0 and τ values. After409

optimization of J in the single pipe, we obtain an optimized design in which410

fluid is transported through the single pipe in a straight pipe (see Figure 3). It411

is quite closed to the optimized design obtained by [15] when the mechanical412
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Figure 3: Velocity magnitude distribution in the single pipe

power and thermal power are considered with the same weighting coefficient.413

Similarly, fluid circulation forms a half circle whose center would be the left414

bottom corner of the square domain in the optimized bend pipe (see Figure415

4). Contrary to the literature in fluid mechanics, the optimized path obtained416

for the flow is not as straight as possible. It can be explained by the fact that417

we consider here a heat transfer problem. So, the optimized pipe is larger418

and form a real bend because the fluid flow moves away from hot regions.419

Thereafter, we compared distribution of the parameter α in the domain420

for the two studied cases (see Figures 6 and 9). We recall that values less421

than α0 are considered as fluid regions. We can notice that this method422

based on α0 affected some values of α to the fluid regions, which would not423

be possible with other methods of the literature. Indeed, generally with the424
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Figure 4: Velocity magnitude distribution in the bend pipe

function (6), only value of α equal to zero is considered as fluid element. As425

can be seen on these figures, intermediate values for the fluid region exist.426

For example, we have different values of α between 0 and α0 at right-top427

corner in Figure 9, or below the straight pipe for α0 = 25 in Figure 6.428

As expected, the interpolation function hτ (α) suppresses these intermedi-429

ate values noticed previously and affects these volume elements to pure fluid430

volume elements. Indeed, Figures 7 and 10 show the optimized designs for431

various α0 and τ numbers. Compared to α distribution (Figures 6 and 9),432

they demonstrate that the interpolation function hτ (α) suppresses interme-433

diate values corresponding neither to pure fluid nor to pure solid regions by434

affecting them to solid regions or fluid regions. However, in the bend pipe, a435

porous domain still exists near hot regions. Although fluid does not circulate436
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Figure 5: Temperature distribution in the bend pipe

in this porous domain, its existence contributes to increasing thermal power437

recovered by the fluid. That is illustrated in Figure 5.438

At last, it can be seen that thermal conductivity is well distributed, con-439

tinuously, between fluid and solid regions. Figure 8 represents the distri-440

bution of material conductivity after the optimization process in the single441

pipe case. Compared to Figure 7, we observe that frontier between the two442

regions, fluid and solid, is well-established. For the bend pipe case, although443

intermediate regions exist, kτ interpolation function allows to affect to this444

porous domain a conductivity closed to the fluid diffusivity (see Figure 11).445

Therefore, the function kτ (α) provides a continuous transition between the446

solid and the fluid domains.447
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5.2.1. Influence of α0.448

It can clearly be seen from Figures 7 and 10 that different designs are ob-449

tained for the different values of α0. As detailed in section 3, α0 is depending450

of αmax in order to control the percentage of fluid in Ω. This parameter has451

a significant impact on the quantity of material adding in the domain and452

that can be illustrated by computing the proportion Qt of material added in453

the domain Ω as follows :454

Qt =

∫
Ω
hτ (α) dΩ

αmax Vtot
where Vtot is the total volume of Ω (23)455

Calculation results are referenced in Figures 7 and 10. In the single pipe,456

when α0 increases, quantity of material diminishes between 27.5% and 28%.457

That means fluid domain is more important and that contributes to the458

increase of J2. So, that will influence the value of J . In the bend pipe,459

when α0 increases, quantity of material also diminishes between 3.6% and460

16%. So, fluid domain is relatively more important than solid domain but461

not enough to significantly impact on the value of J , hence, the small effect462

on values of J (see Figure 11). So, parameter α0 has a significant incidence463

on the proportion of fluid domain relatively to solid domain and therefore,464

can influence the value of the functional objective.465

Futhermore, we observe a recirculation zone for α0 = 100 in the example466

of the optimized single pipe (see Figure 3). That can also be explained by467

the value of α0. Indeed, larger α0 means that the proportion of fluid elements468

compared to αmax is bigger and thus fluid regions are more important. When469

α0 = 100, that means α0 = αmax/2, the algorithm affects some value of470

α ∈ [0, 100] corresponding to fluid domain and so impacts on the size of fluid471

regions relatively to the solid regions in the domain.472
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5.2.2. Influence of τ .473

It can clearly be seen from Figures 7 and 10 that different designs are474

obtained for the different values of τ . The parameter τ in the interpolation475

functions hτ (α) and kτ indicates the stiffness of the curve of the functions. It476

does not seem to impact significantly the optimization results. However, we477

can observe in Figure 11 that the frontier between the fluid and the solid is478

sharper when τ = 2.0. In Figure 8, for τ = 0.3, τ = 0.7, we can notice residual479

material in fluid domain while they do not exist anymore when τ = 2.0. As480

the same, the porous region identified in the bend pipe case between the481

main flow and the hot plate is defined mostly with the fluid diffusivity by the482

interpolation function. This impact does not influence significantly the result483

of the optimization computation when we compared their value in Figure 11484

but it improves the thermal transition between fluid and solid regions. So,485

parameter τ seems to improve the thermal conductivity distribution during486

the process optimization.487

6. Conclusion488

This study shows that the new interpolation technique based on sigmoid489

function is a viable method. Design material is well interpolated since inter-490

mediate regions between solid and fluid are suppressed hence giving a frontier491

between the two regions which is well-defined. Besides, the size of transition492

zones between fluid and solid regions is explicitly computed. The result is493

that the new interpolation functions reduce their size comparatively to the494

RAMP interpolation function. Therefore, the transition between fluid and495

solid is improving thanks to this sigmoid function for the effective conduc-496
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Figure 6: α distribution in the single pipe
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Figure 7: hτ (α) distribution in the single pipe and proportion of material Qt added in the

domain after optimization
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Figure 8: kτ (α) distribution in the single pipe for different values of τ and α0 and value

of functional objectif J after optimization
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Figure 9: α distribution in the bend pipe
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Figure 10: hτ (α) distribution in the bend pipe and proportion of material Qt added in

the domain after optimization
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Figure 11: kτ (α) distribution in the bend pipe and value of functional objectif J after

optimization
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tivity. Computation of the size of transition zones could also be applied to497

other interpolation functions in order to evaluate the well-definition of the498

frontier between fluid and solid regions. This new interpolation technique do499

not require any regularization techniques since no checkerboards have been500

identified for the two studied cases. Two new parameters have been intro-501

duced : the abscissa slope of the sigmoid function α0 and the curve of the502

sigmoid function τ . Their impact has been also investigated. α0 has a sig-503

nificant impact on the quantity of material added in the domain during the504

optimization process. The larger α0 is the bigger will be the fluid domain.505

The parameter τ has a small impact on the results of optimization. For the506

studied cases, the impact was seen after interpolation of thermal conduc-507

tivity. Elements of porous domain have been affected to fluid diffusivity or508

solid conductivity, and therefore, the thermal transition between material is509

improved. So, this study has examined a new interpolation technique to deal510

with fluid-porous media interfaces for topology optimization of heat transfer511

problems. Further research might explore several type of flow regimes in512

optimization problems using these interpolation functions. Another possible513

area of future research would be to investigate new cost functions.514
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