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This paper proposes a new interpolation technique based on density approach to solve topology optimization problems for heat transfer. Problems are modeled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations coupled to the convection-diffusion equation through the Boussinesq approximation. The governing equations are discretized using finite volume elements and topology optimization is performed using adjoint sensitivity analysis. Material distribution and effective conductivity are interpolated by two sigmoid functions respectively h τ (α) and k τ (α) in order to provide a continuous transition between the solid and the fluid domains. Comparison with standard interpolation function of the literature (RAMP function) shows a smaller transition zone between the fluid and the solid thereby, avoiding some regularization techniques. In order to validate the new method, numerical applications are investigated on some cases from the literature, namely the single pipe and the bend pipe. Lastly, as

Introduction

Since its introduction by Bendsoe and Sigmund [START_REF] Bendsφe | Topology optimization: theory, methods, and applications[END_REF] for solid mechanics problems, topology optimization has become a powerful and increasingly popular tool for designers and engineers for design process. Topology optimization is a material distribution method for finding the optimal structure, for a given problem subject to design constraints. Contrarily to shape optimization where the topology (i.e. the number of boundaries and connectivity) is predetermined, topology optimization allows introduction of new boundaries during the design process.

Topology optimization was pioneered for Stokes flow by Borrvall and

Petersson [START_REF] Borrvall | Topology optimization of fluids in Stokes flow[END_REF]. They introduced a friction term yielding the generalized Stokes equations. Gersborg-Hansen [START_REF] Gersborg-Hansen | Topology optimization of channel flow problems[END_REF] and Olesen et al. [START_REF] Olesen | A highlevel programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow[END_REF] extended topology optimization for fluid flow problems to the Navier-Stokes equations.

In topology optimization, the material distribution is parametrized by defining a design variable α ∈ {0; 1}. This variable is discrete and should either represent solid material (α = 1) or fluid (α = 0). A common approach to solve the topology optimization problem with this discrete value as optimization parameter, is to change it into a continuous one by introducing a porous media with a continuous permeability variable for each element. This method, known as the Brinkman penalization, leads to a problem where flow and (almost) non-flow regions are developed by allowing interpolation between the lower and upper value of permeability. Generally, authors used the density interpolation function proposed by Borrvall and Petersson [START_REF] Borrvall | Topology optimization of fluids in Stokes flow[END_REF] or a reformulated version of their convex and q-parametrized interpolation function. The parameter q > 0 is a penalty parameter that is used to control the level of 'gray' in the optimal design. However, authors had also experienced problems with locally optimal solutions. Therefore, they considered a two-steps solution procedure where the problem was first solved with a small penalty value of q = 0.01 for example and then the result is used as initial case for the problem with a penalty value of q = 0.1 [START_REF] Borrvall | Topology optimization of fluids in Stokes flow[END_REF][START_REF] Olesen | A highlevel programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow[END_REF] or q = 1 [START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF]. The mathematical foundation of the interpolation of α was further investigated by Evgrafov [START_REF] Evgrafov | The limits of porous materials in the topology optimization of Stokes flows[END_REF] where the limiting cases of pure fluid and solid were included. Brinkman approach has since been used for several problems as transport problem [START_REF] Andreasen | Topology optimization of microfluidic mixers[END_REF], reactive [START_REF] Okkels | Scaling behavior of optimally structured catalytic microfluidic reactors[END_REF] and transient flows [START_REF] Deng | Topology optimization of unsteady incompressible NavierStokes flows[END_REF][START_REF] Kreissl | Topology optimization for unsteady flow[END_REF], fluid-structure interaction [START_REF] Yoon | Topology optimization for stationary fluidstructure interaction problems using a new monolithic formulation[END_REF] and also flows driven by body forces [START_REF] Deng | Topology optimization of steady and unsteady incompressible NavierStokes flows driven by body forces[END_REF].

A variation of the approach is presented by Guest and Prevost [START_REF] Guest | Topology optimization of creep-ing fluid flows using a DarcyStokes finite element[END_REF]. They proposed to regularize the solid-fluid structure by treating the material phase as a porous medium where fluid flow is governed by Darcy's law. In their approach, flows through voids are governed by Stokes flow and, when the solid phase is impermeable, discrete no-slip condition is simulated by assigning a low permeability to the solid phase. There exists other alternatives to Brinkman penalization in the literature. The level set approach to topology optimization has been applied to fluid flows problems [START_REF] Challis | Level set topology optimization of fluids in Stokes flow[END_REF][START_REF] Zhou | A variational level set method for the topology optimization of steady-state NavierStokes flow[END_REF][START_REF] Kubo | A level set-based topology optimization method for optimal manifold designs with flow uniformity in plate-type microchannel reactors[END_REF], and recently the level set approach was combined with the extended finite element method (XFEM) by Kreissl and Maute [START_REF] Kreissl | Levelset based fluid topology optimization using the extended finite element method[END_REF] and by Jenkins et al. [START_REF] Jenkins | An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems[END_REF].

The main drawback of the level set appraoch is the constraint of remeshing throughout the optimization process.

The second difficulty in topology optimization is to deal with the difference in thermal conductivity in the solid and fluid domains. Most publications interpolate the conductivity using the SIMP method (Solid Isotropic Material with penalization). This method allows to deal with the discrete nature of conductivity material distribution. So, authors [START_REF] Rozvany | Generalized shape optimization without homogenization[END_REF][START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF][START_REF] Alexandersen | Topology optimisation for natural convection problems[END_REF][START_REF] Yoon | Topology optimization for stationary fluidstructure interaction problems using a new monolithic formulation[END_REF] considered a continuous local thermal conductivity controlled by the design parameter α ranging from 0 to 1. Thanks to this function, the optimization algorithm is able to reallocate thermal conductivity material, or creating holes in its structure to reach the objective function. Moreover, the convex and p-parametrized function interpolation is similar to the density interpolation function of Borrvall and Petersson [START_REF] Borrvall | Topology optimization of fluids in Stokes flow[END_REF] or the RAMP (Rational Approximation of Material Properties)-style function as introduced by Stolpe [START_REF] Stolpe | An alternative interpolation scheme for minimum compliance topology optimization[END_REF][START_REF] Alexandersen | Topology optimisation for natural convection problems[END_REF][START_REF] Lee | Topology Optimization of Convective Cooling System Designs[END_REF] .

Other methods have also been investigated. Matsumori et al. [START_REF] Matsumori | Topology optimization for fluidthermal interaction problems[END_REF] presented results with a linear-interpolated design-dependant volumetric heat generation. Dede [START_REF] Dede | Multiphysics optimization, synthesis, and application of jet impingement target surfaces[END_REF] used a linear interpolation for thermal conductivity. Thus, the main issue is to deal with intermediate design variables and nonphysical flow solutions.

There are three main categories of algorithms to solve topology optimization problems : gradient-free, gradient-based and hessian-based algorithms.

In topology optimization problems with large number of design variables, gradient-based algorithms are used to find accurate solutions efficiently. One of the advantages of the interpolation functions described above is the possibility of using gradient-based continuous optimization methods. These methods are based on derivatives in order to find extrema, and are the so-called sensitivity analysis. It aims at evaluating the derivative of objective function with respect of α. Gradient-based algorithm is widely used by several authors [START_REF] Othmer | Adjoint methods for car aerodynamics[END_REF][START_REF] Dede | Multiphysics topology optimization of heat transfer and fluid flow systems[END_REF][START_REF] Alexandersen | Topology optimisation for natural convection problems[END_REF][START_REF] Yoon | Topology optimization for stationary fluidstructure interaction problems using a new monolithic formulation[END_REF][START_REF] Nrgaard | Topology optimization of unsteady flow problems using the lattice Boltzmann method[END_REF]. Moreover, since most of the topology optimization problems involve a huge number of design variable, specific gradient-based optimization algorithms must be chosen to handle this difficulty. A famous algorithm from the literature is the MMA (Method of Moving Asymptotes) developed initially by Svanberg [START_REF] Stolpe | An alternative interpolation scheme for minimum compliance topology optimization[END_REF]. In order to reduce the computational costs, adjoint approach consisting to calculate the sensitivities of the objective function by an adjoint state has been adopted. Other methods have been explored to reduce the computation cost: the multigrid preconditioned conjugate gradients (MGCC) by Amir et al. [START_REF] Amir | On reducing computational effort in topology optimization: how far can we go?[END_REF], multi-resolution multi-scale topology optimization technique by Kim et al. [START_REF] Kim | Multi-resolution multi-scale topology optimizationa new paradigm[END_REF], the technique of using adaptive design variable fields by Guest et al. [START_REF] Guest | Reducing dimensionality in topology optimization using adaptive design variable fields[END_REF].

Moreover, various regularization techniques based on filtering of either the design variable α or the sensitivity ∂f ∂α [START_REF] Bendsφe | Topology optimization: theory, methods, and applications[END_REF][START_REF] Gersborg | An explicit parameterization for casting constraints in gradient driven topology optimization[END_REF][START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF][START_REF] Alexandersen | Topology optimisation for natural convection problems[END_REF][START_REF] Koga | Development of heat sink device by using topology optimization[END_REF] exist to ensure well-posed topology optimization problems. The regularization works by defining a certain length scale r 0 below which any features in α or ∂f ∂α are smeared out by the filter; that results in optimized structures with a minimal feature size r 0 independent of the mesh refinement. As mentioned by some authors [START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF][START_REF] Alexandersen | Topology optimisation for coupled convection problems[END_REF], these regularization techniques allow to avoid checkerboard problems.

This paper proposes a new interpolation technique in order to solve a heat transfer topology optimization problem. Design material and effective conductivity are interpolated respectively by a function h τ (α) and another function k τ (α) in order to provide a continuous transition between the solid and the fluid domains. These interpolation functions avoid the use of some regularization techniques because the problem can be solved in one-step without a new value of the convexity parameter. Moreover, these interpolation functions allow a smaller transition zone between the fluid and solid regions.

To prove this claim and get more qualitative results, the size of these transition zones is explicitly computed and comparison with standard RAMP interpolation is lead. In order to validate the new method, some numerical applications are investigated on the single pipe and the bend pipe cases of the literature. Lastly, as two new parameters are introduced thanks to the interpolation functions, we study their impact on the results of a optimization problem.

Governing equation

The main goal of this paper is to solve topology optimization problems for heat transfer in fluid flow. The latter can be written in the general form below:

Minimize J (u, p, θ) = Ω J Ω (u, p, θ)dΩ + Γ J Γ (u, p, θ)dΓ
Subject to Governing equation for (u, p, θ)

Boundary conditions on Γ , (1) 
where u, p and θ are respectively the dimensionless velocity, pressure and temperature, Ω is a bounded open set of R d , d = 2, 3, with boundary Γ = ∂Ω. The function J Ω and J Γ are some cost functional modeling a physical effect one wish to minimize. We assume that Γ can be decomposed as Γ = Γ 1 ∪ Γ 2 ∪ Γ in ∪ Γ out where Γ in is the inlet, Γ out the outlet and Γ 1 , Γ 2 are going to be considered as walls.

For the governing equation, the flows considered in this study are assumed Newtonian and incompressible, steady and laminar. The inverse permeability field is introduced in the steady-state Navier-Stokes equations as a source term h τ (α)u yielding a Brinkman model with a convection term. The set of dimensionless equations governing the conservation of momentum, mass and energy for incompressible steady-state fluid flow are the following:

(u • ∇) u = -∇p + Re -1 ∆u -h τ (α) u + Ri θ - → e y in Ω, ∇ • u = 0 in Ω, ∇ • (u θ) = div (Re -1 P r -1 k τ (α) ∇θ) in Ω. (2) 
The reduced dimensionless temperature is θ = (T -T 0 )/∆T and the uniform heat flux Φ = ∂ n θ on some part of Γ 1 is equal to λ f ∆T /l, with λ f the thermal conductivity of the fluid. Parameters governing the flow are the Reynolds number defined as Re = U 0 l/ν, with U the reference velocity (i.e mean velocity here) and l is the hydraulic diameter, the Richardson number Ri = Gr/Re 2 where Gr is the Grashof number defined as Gr = g β ∆T l 3 /ν 2 .

h τ (α) corresponds to the ratio between a kinematic viscosity and a permeability and α is the spatially varying design variable field determined by the optimization algorithm. Regions with low permeability can be considered as solid regions since (at least formally) the velocity of the fluid vanishes in such region, and those with very high permeability regions are interpreted as pure fluid. The interpolation function for the adimensional thermal conductivity is given by k τ (α).

We consider the following set of boundary conditions:

u = 0, ∂ n θ = -1 on Γ 1 , u = 0, ∂ n θ = 0 on Γ 2 , u n = 1, u t = 0 θ = 0 on Γ in , ∂ n u = 0, ∂ n θ = 0, p = 0 on Γ out , (3) 
where u n and u t are the normal and tangential components of primal velocities, respectively. To summarize, we require a constant horizontal velocity and a constant temperature θ 0 at the inlet, vanishing gradient for both velocity and temperature of fluid at the outlet. Homogeneous Dirichlet for the velocity and Neumann boundary condition are prescribed for the temperature on the walls. It is worth noting that boundary conditions on the outlet have been considered in [START_REF] Ramalingom | Numerical study of natural convection in asymmetrically heated channel considering thermal stratification and surface radiation[END_REF] and ensure that the fluid does not re-enter in the domain.

Interpolation

The goal of topology optimization is to end up with binary designs, i.e avoid that the design variables take other value than those representing the fluid or the solid. The most important thing is to be sure that the intermediate regions (the transition zones) are unattractive with respect to the optimization problem. This is usually carried out by penalizing the intermediate densities with respect to the material parameters, such as inverse permeability and effective conductivity. A standard approach is to use some convex interpolation (RAMP) function [START_REF] Borrvall | Topology optimization of fluids in Stokes flow[END_REF][START_REF] Alexandersen | Topology optimisation for natural convection problems[END_REF][START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF]. In this section, we propose to use another interpolation function hence interpolate the inverse permeability and the effective conductivity using sigmoid functions. After giving the definition of our interpolation function, we show that the transition zones of the sigmoid are much smaller than those of the standard RAMP function therefore motivating the use of such method in topology optimization.

Interpolation of porosity using a sigmoid function

Inverse permeability is interpolated with a sigmoid function

h τ (α, α 0 ) = α max   1 1 + exp (-τ (α -α 0 )) - 1 1 + exp (τ α 0 )   (4) 
where α ∈ [0, α max ] with α max being the maximal value h τ can reach. Direct computations show that h τ (0, α 0 ) = 0 and that the following point-wise convergence holds

lim τ →+∞ h τ (α, α 0 ) =          0 if α < α 0 , α 0 /2 if α = α 0 , α max if α > α 0 . (5) 
This shows that h τ is a smooth regularization of a Heaviside step function.

From [START_REF] Kreissl | Levelset based fluid topology optimization using the extended finite element method[END_REF], one can see that α 0 can be tuned to control the size of the fluid part in the computational domain. Finally, note that the definition of our interpolation function has to be changed when α 0 = 0 since we require α ≥ 0 and (4) would lead to a regularization of a step function satisfying h τ (0, 0) = 0 and, for any α > 0, h τ (α, 0) → α max /2 as τ → +∞. In order to cover this case, one can use the following interpolation function

h τ (α, 0) = h τ (α) = 2 α max   1 1 + exp (-τ α) - 1 2   ,
which satisfies h τ (0) = 0 and, if α > 0, h τ (α) → α max as τ → +∞.

Comparison with standard RAMP interpolation function

The RAMP function has been introduced in [START_REF] Borrvall | Topology optimization of fluids in Stokes flow[END_REF] and is defined as follows:

h q,R (s) = α max + (α min -α max )(1 -s) 1 + q 1 -s + q , (6) 
where s ∈ [0, 1] is the design parameter and α min , α max are respectively the minimal and maximal value the RAMP function can take. Again, some direct computations show that h q,R is a smooth and convex regularization of a Heaviside step function since h q,R (0) = α min and, for any s > 0, lim q→0 h q,R (s) = α max . In the sequel, we use α min = 0 since this does not add any difficulties nor plus to the discussion. We now compare the performances of our sigmoid (4) with the standard RAMP function ( 6) by focusing on the size of their so-called transition zones. First, note that they are both defined on Ω but the transition zone only depends on the value of the design parameter s(x) for x ∈ Ω. As a result, we are going to consider that both functions have real domain and act on the interval [0, 1]. Also, to compare functions having the same domain and being both smooth regularization of step function as q → 0, we rescale the sigmoids (4) thanks to the formula

h q,S (s, α 0 ) = h 1/q (α max s, α 0 ), h q,S,0 (s) = h 1/q (sα max ), s ∈ [0, 1].
By definition, the transition zones are the undesirable values of the design variable s ∈ [0, 1] for which the velocity of the speed is not enough penalized to vanish or the value of the interpolation function is not small enough for considering these zones as fluid. As one can see from Figure 1, the sigmoid function has much smaller transition zone than the RAMP function.

To prove this claim and get more qualitative results we are going to compute explicitly the size of these transition zones. For a given small enough 

α max = 2000.
ε > 0 and a large enough M > 0, the latter are defined by

T (f, ε, M ) = {s ∈ [0, 1] | ε ≤ f (s) ≤ M } , f ∈ {h q,R , h q,S , h q,S,0 } .
Since both interpolation function are increasing, they admit an inverse function f -1 and the transition zone is thus given by the interval

T (f, ε, M ) = [f -1 (ε), f -1 (M )
] from which we infer that

|T (f, ε, M ) | = f -1 (M ) -f -1 (ε). ( 7 
)
It then only remains to compute the inverse of the sigmoid and RAMP functions. This is actually achieved by solving f (s) = y for a given y ∈ [0, α max ].

These equations can be solved analytically using only direct computations and give

s = (h q,R ) -1 (y) = 1 -q y -α max α max -y + (1 + q)(α min -α max ) = y 1 + q α max q + y (8) s = (h q,S ) -1 (y) = α 0 α max - q α max        -log α max -y(1 + exp(-α 0 /q)) α max exp(-α 0 /q) + y(1 + exp(-α 0 /q)) if s ≤ α 0 /α max log α max -y(1 + exp(-α 0 /q)) α max exp(-α 0 /q) + y(1 + exp(-α 0 /q)) if s ≥ α 0 /α max s = (h q,S,0 ) -1 (y) = -log α max -y α max + y q α max .
The constraint on s in the definition of the inverse of h q,S comes from the fact that we have to solve an equation of the form exp((α 0 -sα max )/q) = g(y)

for a positive function g. Using ( 7) and ( 8), the size of the transition zones are finally

|T (h q,R , ε, M ) | := T R = qα max (1 + q) (α max q + M )(α max q + ε) (M -ε), |T (h q,S , ε, M ) | := T S = q α max log α max -M (1 + exp(-α 0 /q)) α max exp(-α 0 /q) + M (1 + exp(-α 0 /q)) + q α max log α max -ε(1 + exp(-α 0 /q)) α max exp(-α 0 /q) + ε(1 + exp(-α 0 /q)) , |T (h q,S,0 , ε, M ) | := T S,0 = q α max log (α max -M )(α max + ε) (α max + M )(α max -ε) .
For α 0 = 0, one can clearly see that T S,0 < T R . To deal with the case α 0 > 0, note that the parameter q is small since we wish the interpolation function to be close to an ideal step function. Also, we emphasize that α 0 > 0 is going to depend on α max in order to control the percentage of fluid in Ω. Since α max has to be large enough, one gets that z = exp(-α 0 /q) is a small parameter and we can thus expand T S as z → 0. This gives

T S = q α max log (α max -M )(α max -ε) M ε + O(exp(-α 0 /q)),
from which one can see that T S < T R . Thanks to the factor q/α max , we can see that the intermediate zones of the sigmoid are in fact much smaller than those of the RAMP function. Some numerical calculation of the size of transition T R T S T S,0 q = 1 0.6657 0.0380 0.0055 q = 10 -4 0.1665 3.8002 × 10 -6 5.4881 × 10 -7 q = 10 -5 0.0196 3.8002 × 10 -7 5.4881 × 10 -8 zone confirming this fact can be found in Table 1,2 for α max ∈ {200, 2000} and q ∈ {1, 10 -4 , 10 -5 }.

Interpolation of the thermal conductivity

The effective conductivity is interpolated using a sigmoid function similar to (4):

k τ (α, α 0 ) = (k s -k f )   1 1 + exp (-τ (α -α 0 )) - 1 1 + exp (τ α 0 )   + k f (9)
where α ∈ [0, α max ] is the design parameter, k s and k f are respectively the adimensional thermal diffusivity of the solid and of the fluid. Interpolation function ( 9) is again a smooth regularization of a Heaviside step function that satisfies k τ (0, α 0 ) = k f together with the point-wise convergence

lim τ →+∞ k τ (α, α 0 ) =          k f if α < α 0 , (k f + k s )/2 if α = α 0 , k s if α > α 0 .
Similarly to h τ , the case α 0 = 0 needs the following slight modification to still have, when τ → +∞, a fluid-solid step function

k τ (α, 0) = k τ (α) = 2(k s -k f )   1 1 + exp (-τ α) - 1 2   + k f .
The previous function then satisfies k τ (0) = 0 and, for any α > 0, k τ (α) → k s as τ → +∞. A RAMP-like interpolation function is also usually used for the thermal conductivity [START_REF] Alexandersen | Topology optimisation for natural convection problems[END_REF][START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF]. Computations similar to those of Section 3.2 can be done to prove that the transition zone of the sigmoid (9) are much smaller than those of the RAMP function hence motivating using such technique in topology optimization.

Gradient computation with the adjoint model

We chose to solve the optimization problem (1) with gradient-based optimization algorithm. The latter requires the computation of the gradient of the cost functional with respect to the design variable which needs the sensitivities of the solution to the state equation with respect to α. To do this, we are going to use the adjoint method (see e.g. [START_REF] Herzog | Algorithms for PDEconstrained optimization[END_REF][START_REF] Petra | Model variational inverse problems governed by partial differential equations[END_REF][START_REF] Hinze | Optimization with PDE constraints[END_REF]) since it allows to compute the gradient of J efficiently, only by solving the so-called direct problem (the governing equation) and the adjoint model.

We adopt here the differentiate then discretize approach [START_REF] Gunzburger | Perspectives in flow control and optimization[END_REF] which means that we need to compute the continuous adjoint model associated to (1) as done in [START_REF] Qian | Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint[END_REF][START_REF] Othmer | A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows[END_REF]. The Lagrangian associated to the optimization problem [START_REF] Bendsφe | Topology optimization: theory, methods, and applications[END_REF] can then be defined as follows L((u, θ, p), (u * , θ * , p * ), α) := J (u, θ, p) -

Ω p * div u dΩ - Ω u * • (u • ∇) u + ∇p -Re -1 ∆u + h τ (α, α 0 ) u -Ri θ - → e y dΩ - Ω θ * • ∇ • (u θ) -div(Re -1 P r -1 k τ (α, α 0 )∇θ) dΩ - Γ 1 (u • Φ 1 + (∂ n θ -1)ψ 1 ) dΓ - Γ 2 (u • Φ 2 + ∂ n θψ 2 ) dΓ - Γ in ((u -u in ) • Φ in + θψ in ) dΓ - Γout (∂ n u • Φ out + pq out + ∂ n θψ out ) dΓ (10) 
where (u * , θ * , p * , Φ l , ψ l , q out ), for l ∈ {1, 2, in, out}, can be seen as Lagrange multiplier (or adjoint variables). We emphasize that the variables (Φ t , ψ t , q out ) are here to enforce the boundary conditions (3).

The adjoint model is defined thanks to the critical point of L with respect to the state variables (u, θ, p). We use below the following notation for the derivative of an application F : x ∈ E → F(x) ∈ F, where E, F are normed spaces

∂F ∂x [δx] := lim ε→0 F(x + εδx) -F(x) ε . (11) 
First, since L is linear with respect to the adjoint variables, it is worth noting that we recover the state equation ( 2)-( 3) if, for l ∈ {1, 2, in, out}, we solve ∂L ∂(u * , θ * , p * , Φ l , ψ l , q out ) [δu * , δθ * , δp * , δΦ l , δψ l , δq out ] = 0.

Using now [START_REF] Kangro | Divergence boundary conditions for vector Helmholtz equations with divergence constraints[END_REF] to differentiate the Lagrangian [START_REF] Gersborg | An explicit parameterization for casting constraints in gradient driven topology optimization[END_REF] with respect to the state variables, and integrating by parts to have no terms involving derivative of (δu, δθ, δp), we end up with

∂L ∂(u, θ, p) [δu, δθ, δp] = Ω ∂J Ω ∂(u, θ, p) [δu, δθ, δp] dΩ + Γ ∂J Γ ∂(u, θ, p) [δu, δθ, δp] dΓ+ Ω δu • ∇p * -h τ (α, α 0 )u * -(∇u) T u * + ∇u * u + θ∇θ * + Re -1 ∆u * dΩ + Ω δθ div(Re -1 P r -1 k τ (α, α 0 )∇θ * ) + u • ∇θ * + Ri u * • e y dΩ + Ω δp div u * dΩ - Γ δp (u * • n) dΓ + Γ δu • -n p * -n θ θ * + Re -1 ∂ n u * -(u • n)u * dΓ - Γ Re -1 ∂ n δu • u * dΓ + Γ δθ (-u • n) θ * -Re -1 P r -1 k τ (α, α 0 ) ∂ n θ * dΓ + Γ θ * Re -1 P r -1 k τ (α, α 0 )∂ n δθ dΓ - Γ1 (δu • Φ 1 + ∂ n δθψ 1 ) dΓ - Γ2 (δu • Φ 2 + ∂ n δθψ 2 ) dΓ - Γ in (δu • Φ in + δθψ in ) dΓ - Γout (∂ n δu • Φ out + δpq out + ∂ n δθψ out ) dΓ (12) 
Assuming that (δu, δθ, δp, Φ l , ψ l , q out ) = 0 for l ∈ {1, 2, in, out}, that the first derivatives of δu, δθ vanish on Γ and solving (∂L/∂(u, θ, p)) [δu, δθ, δp] = 0 yield the adjoint problem:

∇p * -h τ (α) u * + θ ∇θ * + Re -1 ∆u * + ∇u * u -(∇u) T u * = -∂J Ω ∂u in Ω div u * = -∂J Ω ∂p in Ω Ri u * • - → e y + u • ∇θ * + div (Re -1 P r -1 k τ (α)∇θ * ) = -∂J Ω ∂θ in Ω. ( 13 
)
For the adjoint boundary condition, we are going to show how to obtain them on Γ 1 ∪ Γ 2 since the other part of Γ can be done in the same spirit.

On both walls, the primal velocity is fixed to zero (no-slip condition on the walls) and the heat flux either vanishes or is constant. Since div u = 0 and u is prescribed or null value, there will be δu = 0, div δu = 0 and ∂ n δθ = 0.

We recall a formula from [START_REF] Kangro | Divergence boundary conditions for vector Helmholtz equations with divergence constraints[END_REF]Lemma 7] that holds for any vector fields w and reads

∂ n w • n = div w| Γ -div Γ w t -κw • n, (14) 
where κ = div n is the curvature of Γ and div Γ is the surface divergence

operator. Since ∂ n δu • u * = (∂ n δu) n • u * n + (∂ n δu) t • u *
t and δu = 0 and div δu = 0, formula [START_REF] Evgrafov | The limits of porous materials in the topology optimization of Stokes flows[END_REF] gives that

∂ n δu • u * = (∂ n δu) t u * t .
The boundary conditions on Γ 1 ∪ Γ 2 are then obtained from ( 12) by considering, for l = 1, 2, the following vanishing terms

Γ l Re -1 ∂ n δu • u * dΓ = Γ Re -1 (∂ n δu) t • u * t dΓ = 0, Γ l δp u * • n - ∂J Γ ∂p dΓ = 0, ( 15 
)
Γ l δθ (-u • n) θ * -Re -1 P r -1 k τ (α, α 0 ) ∂ n θ * + ∂J Γ ∂θ dΓ = 0.
The adjoint boundary conditions on Γ in are obtained as above by taking δθ = 0. For the outlet, we use ∂ n δθ = 0, ∂ n δu = 0 and δp = 0. Finally, we end up with the adjoint boundary condition

On Γ 1 ∪ Γ 2 : u * t = 0, u n θ * + Re -1 P r -1 k τ (α, α 0 ) ∂ n θ * = ∂J Ω ∂θ , u * n = ∂J Ω ∂p , On Γ in : u * n = ∂J Γ ∂p u * t = 0, θ * = 0, On Γ out : u n θ * + Re -1 P r -1 k τ (α, α 0 ) ∂ n θ * = ∂J Γ ∂θ , n p * + n θ θ * + Re -1 ∂ n u * + u n u * = ∂J Γ ∂u . ( 16 
)
Now solving (∂L/∂α) [δα] = 0 for all δα yields

∂h τ,α 0 ∂α u • u * + Re -1 P r -1 ∂k τ,α 0 ∂α ∇θ • ∇θ * = 0 in Ω ∂k τ,α 0 ∂α θ * = 0 on Γ 1 , (17) 
which is the optimality condition. Finally, according to the adjoint method (see e.g. [START_REF] Herzog | Algorithms for PDEconstrained optimization[END_REF][START_REF] Petra | Model variational inverse problems governed by partial differential equations[END_REF][START_REF] Gunzburger | Perspectives in flow control and optimization[END_REF]), the gradient of the cost functional J (u, θ, p) at some α is given by

∂J ∂α (α) = ∂h τ,α 0 ∂α u • u * + Re -1 P r -1 ∂k τ,α 0 ∂α ∇θ • ∇θ * , in Ω, ∂J ∂α (α) = ∂k τ,α 0 ∂α θ * on Γ 1 , (18) 
where (u, θ, p) satisfy (2-3) and (u * , θ * , p * ) satisfy the adjoint problem [START_REF] Van Dijk | Level-set methods for structural topology optimization: a review[END_REF][START_REF] Evgrafov | The limits of porous materials in the topology optimization of Stokes flows[END_REF][START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF][START_REF] Stolpe | An alternative interpolation scheme for minimum compliance topology optimization[END_REF].

Remark 1. The adjoint variables (Φ l , ψ l , p out ) used to enforce the boundary conditions (3) of the primal problem are not needed to solve the adjoint problem. Nevertheless, they can be determined using [START_REF] Van Dijk | Level-set methods for structural topology optimization: a review[END_REF][START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF] which cancel many terms in [START_REF] Petra | Model variational inverse problems governed by partial differential equations[END_REF] and gives

Φ l = -n p * -n θ θ * + Re -1 ∂ n u * -(u • n)u * + ∂J Γ ∂u on Γ l ψ l = θ * Re -1 P r -1 k τ (α, α 0 ) + ∂J Γ ∂θ on Γ l , l ∈ {1, 2, in}, Φ out = -Re -1 u * , ψ out = θ * Re -1 P r -1 k τ (α, α 0 ), q out = -u * n - ∂J Γ ∂p .
Note finally that these adjoint variables are also not needed to compute the gradient of the cost functional with respect to the design variable since they does not appear in (18).

Numerical example

This section aims to validate the new interpolation technique. To do so, we investigate two objective functions. First objective function is related to the power dissipated by the fluid through the domain Ω and can be evaluated on the basis of total pressure losses as follows:

J 1 (u, p, θ) = - Γ p t u • n dΓ where p t = p + 1 2 u 2 (19) 
The second cost function is related to the maximization of the recoverable thermal power from the domain Ω and is given by

J 2 (u, p, θ) = Γ θ u • n dΓ (20) 
We finally consider the following objective functional minimize: We notice that the objective function J is a linear combination of both objective functions described above. It's taking place at the inlet and outlet flow boundary conditions and the combination involves the opposite of J 2 since the optimization problem aims at minimizing the combinatory function J . Using the notation from the general optimization problem (1), we have

J (u, p, θ) = J 1 (u, p, θ) -J 2 (u, p, θ), = - Γ (p t + θ) u • n dΓ
J Ω = 0 and J Γ (u, p, θ) = (p + θ) u • n.
The adjoint model is then given by ( 13)-( 16) where all the partial derivative of J Ω are zero and the following boundary conditions hold

u * = 0, ∂ n θ * = 0 on Γ 1 ∪ Γ 2 , u * t = 0, θ * = 0, u * n = -u n on Γ in , θ * u n + Re -1 P r -1 k τ (α) ∂ n θ * = -u n on Γ out , p * + θ * θ + Re -1 ∇ n u * • n + u * n u n = -(θ + p) on Γ out . (22) 
As said in section 4, we propose to solve the topology optimization problem with a steepest descent algorithm where the gradient is computed thanks to the adjoint method. The main flow of the algorithm for the topology optimization is described in Table 3. The forward problem and the optimization

Step 0. Initialization: set all the constants Re, Ri, P r

Step 1. Solve the forward problem (2),(3) problem with the Finite Volume Method

Step 2. Compute objective and constraint values

Step 3. Compute sensitivities by adjoint method

Step 4. Evaluate the optimality condition. If a stopping criterion is met, terminate the calculation

Step 5. Update design variables α with α k+1 = -∇J k+1 + β P R k+1 α k and return to step 1 processes are implemented using OpenFOAM [START_REF] Weller | A tensorial approach to computational continuum mechanics using object-oriented techniques[END_REF]. In Step 5, the design variables are evaluated by using the conjugated-gradient descent direction method associated to Polack-Ribiere method

β P R k+1 = ∇J T k+1 (∇J k+1 -∇J k ) ∇J T k ∇J k .
After optimization process, several results are compared as optimized designs, velocity magnitude distribution, temperature distribution, and lastly, we focus on fluid-solid interfaces. We also presents the objective function values for each simulation case. Finally, we investigate to vary the slope abscissa and the curve of sigmoid functions in order to evaluate their impact on the optimization problem. That corresponds to consider different values of α 0 and τ . In our study, α 0 will vary in {25, 50, 100} which correspond respectively to {α max /8, α max /4, α max /2} and τ will vary in {0.3, 0.7, 1.0}. In order to perform topology optimization, the α term may take a finite value between 0 and α max = 200.

Studied Cases

Two representative cases of topology optimization in fluid dynamics are investigated : the single pipe case and the bend pipe case. Figure 2 shows schematic illustrations of the two studied cases.

Design of a single pipe.

We present here a benchmark numerical example used recently by Marck [START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF] to illustrate the viability and efficiency of the methodology presented in this paper. The design domain consists in a cavity of side L. The computational domain is discretized using 100 × 100 elements. The inlet flow is located in the center of the west edge for a length of L/5. The outlet flow is lining up with it on the east edge. The rest of west and east edges are assumed to be adiabatic and will be called Γ 2 , whereas the whole north and 5.1.2. Design of a bend pipe.

The second example has been studied by several authors as [START_REF] Borrvall | Topology optimization of fluids in Stokes flow[END_REF] and [START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF].

The computational domain is also square-shaped, with a adimensional side L = 1, and the design grid is made of 100 × 100 elements. The inlet flow is located at L/5 of the west edge. The outlet flow is located on the south edge, at L/5 from the east edge.The length of both flow boundary conditions is set to 2L/5. The part of the south edge located on the left of the outlet is subjected to a constant flux of temperature and will be called Γ 1 . The rest of the edges are assumed to be adiabatic and will be designated as Γ 2 .

Physical parameters.

For the two representative cases studied in this section, the inlet flow is prescribed with a constant horizontal velocity equal to U 0 = 0.04 m.s [(Aluminum/Air) Diffusivities], k f = 1.

Results

The aim of the problems defined above is to determine the optimal design that connects the inlet to the outlet of the cavity and that minimizes the objective function J subjected to the constraints (2) and [START_REF] Kreissl | Topology optimization for unsteady flow[END_REF].

First of all, we compute J without optimization for the two studied cases and we obtained respectively for the single pipe J = 9.07 10 -3 and for the bend pipe J = 6. 38 10 -3 . Compared to values issued from optimization process and referenced in Figure 8 and 11, they are reduced between 23% and 42% for the single pipe case, and between 18% and 19% for the bend pipe.

So, the new method investigated here allows to both minimize the power dissipated by the fluid through the domain Ω and maximize the recoverable thermal power from the domain to the fluid.

Secondly, we plot velocity magnitude for various α 0 and τ values. After optimization of J in the single pipe, we obtain an optimized design in which fluid is transported through the single pipe in a straight pipe (see Figure 3). It is quite closed to the optimized design obtained by [START_REF] Marck | Topology optimization of heat and mass transfer problems: laminar flow[END_REF] when the mechanical Similarly, fluid circulation forms a half circle whose center would be the left bottom corner of the square domain in the optimized bend pipe (see Figure 4). Contrary to the literature in fluid mechanics, the optimized path obtained for the flow is not as straight as possible. It can be explained by the fact that we consider here a heat transfer problem. So, the optimized pipe is larger and form a real bend because the fluid flow moves away from hot regions.

Thereafter, we compared distribution of the parameter α in the domain for the two studied cases (see Figures 6 and9). We recall that values less than α 0 are considered as fluid regions. We can notice that this method based on α 0 affected some values of α to the fluid regions, which would not be possible with other methods of the literature. Indeed, generally with the in this porous domain, its existence contributes to increasing thermal power recovered by the fluid. That is illustrated in Figure 5.

At last, it can be seen that thermal conductivity is well distributed, continuously, between fluid and solid regions. 

Q t = Ω h τ (α) dΩ α max V tot where V tot is the total volume of Ω (23) 
Calculation results are referenced in Figures 7 and10. In the single pipe, when α 0 increases, quantity of material diminishes between 27.5% and 28%.

That means fluid domain is more important and that contributes to the increase of J 2 . So, that will influence the value of J . In the bend pipe, when α 0 increases, quantity of material also diminishes between 3.6% and 16%. So, fluid domain is relatively more important than solid domain but not enough to significantly impact on the value of J , hence, the small effect on values of J (see Figure 11). So, parameter α 0 has a significant incidence on the proportion of fluid domain relatively to solid domain and therefore, can influence the value of the functional objective.

Futhermore, we observe a recirculation zone for α 0 = 100 in the example of the optimized single pipe (see Figure 3). That can also be explained by the value of α 0 . Indeed, larger α 0 means that the proportion of fluid elements compared to α max is bigger and thus fluid regions are more important. When α 0 = 100, that means α 0 = α max /2, the algorithm affects some value of α ∈ [0, 100] corresponding to fluid domain and so impacts on the size of fluid regions relatively to the solid regions in the domain. does not seem to impact significantly the optimization results. However, we can observe in Figure 11 that the frontier between the fluid and the solid is sharper when τ = 2.0. In Figure 8, for τ = 0.3, τ = 0.7, we can notice residual material in fluid domain while they do not exist anymore when τ = 2.0. As the same, the porous region identified in the bend pipe case between the main flow and the hot plate is defined mostly with the fluid diffusivity by the interpolation function. This impact does not influence significantly the result of the optimization computation when we compared their value in Figure 11 but it improves the thermal transition between fluid and solid regions. So, parameter τ seems to improve the thermal conductivity distribution during the process optimization.

Conclusion

This study shows that the new interpolation technique based on sigmoid function is a viable method. Design material is well interpolated since intermediate regions between solid and fluid are suppressed hence giving a frontier between the two regions which is well-defined. Besides, the size of transition zones between fluid and solid regions is explicitly computed. The result is that the new interpolation functions reduce their size comparatively to the RAMP interpolation function. Therefore, the transition between fluid and solid is improving thanks to this sigmoid function for the effective conduc- The parameter τ has a small impact on the results of optimization. For the studied cases, the impact was seen after interpolation of thermal conduc- 
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 1 Figure 1: Interpolation functions with q = 1 and α 0 = α max /4. Left: α max = 200. Right:
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  subject to: Governing equation (2), Boundary conditions (3).
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 2 Figure 2: Single pipe and Bend pipe
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 1 in Reynolds number. The inlet temperature is fixed to θ = 0. The outflow temperature condition is fixed to a zero gradient, as well as the velocity gradient. Hot walls are subject to a constant flux of temperature∂ n θ = -1.The Reynolds number based on the characteristic dimension of the inlet length and the average inlet velocity is Re = 500. The Rayleigh number is fixed to Ra = 5 × 10 5 . Prandtl number is set to 0.71. Grashof number has the following expression Gr = Ra/P r. Adimensional thermal parameters are the following: k s = (9.88×10 -5 m 2 .s -1 )/(2.25×10 -5 m 2 .s -1 )
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 3 Figure 3: Velocity magnitude distribution in the single pipe
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 4 Figure 4: Velocity magnitude distribution in the bend pipe
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 5 Figure 5: Temperature distribution in the bend pipe

Figure 8

 8 represents the distribution of material conductivity after the optimization process in the single pipe case. Compared to Figure7, we observe that frontier between the two regions, fluid and solid, is well-established. For the bend pipe case, although intermediate regions exist, k τ interpolation function allows to affect to this porous domain a conductivity closed to the fluid diffusivity (see Figure11). Therefore, the function k τ (α) provides a continuous transition between the solid and the fluid domains.5.2.1. Influence of α 0 .It can clearly be seen from Figures 7 and 10 that different designs are obtained for the different values of α 0 . As detailed in section 3, α 0 is depending of α max in order to control the percentage of fluid in Ω. This parameter has a significant impact on the quantity of material adding in the domain and that can be illustrated by computing the proportion Q t of material added in the domain Ω as follows :

5. 2 . 2 .

 22 Influence of τ . It can clearly be seen from Figures 7 and 10 that different designs are obtained for the different values of τ . The parameter τ in the interpolation functions h τ (α) and k τ indicates the stiffness of the curve of the functions. It
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 6 Figure 6: α distribution in the single pipe
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 7 Figure 7: h τ (α) distribution in the single pipe and proportion of material Q t added in the domain after optimization
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 8910 Figure 8: k τ (α) distribution in the single pipe for different values of τ and α 0 and value of functional objectif J after optimization
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 11 Figure 11: k τ (α) distribution in the bend pipe and value of functional objectif J after optimization

  tivity. Elements of porous domain have been affected to fluid diffusivity or solid conductivity, and therefore, the thermal transition between material is improved. So, this study has examined a new interpolation technique to deal with fluid-porous media interfaces for topology optimization of heat transfer problems. Further research might explore several type of flow regimes in optimization problems using these interpolation functions. Another possible area of future research would be to investigate new cost functions.

  

  

Table 3 :
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