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PENALIZATION MODEL FOR NAVIER-STOKES-DARCY EQUATION WITH
APPLICATION TO POROSITY-ORIENTED TOPOLOGY OPTIMIZATION

ALAIN BASTIDE, PIERRE-HENRI COCQUET, DELPHINE RAMALINGOM
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Abstract. Topology optimization for fluid flow aims at finding the location of a porous medium minimizing a cost functional
under constraints given by the Navier-Stokes equations. The location of the porous media is usually taken into account by adding
a penalization term αu, where α is a kinematic viscosity divided by a permeability and u is the velocity of the fluid. The fluid
part is obtained when α = 0 while the porous (solid) part is defined for large enough α since this formally yields u = 0. The
main drawback of this method is that only solid that does not let the fluid to enter, that is perfect solid, can be considered.
In this paper, we propose to use the porosity of the media as optimization parameter hence to minimize some cost function by
finding the location of a porous media. The latter is taken into account through a singular perturbation of the Navier-Stokes
equations for which we prove that its weak-limit corresponds to an interface fluid-porous medium problem modeled by the
Navier-Stokes-Darcy equations. This model is then used as constraint for a topology optimization problem. We give necessary
condition for such problem to have at least an optimal solution and derive first order necessary optimality condition. This paper
ends with some numerical simulations, for Stokes flow, to show the interest of this approach.
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1. Introduction. Many practical problem in applied science and engineering aim at finding the loca-
tion of a solid to improve a desired physical behavior. Such kind of problem, usually referred as topology
optimization, can be written as a constrained optimization problem where the parameter we look for is the
location of the solid, the constraint are given by the governing equation of the fluid and the function one
wants to minimize describe a physical effect.

Several techniques have been proposed to use the location of the porous media as optimization parameter.
For instance, the topological asymptotic expansion [2, 3] consider the solid as holes in the computational
domain. The topological gradient is then the first order term of the asymptotic expansion of the cost
functional as the size of the hole vanishes. One of the advantage of this method is that the solid is clearly taken
into account in the optimization process. However, this method requires the computation of an asymptotic
expansion which can be a hard task that depend on the shape of the hole, the dimension of space and the
problem under study. For these reasons, the penalization method that has been introduced in [12] has been
favored over the past few years.

The method introduced by T. Borrvall and J. Petersson [12] is based on a penalization model [8] that
define the location of the porous media with a friction term α(ρ)u where u is the velocity of the fluid and
α(ρ) = ψ(ρ−1− 1) is (physically) an inverse of a permeability by a kinematic viscosity with ψ a dimensioned
coefficient. The fluid part of the optimal design is then defined when ρ = 1 while ρ = 0 gives the solid part
since, at least formally, the velocity of the fluid goes to zero in these zones. As pointed out by A. Evgrarov
[22], the parameter ρ belong to a non-convex nor weakly∗ closed set thus both the mathematical study and
the numerical approximation of the topology optimization problem is difficult. It has then been proposed
(see e.g. [12, 45]) to work with an interpolation of α hence to use ρ ∈ [0, 1] as design parameter. This
interpolation technique has then been used extensively in several work [45, 12, 23, 22, 4, 27, 37] (see also the
review paper [18]) and extended to other physical modeling like heat transfert in fluid [40, 36, 41] or natural
convection [1].

The major drawback of the technique introduced by T. Borrvall & J. Petersson is that the penalization
model is relevant only for perfect solid that is a material that does not allow the fluid to enter. In this paper,
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we want to propose an alternative method to solve topology optimization problem that allows the optimal
design to be characterized by a porous medium and not only a perfect solid. Following the same idea as the
penalization method for which we have a solid as α goes to infinity, we would like to use the porosity α as
optimization parameter and get the Navier-Stokes equations when α = 0 while, for positive α, we wish to
have the Darcy law for porous medium with porosity α. Our new penalized model is going to be given by a
singular perturbation of the Navier-Stokes problem whose weak limit is the Navier-Stokes-Darcy model. The
techniques used to build our penalized model are based on some vanishing-viscosity method similar to those
developed in [26, 25] for advection-diffusion problem.

This paper is organized as follow: We first derive the singular perturbation model used latter as constraint
in our topology optimization problem. We show next that its weak-limit is a fluid-porous media interface
problem given by a Navier-Stokes-Darcy problem. We then use this penalization model as constraint for a
topology optimization problem and give necessary condition for the existence of optimal design as well as
first order necessary optimality condition. This paper ends with some numerical simulation for Stokes flow
to show the potential application of the approach developed in the present paper.

2. The penalized Navier-Stokes-Darcy model. Let Ω be a bounded open set of Rd, d = 3 2, with
Lipschitz boundary Γ = Γ1 ∪ Γ2 (Γ1 ∩ Γ2 = ∅) whose outward unitary normal is denoted by n. We assume
that Ω can be written as Ω = Ωp ∪ Ωf , where the subscript f denotes the fluid part and p the porous part
of the computational domain. We assume that one has the incompressible Navier-Stokes equation in Ωf and
the Darcy law for porous medium with porosity α in Ωp. This reads

−ν∆uf + 1
ρf
∇pf + (uf · ∇)uf = f in Ωf ,

div uf = 0 in Ωf
αup + 1

ρf
∇pp = f in Ωp,

div up = 0 in Ωp,

(2.1)

with suitable interface condition on (∂Ωf ∩ ∂Ωp)\Γ and some boundary condition on Γ that will be specified
latter. In (2.1), ρf is the constant fluid volumetric mass and is equal to 1 in the sequel of the paper.

Our first goal is to obtain Equation (2.1) as the limit of a model involving a single equation giving the
Navier-Stokes equation for α = 0 and, at the limit, the Darcy law when α > 0. The latter can be achieved
using function of the form exp(−τα) which converges, as τ → +∞, toward the indicator function of the set
{x ∈ Ω | α(x) = 0} := Ωf . Therefore, multiplying the second order term and the non-linear term of Equation
(2.1) by exp(−τα) is going, at least formally, to do the job. However, this method yields a problem whose
mathematical analysis can be difficult and this is the reason why we propose below another approach based
on the following formula

(u · ∇)u =
1

2
∇|u|2 − u× (∇× u), (2.2)

Using (2.2), one can write the incompressible Navier-Stokes equations as follow

−ν∆u +∇p+
1

2
∇|u|2 − u× (∇× u) = f in Ωf .

We then consider the following penalized incompressible Navier-Stokes system with Darcy law for porous
medium 

−div
(
νe−τα∇u− pI3 − 1

2e−2τα|u|2I3
)
− e−2ταu× (∇× u) + αu = f in Ω,

div(u) = 0 in Ω,
u = 0 on Γ1,

νe−τα∂nu− (p+ 1
2e−2τα|u|2)n = ϕ on Γ2,

(2.3)

2The case Ω ⊂ R2 is discussed along the paper and does not yield additional difficulties.
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where div denotes alternatively the divergence of a tensor or a vector field, α ∈ L∞(Ω) is a kinematic viscosity
divided by a permeability, f ∈ L2(Ω)3 is a density of forces and ϕ ∈ L2(Γ2,R3) is a surface source term. We
now derive formally the limiting problem as τ → +∞. Note that we recover the Navier-Stokes equations on
Ωf since α vanishes. Also taking the formal limit as τ → +∞ of the solution to Problem (2.3), we get that
it satisfies

div u = 0, αu +∇p = f in Ωp,

which is the Darcy law for porous media. Problem (2.3) is therefore a penalization model for an interface
fluid-porous media problem.

Remark 2.1 (Two-dimensional case). In a two-dimensional setting, one only has to use that

(u · ∇)u− 1

2
∇|u|2 =

(
u2∂2u1 − u2∂1u2

u1∂1u2 − u1∂2u1

)
.

Therefore, we simply replace ∇× by the above formula in Problem (2.3) to get the penalized Navier-Stokes-
Darcy equation in R2.

We start by studying the existence of solution to Problem (2.3). Let X be the subspace of H1(Ω)3 defined
by

X :=
{
ψ ∈ H1(Ω)3 | ψ = 0 on Γ1

}
.

It is a Hilbert space for the norm ‖.‖X := ‖.‖H1(Ω)d . We recall the following Poincaré inequality that holds

if |Γ1| > 0

∃CP > 0 such that ∀ϕ = (ϕj) ∈ X, ‖ϕj‖L2(Ω) ≤ CP ‖∇ϕj‖L2(Ω)3 , (2.4)

where the constant CP only depends on Ω. In the sequel, we use the following notation

∀u ∈ X, ‖∇u‖2L2(Ω)d :=

d∑
j=1

‖∇uj‖2L2(Ω)d ,

which is actually the norm of the Jacobian matrix of the vector field x ∈ Ω 7→ u(x).
A variational formulation for Problem (2.3) is given below

Find (u, p) ∈ X× L2(Ω) such that

∀v ∈ X, a(u,v) +N(u,u,v) + b(v, p) =

∫
Ω

f(x) · v(x)dx+

∫
Γ2

ϕ · vdσ,

∀q ∈ L2(Ω), b(u, q) = 0,

(2.5)

where, using subscript j to denote the components of a vector, the multilinear forms are defined as follow

a(u,v) = ν

d∑
j=1

∫
Ω

e−τα∇uj · ∇vjdx+

∫
Ω

αu · vdx,

N(u,v,w) = −
∫

Ω

e−2τα

2
u · vdiv(w) + e−2ταu× (∇× v) ·wdx, (2.6)

b(v, p) = −
∫

Ω

divvp dx.

The equivalence between the weak-formulation (2.5) and Problem (2.3) is classical and can be found in [10].
We show below the continuity of the trilinear form associated to the non-linear term N .
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Lemma 2.2. The trilinear form N is continuous on X3

|N(u,v,w)| ≤ CN ‖∇u‖L2(Ω)3 ‖∇v‖L2(Ω)3 ‖∇w‖L2(Ω)3 ,

where CN > 0 depends only on Ω.
Proof. We recall the following compact Sobolev embedding theorem (see e.g [24, 44])

H1(Ω) ↪→↪→ L4(Ω). (2.7)

Let (u,v,w) ∈ X3. Using (2.7), that e−τα ≤ 1 and Holder inequality then give

|N(u,v,w)| ≤ 2 ‖u‖L4(Ω)3 ‖∇v‖L2(Ω)3 ‖w‖L4(Ω)3

≤ CN ‖∇u‖L2(Ω)3 ‖∇v‖L2(Ω)3 ‖∇w‖L2(Ω)3

which proves that N is continuous.
We first study the existence and uniqueness of (uτ , pτ ) satisfying Problem (2.3) for finite 0 < τ .
Theorem 2.3. Suppose that the following set of assumptions hold
1. α ∈ L∞(Ω) is almost everywhere positive.
2. The domain Ω can be written as Ω = Ωp ∪Ωf where Ωf = {x ∈ Ω | α(x) = 0} satisfies Ωf ∩ Γ1 6= ∅.
3. There exists Ωp ⊂ Ω and αmin > 0 such that

a.e x ∈ Ωp, αmin ≤ α(x).

Then for any 0 < τ ≤M , there exists at least one (uτ , pτ ) satisfying Problem (2.5) and the following a priori
estimates

‖uτ‖H1(Ω)3 ≤ C1
eM‖α‖L∞(Ω)

ν

(
‖f‖L2(Ω)3 + ‖ϕ‖L2(Γ2)3

)
,

‖pτ‖L2(Ω) ≤ β
−1C2

(
1 + ‖α‖L∞(Ω)

C1eM‖α‖L∞(Ω)

ν

)(
‖f‖L2(Ω)d + ‖ϕ‖L2(Γ2)3

)
+β−1CNC

2
1eM‖α‖L∞(Ω)

ν2

(
‖f‖L2(Ω)3 + ‖ϕ‖L2(Γ2)3

)2

,

where C1, C2 are positive constant that does not depend on ν nor on M .
Proof. We first prove the upper bound for the solution to Problem (2.3). Note that the non-linear term

satisfy

N(u,u,u) = −
∫

Ω

e−2τα
(
|u|2div(u) + u× (∇× u) · u

)
dx

=

∫
Ω

e−2τα(∇× u) · (u× u)dx = 0.

Taking v = u in the weak formulation (2.5), using Cauchy-Schwarz, Poincaré (2.4) and trace inequality and

that e−τα ≥ e−M‖α‖L∞(Ω) then show that

‖u‖H1(Ω)3 ≤ C1
eM‖α‖L∞(Ω)

ν

(
‖f‖L2(Ω)3 + ‖ϕ‖L2(Γ2)3

)
, (2.8)

where C1 is a constant that does not depend on ν nor M . To get the estimate on the pressure, one needs
the next inf-sup condition whose proof can be found in [11] Theorem 2.1, p. 338.

∃β > 0 such that ∀q ∈ L2(Ω), sup
v∈X

b(v, q)

‖v‖X
≥ β ‖q‖L2(Ω) . (2.9)
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Since p ∈ L2(Ω) satisfies Problem (2.5), we obtain

b(v, p) =

∫
Ω

f(x) · v(x)dx−
∫

Γ2

ϕv · ndσ − a(u,v)−N(u,u,v), ∀v ∈ X.

Using the inf-sup condition (2.9) together with Lemma 2.2 then give

‖pτ‖L2(Ω) ≤ β
−1 sup

v∈X

∫
Ω

f(x) · v(x)dx−
∫

Γ2
ϕv · ndσ − a(uτ ,v)−N(uτ ,uτ ,v)

‖v‖X
,

≤ β−1
(
‖f‖L2(Ω)3 + ‖ϕ‖L2(Γ2)3 + (1 + ‖α‖L∞(Ω)) ‖uτ‖H1(Ω)3

)
+β−1CN ‖uτ‖2H1(Ω)3

which yields the desired result thanks to (2.8).
We now prove the existence of at least one solution to Problem (2.3). First we introduce the kernel of

the linear form q ∈ L2(Ω) 7→ b(., q) ∈ X′ namely

V := {v ∈ X | div(v) = 0 in Ω} .

It is worth noting that u ∈ V. We introduce the non-linear mapping Φ : V→ V′ defined by

〈Φ(u),v〉 := a(u,v) +N(u,u,v)−
∫

Ω

f(x) · v(x)dx−
∫

Γ2

ϕ · vdσ.

We then need to prove that there exists u ∈ V such that Φ(u) = 0 to get the existence of u satisfying Problem
(2.5). Since N(u,u,u) = 0, we infer

〈Φ(u),u〉 ≥ C1 ‖u‖2H1(Ω)3 − C2(‖f‖L2(Ω)3 + ‖ϕ‖L2(Γ2)3) ‖u‖H1(Ω)3 ,

where Cj > 0 does not depend on ν. One thus gets that 〈Φ(u),u〉 is non-negative on the sphere with radius
r0 := C2(‖f‖L2(Ω)3 +‖ϕ‖L2(Γ2)3)/C1. Since V is separable (as a closed subspace of the Banach space H1(Ω)3),
there exists an increasing sequence of finite dimensional subspaces Vn such that ∪nVn is dense in V. From
Brower’s fixed point Theorem, there exists un ∈ Vn such that ‖un‖H1(Ω)3 ≤ r0 and

∀vn ∈ Vn, 〈Φ(un),vn〉 = 0.

The sequence Vn being increasing, one has

∀m ≥ n, ∀vm ∈ Vm, 〈Φ(un),vm〉 = 0.

Since (un)n ⊂ V is bounded in X and the embedding X ⊂ L4(Ω)3 is compact (see (2.7)), there exists a
subsequence (still denoted (un)n) that converges weakly in X and strongly in L4(Ω)3 to some u ∈ N. The
definition of the weak convergence then yield

lim
n→∞

a(un,vm) = a(u,vm).

Since un ⇀ u in X and un → u strongly in L4(Ω)3, one gets that un · vm → u · vm strongly in L2(Ω)3 and
thus

lim
n→∞

N(un,un,vm) = N(u,u,vm).

From the above limits, we infer

∀m ∈ N, ∀vm ∈ Vn, 〈Φ(u),vm〉 = 0.
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The density of ∪nVn into V then gives 〈Φ(u),v〉 = 0 for any v ∈ V and thus the existence of a velocity field
for Problem (2.3) is proven. The existence of p ∈ L2(Ω) then follow from the inf-sup condition (2.9) and
Lemma 4.1 p.38 from [28].

Remark 2.4. The existence proof also works for f ∈ X∗ and ϕ ∈ H−1/2(Γ2,R3) and one only has to
change the norm in the upper bound of the solution.

We do not detail here the proof of the unicity since this can be done using standard technique from
[44, 24, 10] and we are mainly interested in existence when doing PDE-constrained optimization problems.
Nevertheless, this demand ν to be large enough.

3. Derivation of the limiting problem. We are going to characterize the limit of (uτ , pτ ) satisfying
Problem (2.3) as τ → +∞. We assume from now that the data satisfies f ∈ L2(Ω)3 and ϕ = 0. We require
f ∈ L2(Ω)3 because this regularity is useful to give sense to the interface condition as shown in the proof of
Theorem 3.2. We also consider vanishing ϕ because this greatly simplify the derivation of some bound proved
in the sequel. Finally, we assume that the fluid part Ωf ⊂ Ω and the porous part Ωp ⊂ Ω are bounded open
set with Lipschitz boundary since we are going to write (2.3) as an interface problem.

Using that Ω = Ωf ∪Ωp and omitting the τ -dependance to lighten the expression, Problem (2.3) can be
written as the following transmission problem

−div
(
νe−τα∇up − pτ,pI3 − 1

2e−2τα|up|2I3
)
− e−2ταup × (∇× up) + αup = f in Ωp,

div(up) = 0 in Ωp,
−div

(
ν∇uf − pf I3 − 1

2 |uf |
2I3
)
− uf × (∇× uf ) = f in Ωf ,

div(uf ) = 0 in Ωf ,
uf = 0 on Γ1 ∩ ∂Ωf ,
up = 0 on Γ1 ∩ ∂Ωp,

ν∂nuf − (pf + 1
2 |uf |

2)n = 0 on Γ2 ∩ ∂Ωf ,
e−ταν∂nup − (pp + 1

2e−2τα|up|2)n = 0 on Γ2 ∩ ∂Ωp,
uf − up = 0 on Γp,f ,

Tτ [(up, pp), (uf , pf )] = 0 on Γp,f ,

(3.1)

where Γp,f = (∂Ωp ∩ ∂Ωf ) \ Γ is the fluid-porous media interface. The application Tτ defines the flux
transmission conditions. Chosing npf as unitary normal to Γp,f , for instance inward to Ωp and outward to
Ωf , the latter is given by

Tτ [(up, pp), (uf , pp)] = (νe−τα∇up − ppI3 − 1
2e−2τα|up|2I3)npf

−
(
ν∇uf − pf I3 − 1

2 |uf |
2I3
)
npf .

(3.2)

Note that Theorem 2.3 ensures the existence of (us,τ , pτ,p,uf,τ , pτ,f ) ∈ H1(Ωp)3×L2(Ωp)×H1(Ωf )3×L2(Ωf )3

that satisfy the transmission Problem (3.1-3.2). Before giving the variational formulation of Problem (3.1-
3.2), we introduce the following functional spaces

Xf :=
{
ψ ∈ H1(Ωf )3 | ψ = 0 on Γ1 ∩ ∂Ωf

}
.

Xp :=
{
ψ ∈ H1(Ωp)3 | ψ = 0 on Γ1 ∩ ∂Ωp

}
.

The variational formulation then reads

Find (uτ,f , pτ,f , up, pτ,p) ∈ Xf × L2(Ωf )× Xp × L2(Ωp) such that
uf − up = 0 on Γp,f and
af (uτ,f ,vf ) +Nf (uτ,f ,uτ,f ,vf ) + bf (vf , pτ,f ) + ap(uτ,p,vp) +Np(uτ,p,uτ,p,vp)

+b(vp, pτ,p)−
∫

Γp,f

(
νe−τα∇uτ,p − pτ,pI3 −

1

2
e−2τα|uτ,p|2I3

)
npf · (vp − vf )dσ

=

∫
Ωf

f(x) · vf (x)dx+

∫
Ωp

f(x) · vp(x)dx

bf (uτ,f , qf ) + bp(uτ,p, qp) = 0,
∀(vf ,vp) ∈ Xf × Xp ∀(qf , qp) ∈ L2(Ωf )× L2(Ωp).

(3.3)
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Above the af , ap, Nf , Np, bf , bp are defined as in (2.6) with Ω replaced by Ωf and Ωp according to their
subscript.

3.1. First estimates. We now prove some estimates that are sharper than those from Theorem 2.3
and are going to be useful to pass to the limit in Problem (3.1-3.2).

Theorem 3.1. Assume that the assumptions of Theorem 2.3 hold and that α|Ωp
∈ Lip(Ωp). Then the

solution to Problem (3.1) satisfy the following bounds

‖uf,τ‖L2(Ωf )3 + ‖up,τ‖L2(Ωp)3 ≤
C

γ
‖f‖L2(Ω)3 ,

‖∇uf,τ‖L2(Ωf )3 ≤
C

γ
‖f‖L2(Ω)3 ,∥∥e−τα∇up,τ

∥∥
L2(Ωp)3 ≤ e−ταmin/2

C
√
νγ
‖f‖L2(Ω)3 ,

‖pp,τ‖L2(Ωp) + ‖pf,τ‖L2(Ωf )3 ≤ B,

where γ = min(C−1
P ν, αmin), C > 0 is a generic constant that does not depend on τ nor on ν and B > 0 is a

constant that does not depend on τ .
Proof. We omit the τ dependence to lighten the overall expressions. We now choose (vf ,vp) ∈ Xf ×Xp

defined as vf = uf , vp = up in the variational formulation (3.3). Using then that Nt(wt,wt,wt) = 0 for
any wt ∈ Xf with subscript t ∈ {f, p} referring to the fluid or the porous part of Ω, one gets

3∑
j=1

(∫
Ωp

νe−τα|∇us,j |2dx+

∫
Ωf

ν|∇uf,j |2dx

)
+

∫
Ωp

α|up|2dx

=

∫
Ωp

f · updx+

∫
Ωf

f · ufdx

Using Cauchy-Schwarz, trace and Poincaré inequalities (2.4), we obtain

αmin ‖up‖2L2(Ωp)3 + C−1
P ν ‖uf‖2L2(Ωf )3 ≤ ‖f‖L2(Ω)3

(
‖up‖L2(Ωp)3 + ‖up‖L2(Ωp)3

)
.

Since 2(a2 + b2) ≥ (a+ b)2 for any a, b ∈ R+, we get the existence of a constant C > 0 that does not depend
on ν nor τ such that

‖uf‖L2(Ωf )3 + ‖up‖L2(Ωp)3 ≤
C

min(C−1
P ν, αmin)

‖f‖L2(Ω)3 , (3.4)

which yields the first estimate. The second estimates is easily obtained thanks to Poincaré inequality (2.4).
For the last estimate, we infer from a Cauchy-Schwarz inequality and (3.4) that

3∑
j=1

∫
Ωp

νe−τα|∇us,j |2dx ≤
C

min(C−1
P ν, αmin)

(‖f‖L2(Ω)3)2. (3.5)

Multiplying (3.5) by e−ταmin and using that αmin ≤ α(x) for any x ∈ Ωp, we obtain

ν
∥∥e−τα∇up

∥∥2

L2(Ωp)3 = ν

3∑
j=1

∫
Ωp

e−2τα|∇up,j |2dx

≤ νe−ταmin

∫
Ωp

e−τα|∇up,j |2dx (3.6)

≤ ν Ce−ταmin

νmin(C−1
P ν, αmin)

‖f‖2L2(Ω)3
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and the bounds for the velocity are therefore complete. To get the bound for the pressure (pp, pf ) ∈
L2(Ωp)× L2(Ωf ), we use the following formula which comes from the weak formulation (2.5) together with
the transmission condition (3.2)

b(v, p) = −
∫

Ωp

ppdivv dx−
∫

Ωf

pfdivv dx

=

∫
Ω

f(x) · v(x)dx− ap(up,vp)−Np(up,up,vp)

− af (uf ,vf )−Nf (uf ,uf ,vf ),

where v ∈ X and (vp,vf ) = (v|Ωp
,v|Ωf

). Following the proof of Lemma 2.2 and using that e−2τα = (e−τα)2

we obtain the next refined estimates

|Np(up,up,vp)| ≤ CN

∥∥(e−ταup)
∥∥2

H1(Ωp)3 ‖vp‖H1(Ωp)3 ,

|ap(up,vp)| ≤
∥∥e−τα∇up

∥∥
L2(Ωp)3 ‖∇vp‖L2(Ωp) (3.7)

+ ‖α‖L∞(Ω) ‖up‖L2(Ωp)3) ‖∇vp‖L2(Ωp)3 .

Since α|Ωp
∈ Lip(Ωp), it is almost everywhere differentiable with (essentially) bounded derivatives thanks to

Rademacher Theorem. One thus have ∇e−τα = −τe−τα∇α on Ωp. Using now that 0 ≤ e−τα(x) ≤ e−τλmin

for almost every x ∈ Ω, we obtain∥∥(e−ταup)
∥∥
H1(Ωp)3 =

∥∥∇(e−ταup)
∥∥
L2(Ωp)3 +

∥∥e−ταup

∥∥
L2(Ωp)3 (3.8)

≤
∥∥e−τα∇up

∥∥
L2(Ωp)3 +

(
1 + τ ‖∇α‖L∞(Ωp)

)∥∥e−ταup

∥∥
L2(Ωp)3

≤
∥∥e−τα∇up

∥∥
L2(Ωp)3 + e−τλmin

(
1 + τ ‖∇α‖L∞(Ωp)

)
‖up‖L2(Ωp)3 .

Using now bounds (3.6-3.4) and that τ > 0 is large enough, we infer

|Np(up,up,vp)| ≤ C
(

e−τλmin/2
(

1 + τ ‖∇α‖L∞(Ωp)

))2 (
‖f‖L2(Ω)3

)2

‖vp‖H1(Ωp)3

≤ Cτ2e−τλmin

(
‖f‖L2(Ω)3

)2

‖vp‖H1(Ωp)3 (3.9)

where C > 0 is a generic constant that does not depend on τ nor on f . The upper bound (3.9), the inf-sup
condition (2.9) together with (3.6-3.4-3.7) then give the existence of B > 0 that does not depend on τ such
that

‖pp‖L2(Ωp) + ‖pf‖L2(Ωf ) = ‖p‖L2(Ω) ≤ β
−1 sup

v∈X

b(v, q)

‖v‖X
≤ B,

where (p|Ωp , p|Ωf
) = (pp, pf ).

3.2. Characterization of the limiting problem for (uτ , pτ ). From Theorem 3.1, we infer that the
sequence ((up,τ , pp,τ ,uf,τ , pf,τ ))τ is bounded, uniformly with respect to τ in L2(Ωp)3×L2(Ωp)×H1(Ωf )3×
L2(Ωf ) and thus there exists subsequence and (up, pp,uf , pf ) ∈ L2(Ωp)3 × L2(Ωp)×H1(Ωf )× L2(Ωf ) such
that

us,τ → up weakly in L2(Ωp)3,

uf,τ → uf weakly in H1(Ωf )3 and strongly in L2(Ωf )3, (3.10)

pp,τ → pp weakly in L2(Ωp) and pf,τ → pf weakly in L2(Ωf ),

e−τα∇us,τ → 0 strongly in L2(Ωp).
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The limiting problem satisfied by (up, pp,uf , pf ) is given in the next result.
Theorem 3.2. The distributions (up, pp,uf , pf ) ∈ L2(Ωp)3 × L2(Ωf ) × H1(Ωf )3 × L2(Ωf ) defined as

the weak limits of (uτ , pτ ) satisfying Problem (3.1,3.2) satisfy the following equation

∇pp + αup = f in D′(Ωp,R3),
div(up) = 0 in D′(Ωp),

−div (ν∇uf − pf I3) + (uf · ∇)uf = f in D′(Ωf ,R3),
div(uf ) = 0 in D′(Ωf ),

uf = 0 in H1/2(Γ1 ∩ ∂Ωf ,R3),
n · up = 0 in H−1/2(Γ1 ∩ ∂Ωp)

uf · npf = up · npf in H−1/2(Γp,f ),
ν∂nuf − (pf + 1

2 |uf |
2)n = 0 in H−1/2(Γ2 ∩ ∂Ωf ,R3),
−pp = 0 in H1/2(Γ2 ∩ ∂Ωp),(

ν∇uf − pf I3 − 1
2 |uf |

2I3
)
npf = −ppnpf in

(
W 1−1/q,q(Γp,f ,R3)

)′
,

(3.11)

where q = 2p/(2− p) for any p ∈ [1, 3/2].
Proof. The four first equations of (3.11) follow from (3.10) by passing to the limit in the variational

formulation (3.3). To pass to the limit in the non-linear term Nf , we use the continuity of Nf together with
strong L2 and weak H1 convergence of (uτ,f )τ . For the non-linear term Np, it goes to zero thanks to (3.9).
The Dirichlet boundary condition on Γ1 is obtained thanks to the compactness of the trace operator. The
boundary condition on Γ2∩∂Ωf and on Γ2∩∂Ωp are easily recovered by integration by part in the variational
formulation.

To recover the transmissions condition on Γp,f and the boundary conditions on Γ1∩∂Ωp, we first introduce
the reflexive Banach space Lpdiv(Ω,Hom(R3)) which is defined by

Lpdiv(Ω,Hom(R3)) =
{
G ∈ Lp(Ω,Hom(R3)) | divG ∈ Lp(Ω)3

}
.

Note that any v ∈W 1,q(Ω,R3), for q = 1/(1−p−1), has a trace v|∂Ω that belong to W 1−1/q,q(Ω). Therefore,
for any (G,v) ∈ Lpdiv(Ω,Hom(R3))×W 1,q(Ω,R3), the following Green’s identity holds

∫
Ω

v · divGdx+

3∑
j=1

∫
Ω

Gj · ∇vjdx =

3∑
j=1

〈Gj · n,v〉 , (3.12)

where 〈., .〉 is the duality product between
(
W 1−1/q,q(Ω)

)′
and W 1−1/q,q(Ω). To get the matching of the

normal trace on Γp,f , one only has to remark that uτ ∈ L2
div(Ω,R3) with uniform bound with respect to τ

since div uτ = 0. Therefore, one has uτ,f · npf = uτ,s · npf and, using the Green formula, we then get that
up ·npf = uf ·npf in H−1/2(Γ2). Similarly, since up,τ = 0 in H1/2

(
Γ1 ∩ ∂Ωp,R3

)
, we end up with up ·n = 0

in H−1/2 (Γ1 ∩ ∂Ωp).
We now consider the distribution Fτ defined below

Fτ =

(
νe−τα∇uτ − pτ I3 −

1

2
e−2τα|uτ |2I3

)
.

Theorem 3.1 and the Sobolev embedding (2.7) ensure that Fτ ∈ L2(Ω,Hom(R3)) and that there exists a
positive constant C > 0 that does not depend on τ such that

‖Fτ‖L2(Ω,Hom(R3)) ≤ C.

We now turn our attention on proving that div(Fτ ) is also bounded uniformly with respect to τ . Starting
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from Equation (2.3), Theorem 3.1 and Holder inequality, we infer that

‖divFτ‖Lp(Ω)3 =
∥∥−f + αuτ − e−2ταuτ × (∇× uτ )

∥∥
Lp(Ω)3

≤ ‖f‖L2(Ω)3 + ‖α‖L∞(Ω) ‖uτ‖L2(Ω)3

+ C
∥∥e−ταuτ

∥∥
Lq(Ω)3

∥∥e−τα∇uτ
∥∥
L2(Ω)3 ,

where C > 0 does not depend on τ , q = 2p/(2 − p) and 1 ≤ p ≤ pmax for some pmax that is going to
be specified below. Theorem 3.1 shows that ‖e−τα∇uτ‖L2(Ω)3 is bounded uniformly with respect to τ . It

only remains to show that ‖e−ταuτ‖Lq(Ω)3 is also bounded independently of τ . To prove this, we recall the

continuous embedding H1(O) ⊂ L6(O) (see e.g. [44] Chap. II p.159) for any locally Lipchitz set O ⊂ Rd for
d = 2, 3. Using this together with Theorem 3.1 for the H1 bound on Ωf and (3.8) for the H1 bound on Ωp,
we obtain ∥∥e−ταuτ

∥∥
Lq(Ω)

≤ ‖uf,τ‖Lq(Ωf )3 +
∥∥e−ταup,τ

∥∥
Lq(Ωp)3

≤ C
(
‖∇uf,τ‖H1(Ωf )3 +

∥∥∇ (e−ταup,τ

)∥∥
H1(Ωp)3

)
≤M,

where C,M > 0 does not depend on τ . Note that, thanks to the Sobolev embedding, we require q ≤ 6 which
yield pmax = 3/2. This finally prove that Fτ is uniformly bounded in Lpdiv(Ω,Hom(R3)) and thus there exists
a subsequence (still denoted Fτ ) which converges weakly toward some F ∈ Lpdiv(Ω,Hom(R3)). From (3.10),
we get that Fτ converge weakly in L2(Ω,R3) toward

F =

{ (
ν∇uf − pf I3 − 1

2 |uf |
2I3
)

in Ωf
∇pp in Ωp.

The uniqueness of the weak limit and the Green’s formula (3.12) then shows that
∑3
j=1 Fjn weakly converge

to
∑3
j=1 Fjn in

(
W 1−1/q,q(Γp,f ,R3)

)′
which complete the proof.

Remark 3.3 (Two dimensional case). The penalized model in a two-dimensional setting is given in
Remark 2.1. One can see that all the proofs of the Theorem 2.3, 3.1, 3.2 remain the same using that(

u2∂2u1 − u2∂1u2

u1∂1u2 − u1∂2u1

)
· u = 0.

Also, the limiting Problem (3.11) is exactly the same.
Note that the first equation of Problem (3.11) gives pp ∈ H1(Ωp) since up ∈ L2(Ωp). Also, since uf ∈ Xf ,

the second equation is valid in L2(Ωf ). Now, using that up = −α−1∇p, we obtain the same interface condition
on Γp,f that have been used in [29]. Keeping both the velocity and the pressure in the porous medium, they
read:

uf · npf = up · npf ,(
ν∇uf − pf I3 −

1

2
|uf |2I3

)
npf = −ppnpf .

Let (t1, t2) be any orthonormal basis of the tangent plane to Γp,f so that one can write v = vnpf
npf +v1t1 +

v2t2 for any vector field. Projecting the interface condition according to this decomposition, one gets:(
ν∇ufnpf · npf − pf I3 − 1

2 |uf |
2I3
)

= −pp on Γp,f

(ν∇ufnpf · tj) tj = 0, j = 1, 2, on Γp,f .
(3.13)
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The variational formulation to the limit problem can be directly obtained from (3.3) by letting τ → +∞
and reads

Find (uf , pf ,up, pp) ∈ Xf × L2(Ωf )× Xp × L2(Ωp) such that

af (uf ,vf ) + bf (vf , pf ) +

∫
Ωp

αup · vp +Nf (uf ,uf ,vf ) + bp(vp, pp)

−
∫

Γp,f

(pp − pf ) npf · (vp − vf )dσ

=

∫
Ωf

f(x) · vf (x)dx+

∫
Ωp

f(x) · vp(x)dx

bf (uf , qf ) + bp(up, qp) = 0,
∀(v,vp) ∈ Xf × Xp ∀(qf , qp) ∈ L2(Ωf )× L2(Ωp).

(3.14)

The latter can be used to get some a priori estimate as well as the existence and uniqueness of (uf , pf ,up, pp).
Note also that the well-posedness of Problem (3.11)-(3.13) have been studied in [19].

Remark 3.4 (Link with Beaver-Joseph-Saffman condition). The transmission condition on the tan-
gential part of ν∇ufnpf is mentioned in [19] as a simplified form of the so-called Beavers-Joseph-Saffman
interface condition which is used when dealing with fluid-porous media interface problem (see e.g. [13, 29]).
The latter reads

∂npf
uf · tj =

CBJ√
K

(uf − up) · tj on Γp,f , (3.15)

where CBJ is a dimensionless constant depending on the structure of the porous media and K is the per-
meability of the porous media. Condition (3.15) has been mathematically justified in [35] using two-scale
convergence.

In this paper, we derive the interface fluid-porous media problem through a singular perturbation approach
where the porous media is modeled by adding the term αu in the Navier-Stokes equation, also called a penaliza-
tion model [14]. This approach allow to recover the interface fluid-porous media problem when α = K/η, as η
goes to zero, which explain why we only obtained the first order approximation of the Beavers-Joseph-Saffman
condition (3.15) in the limiting problem (3.11).

Remark 3.5 (On the computation of the order of convergence). The strongly penalized Darcy-Navier-
Stokes problem (2.3) is a singular perturbation problem. Therefore, we cannot expect to have a regular
expansion of (uτ , pτ ) as τ → +∞ that is valid everywhere on Ω since boundary layers occurs at the interface
between the fluid and the porous medium. In the context of matched asymptotic expansion (see e.g. [17])
the solution to the limit problem (3.11) can be view as the zeroth order exterior expansion and is used to
approximate the solution outside the boundary layer. Similar singular perturbation problem involving Stokes-
Brinkman interface model has been studied in [5] where the author compute boundary layer corrector as well
as the complete asymptotic expansion. Nevertheless, this paper aims at using the model (2.3) for topology
optimization to be able to look for optimal design that are porous medium. The complete asymptotic expansion
of (uτ , pτ ), as τ → +∞, is thus not needed in the present paper.

3.3. Direct extensions. We present below several direct extension that can be drawn, without addi-
tional proof, from the above analysis.

Tensorial porosity. One can easily consider α ∈ Lip(Ωp,Hom(Rd)) for d = 2, 3. The coercivity
assumption over the porous part of the domain now reads

a.e. x ∈ Ωp, α(x)t = α(x), αminId . α(x),

for αmin > 0. The latter means that the permeability tensor is symmetric and comparable to the identity
over the solid part of the domain. Note that the limiting problem (3.11) is exactly the same.
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Penalization model using Cauchy-Stress tensor. Since divu = 0, one has ∆u = div(∇u+∇uT ) =
div(2D(u)) where D(u) is the symmetric part of the Jacobian matrix of vector field x ∈ Ω 7→ u(x) ∈ Rd. As
a result, considering the trace of 2D(u)n is equivalent to considering ∂nu either in the boundary conditions
(see e.g. [16] p.4 Remark 1) or in the interface condition and we could have use div (2νe−ταD(u)) instead of
div (νe−τα∇u). It is worth noting that the above analysis remains the same thanks to the following formula∫

Ω

div
(
2νe−ταD(u)

)
· vdx =

∫
∂Ω

(
2νe−ταD(u)n

)
· vdσ − 2ν

∫
Ω

D(u) : D(v)dx,

where A : B =
∑d
i,j=1AijBij .

Extension to Stokes-Darcy model. The above analysis extends without any change to the case of
Stokes-Darcy model. The resulting penalized model is given by

−div (νe−τα∇u− pI3) + αu = f in Ω,
div(u) = 0 in Ω,

u = 0 on Γ1,
νe−τα∂nu− pn = 0 on Γ2.

(3.16)

Since we do not have to pass to the limit in the non-linear term, we obtain the following fluid-porous media
interface limit problem

∇pp + αup = f in D′(Ωp,R3),
div(up) = 0 in D′(Ωp),

−div (ν∇uf − pf I3) = f in D′(Ωf ,R3),
div(uf ) = 0 in D′(Ωf ),

uf = 0 in H1/2(Γ1 ∩ ∂Ωf ,R3),
n · up = 0 in H−1/2(Γ1 ∩ ∂Ωp),

uf · npf = up · npf in H−1/2(Γp,f ),
ν∂nuf − pfn = 0 in H−1/2(Γ2 ∩ ∂Ωf ,R3),

−pp = 0 in H1/2(Γ2 ∩ ∂Ωp),
(ν∇uf − pf I3) npf = −ppnpf in H−1/2(Γp,f ,R3),

(3.17)

where, as seen before, the above system can be written in a stronger sense than in the sense of distribution.

4. Application to topology optimization. We now work with fixed τ > 0 and we consider the
following general PDE-constrained optimization problem

(P) inf
(u,p,α)∈X×L2(Ω)×U

J (u, p, α), such that (u, p) satisfy (2.5), α ∈ Uad, (4.1)

where J is a real-valued cost functional. The set Uad ⊂ U is a set of admissible design defined thank to the
following sets

Ωf (α) = {x ∈ Ω |α(x) = 0} , Ωp(α) = {x ∈ Ω | α(x) ≥ αmin},

where αmin > 0. Note that both Ωf (α) and Ωp(α) are Lebesgue mesurable set if α ∈ L∞(Ω) since such
functions are defined almost everywhere. The set of control is then

U :=
{
α ∈ L∞(Ω) | Ω = Ωf (α) ∪ Ωp(α) and α ∈ Lip(Ωp)

}
.

Theorem 2.3 ensures the existence of solution to Problem (2.5) for any α ∈ U and thus the set of constraints is
not empty. Nevertheless, Theorem 3.2 which gives the limiting problem demands, for any α ∈ U , that Ωf (α)
and Ωp(α) are bounded open set with Lipschitz boundary because the derivation of the limiting problem
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involves the study of the interface problem (3.1). We emphasize that such a regularity on the level set of α
is hard to impose and that U as defined above is clearly not convex. To bypass these difficulties, we propose
to work with a fixed decomposition of Ω hence assuming that the location of the fluid/porous media is given.
Therefore, the set U we work with is now

U = {α ∈ L∞(Ω) | α(x) = 0 a.e x ∈ Ωf , α(x) ≥ αmin a.e x ∈ Ωp, α ∈ Lip(Ωp)} ,

where Ω = Ωp ∪ Ωf . Note that the above set is a convex subset of L∞(Ω). It is also closed with respect to
the strong topology of L∞ and thus weakly closed.

This section is now devoted to prove some existence results for the optimization problem (4.1) and to
give next first order optimality conditions.

4.1. Existence of optimal control. We show here the existence of optimal design for Problem (4.1).
Recall that for any non-linear function h on a reflexive Banach space and αn a weak-convergent sequence, one
has h(αn) ⇀ h(α0) if and only if the function is affine. Also, it is classical in PDE-constrained optimization
problem to require the state equation to be weakly continuous with respect to the each of its variable [31, 34].
We then need to consider Uad to be a strong compact of L∞(Ω) since we have to pass to the limit in terms
of the form e−τα. We give after the proof some example of set U satisfying this assumption.

Theorem 4.1. Assume that
i) J is lower-semicontinous with respect to the (weak,weak,weak∗) topology of H1(Ω)d×L2(Ω)×L∞(Ω).

ii) ∀(u, p, α) ∈ X× L2(Ω)× L∞(Ω)× U , one has J (u, p, α) > −∞.
iii) The set Uad is a closed convex bounded subset of U . It is also a strong compact of U for the L∞

norm.
Then the optimization Problem (4.1) has at least one optimal solution.

Proof. The proof is based on standard weak compactness argument for minimizing sequence and on the
continuity of the mapping α ∈ Uad 7→ (u, p) ∈ X × L2(Ω) where (u, p) is a solution to Problem (2.5). Let
(un, pn, αn) be a minimizing sequence for Problem (4.1). Since αn ∈ Uad, Theorem 2.3 show that there
exists some (un, pn) ∈ X × L2(Ω) satisfying Equation (2.5) such that ‖un‖H1(Ω)d and ‖pn‖L2(Ω) are both

uniformly bounded with respect to n. One then has a subsequence of (un, pn) which converges weakly in
H1(Ω)d×L2(Ω) toward some (u0, p0) and, thanks to (2.7), un → u0 strongly in Lp(Ω)d for 1 ≤ p ≤ 4. From
iii), we infer that αn converges strongly toward α0 ∈ Uad in L∞(Ω). Owning to this strong convergence in
L∞(Ω), we get that e−ταn → e−τα0 strongly in L∞(Ω) and, passing to the limit in the variational formulation
(2.5), we obtain that (u0, p0) is a solution to Problem (2.5) with α = α0. Assumptions i), ii) then give

J (u0, p0, α0) ≤ lim inf
n→+∞

J (un, pn, αn) = inf (P) ,

which shows that (u0, p0, α0) is a solution to Problem (4.1).
We now give some examples where the control set Uad is a strong compact of L∞. We recall that

we assumed a fixed location of fluid/porous media and now prove that iii) holds. Indeed, if αn ∈ Uad is
bounded, it is also bounded in Lip(Ωp) and vanishes on Ωf , Ascoli’s theorem then ensures that there exists
a subsequence (still denoted αn) and α0 ∈ Lip(Ωp) such that

αn → α0 strongly in L∞(Ωp), αn → 0 strongly in L∞(Ωf ).

This gives the strong convergence of αn toward some ᾱ in L∞(Ω) and the proof of Theorem 4.1 remains the
same.

Another way to get assumption iii) satisfied is to consider α that belong to some higher order Sobolev
spaces that are compactly embedded into C(Ω). Such set U are given (see e.g. [24]) by the two following
Banach spaces

U =

{
W 1,q

0 (O) ↪→↪→ C(O) if q > n
W k,q(O) ↪→ Cr,γ(O) ↪→↪→ C(O) for γ ∈ (0, 1), k − r − γ = d/q,

(4.2)
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where O ⊂ Rd is a bounded open set with Lipschitz boundary and the compactness of the last embedding
follows from Ascoli’s Theorem. As a result, one can get the required regularity by adding suitable Sobolev
norms of α in the objective functional. These additional terms can be seen as regularization terms and read
as follow

J (u, p, α) = J0(u, p) +


c1
q
‖α‖qLq(Ωp) +

c2
q
‖∇α‖qLq(Ωp) +

c3
2
‖∇α‖2L2(Ωp) ,

c1
2
‖α‖2L2(Ωp) +

c2
2
‖∇α‖2L2(Ωp) +

c3
2

d∑
i,j=1

‖∂i∂jα‖2L2(Ωp) ,
(4.3)

where c1, c2, c3 > 0 and we used r = 0, q = 2, γ = 2 − d/2 for the parameters of the second embedding to
have a Sobolev space involving integer derivatives. The main steps of the existence proof then remains the
same since, assuming that J0(u, p) > −∞, ensure that α is bounded in U and thus has a subsequence that
vanishes in Ωf and converges strongly in C(Ωp).

4.2. First order optimality condition. The next result gives some general assumptions yielding first
order optimality condition for a PDE-constrained optimization problem and can be found in [34] p. 64,
Section 5.2.

Theorem 4.2. Let U, Y, Z be Banach spaces and consider the following general nonlinear problem

min
(y,u)∈Y×U

f(y, u) subject to E(y, u) = 0, u ∈ Uad.

Assume that the following hold
1. Uad ⊂ U is non-empty and convex.
2. f : Y × U → R and E : Y × U → Z are continuously Fréchet differentiable.
3. For all u ∈ V in a neighborhood V ⊂ U of Uad, the state equation E(y, u) = 0 has a unique solution

y = y(u) ∈ Y .
4. ∂yE(y(u), u) ∈ L(Y, Z) has a bounded inverse for all u ∈ Uad.

Then, denoting f̃(u) = f(y(u), u), any local solution ū of the reduced problem

min
u∈U

f̃(u) such that u ∈ Uad,

satisfies the variational inequality 〈
∂uf̃(ū), u− ū

〉
U∗,U

≥ 0, ∀u ∈ Uad.

The reduced problem associated to (4.1) reduces to find the minimum of J1(α) = J (u(α), p(α), α) over
the closed convex set Uad. We show below that the mapping α 7→ S(α) = (u(α), p(α)) is C1 with respect to
the topology of the strong convergence and thus, assuming that J is differentiable, one get that the optimum
(ū, p̄, ᾱ) satisfies the following first order optimality condition

J ′1(ᾱ)[δα− ᾱ] ≥ 0, ∀δα ∈ Uad.

Since J1(α) = J (S(α), α), the chain rules gives

J ′1(α)[δα] = 〈∇u,pJ (S(α), α), S′(α)[δα]〉+ 〈∇αJ (S(α), α), δα〉 , (4.4)

where the brackets stand for the duality product. We emphasize that, among the assumptions of Theorem
4.2, only the inversibility of the linearized problem has to be proved.
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Derivability of the design to flow mapping. We study first the linearization of the penalized
Navier-Stokes-Darcy system. Computing the Fréchet derivative of the operator involved in Problem (2.5) at
(u, p) ∈ X× L2(Ω), we get that (w, q) is a solution to the linearization of (2.5) if it satisfies

Find (w, q) ∈ X× L2(Ω) such that

∀v ∈ X, a(w,v) +N ′(u,w,v) + b(v, q) =

∫
Ω

f(x) · v(x)dx+

∫
Γ2

ϕ · vdσ,

∀π ∈ L2(Ω), b(w, π) = 0,

(4.5)

where

N ′(u,w,v) = −
∫

Ω

e−2τα (u ·wdiv(v) + u× (∇×w) · v + w × (∇× u) · v) dx.

Integrating by parts then gives the following strong formulation of Problem (4.5)

−div
(
νe−τα∇w − qI3 − e−2ταu ·wI3

)
−e−2τα (u× (∇×w) + w × (∇× u)) + αw= f in Ω,

div(w)= 0 in Ω, (4.6)

w= 0 on Γ1,

νe−τα∂nw − (q + e−2ταu ·w)n= ϕ on Γ2.

The well-posedness of the linear Problem (4.5) can be obtained with standard method and its precise
statement depends on the regularity of (u, p) as one can see in the next result.

Theorem 4.3. Let (u, p) ∈ X×L2(Ω) and (f , ϕ) ∈ X′ ×H−1/2(Γ2,R3) be given. We have the following
i) Assume that (u, p) ∈ (X ∩ L∞(Ω))×L2(Ω) and consider the unbounded operator of X′, (L,V) defined

by

〈Lw,v〉 = 〈Aw +N ′w,v〉 = a(w,v) +N ′(u,w,v), ∀v ∈ V.

Then the spectrum of (L,V) is discrete with no accumulation point and if 0 /∈ σ(L), then Problem
(4.6) is well-posed for any ν > 0.

ii) If ν > 0 is only large enough, then Problem (4.6) is well-posed.
Proof. From the inf-sup condition (2.9), the pressure is determined as soon as the velocity is. Also,

the unicity can be obtained using standard technique since the underlying problem is linear. Note that the
velocity is a zero of the linear mapping Φ : V→ V′ defined by

〈Φ(w),v〉 := a(w,v) +N ′(u,w,v)−
∫

Ω

f(x) · v(x)dx−
∫

Γ2

ϕ · vdσ.

We detail below both cases.
i) Assume that (u, p) ∈ (X ∩ L∞(Ω)) × L2(Ω). We first prove that the spectrum of the unbounded

operator (L,V) is discrete. Using 2ab ≤ a2t+ b2t−1 for any t > 0, we obtain

〈Lw,w〉 = a(w,w) +N ′(u,w,w)

≥ νC1(αmin,Ω) ‖u‖2H1(Ω) −
∫

Ω

e−2ταu× (∇×w) ·wdx

≥ (νC1(αmin,Ω)− ‖u‖L∞(Ω)

t

2
) ‖w‖2H1(Ω) − ‖u‖L∞(Ω)

1

2t
‖w‖2L2(Ω)3 ,

where t > 0 is small enough to ensure that

(νC1(αmin,Ω)− ‖u‖L∞(Ω) t/2) > νC1(αmin,Ω)/2.
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Therefore, using Lax-Milgram lemma, the operator (L + λI) is invertible with a continuous inverse if λ > 0
is large enough. This shows that the resolvent set of (L,V) is non-empty. Since the embedding V ↪→ X′ is
compact, one has that the resolvent of (L,V) is compact and thus its spectrum is discrete with no accumulation
point. Remark now that if 0 /∈ σ(L) then, for all ν > 0, there exists a unique w ∈ V such that Lw = f for
any f ∈ X′. This gives 〈Φ(w),v〉 = 0 for all v ∈ V and thus the existence and uniqueness of w.

ii) Due to the lack of regularity of (u, p), we cannot get a Garding inequality for the operator L as above.
Instead, to get a bound on N ′(u,w,w), we split

∫
Ω

using that Ω = Ωf ∪ Ωp and apply Holder inequality∣∣∣∣∫
Ω

e−2ταu× (∇×w) ·wdx
∣∣∣∣ ≤ C(Ω)

(
e−αmin ‖∇wp‖2L2(Ωp)

∥∥e−τα∇up

∥∥
L2(Ωp)

)
+ C(Ω)

(
‖∇wf‖2L2(Ωf ) ‖∇uf‖L2(Ωf )

)
.

Using Young inequality, we then infer that Φ satisfies a Garding inequality if ν > 0 is large enough owning
to Theorem 3.1. The existence is then proved as in ii) and the unicity holds for large enough ν > 0.

Remark 4.4. Theorem 4.3 giving the well-posedness of the linearized Problem (4.5) can be extended for
non vanishing divergence as well (see e.g. [7, 42] for Stokes and Navier-Stokes equations). To handle such
case, consider the following orthogonal decomposition

X = V⊕ V⊥, (4.7)

and the associated projectors P0 : X → V, P⊥ : X → V⊥. Projecting Problem (4.5) according to the
decomposition (4.7) then gives the following equivalent system

b(P⊥w, q) = (g, q)L2(Ω) , ∀q ∈ L2(Ω),

a(P0w,v0) +N ′(u, P0w,v0) = 〈f ,v0〉 , ∀v0 ∈ V,
b(v, p) + a(P0w + P⊥w,v) +N ′(u, P0w + P⊥w,v) = 〈f ,v〉 , ∀v ∈ X,

(4.8)

Note that the second equation of (4.8) is well-posed as soon as any assumption of Theorem 4.3 hold. This gives
the existence and uniqueness of P0w. Now, let B : X → L2(Ω) be the operator defined by 〈Bu, q〉 = b(u, q).
The inf-sup condition (2.9) with Lemma 4.1 p.58 [28] then ensures that the first and last equations of (4.8)
are well-posed and thus the linearized problem (4.5) with non-homogeneous divergence is well-posed under the
same assumptions as those of Theorem 4.3.

We can now apply the implicit function theorem to get some smoothness of the design-to-flow mapping.
Theorem 4.5. Let β ∈ U and (u(β), p(β)) ∈ X × L2(Ω) be a solution to Problem (2.5) with α =

β. Assume that Problem (4.6) is well-posed (see Theorem 4.3). Then there exists an open neighborhood
O(u)×O(p) ⊂ X× L2(Ω) , an open neighborhood O(β) ⊂ U and a C1 mapping

S : α ∈ O(β) 7→ (u(α), p(α)) ∈ O(u)×O(p),

where (u(α), p(α)) satisfy Problem (2.5).

First order optimality condition and adjoint model. We now use Theorems 4.2,4.3,4.5 to get the
first order optimality condition involving the adjoint model. This technique is standard and can be found for
instance in [34] Corollary 5.2.4 p. 66.

Recall first that S(α) = (u(α), p(α)) satisfying Problem (2.5) are also solution to F (u, p, α) = 0 where
F : X× L2(Ω)× Uad 7→ X′ × L2(Ω) is defined by

〈F (u, p, α), (v, q)〉 = a(u,v) +N(u,u,v) + b(v, p) + b(u, q)−
∫

Ω

f(x) · v(x)dx−
∫

Γ2

ϕ · vdσ.

The implicit function theorem then gives that

S′(α)[δα] = −
(
∂(u,p)F (u(α), p(α), α)

)−1 ◦ ∂αF (u(α), p(α), α)[δα], (4.9)
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where ∂. is the Fréchet derivative with respect to the subscripted variable. Using now (4.4), we obtain the
derivative of J1(α) = J (S(α), α) at any α ∈ Uad

J ′1(α)[δα] =
〈
∇(u,p)J (S(α), α), S′(α)[δα]

〉
+ 〈∇αJ (S(α), α), δα〉

= 〈∇αJ (S(α), α), δα〉 − (4.10)〈(
∂(u,p)F (S(α), α)

)−∗∇(u,p)J (S(α), α), ∂αF (S(α), α)[δα]
〉
,

where the .−∗ denotes the adjoint of the inverse of the linear operator ∂(u,p)F (S(α), α).
Let (ū, p̄, ᾱ) ∈ X× L2(Ω)× Uad be a solution to the optimal control problem (4.1). Since Uad is convex,

one has that optimal solution satisfies

J ′1(ᾱ)[δα− ᾱ] ≥ 0, ∀δα ∈ Uad, (4.11)

where the derivative of J1 is given in (4.10) and involves the resolution of the so-called adjoint problem

Find (w, q) ∈ X× L2(Ω) such that

∀v ∈ X, a(v,w) +N ′(u,v,w) + b(v, q) =

∫
Ω

f(x) · v(x)dx+

∫
Γ2

ϕ · vdσ,

∀π ∈ L2(Ω), b(w, π) = −(ga, π)L2(Ω),

(4.12)

which is the variational formulation to the Problem

−div
(
νe−τα∇w − qI3

)
+∇×

(
e−2ταu×w

)
−e−2τα (udiv w +∇× u×w) + αw= fa in Ω,

div(w)= ga in Ω, (4.13)

w= 0 on Γ1,

νe−τα∂nw − (qn + e−2ταn× (u×w))= ϕa on Γ2.

The well-posedness of the adjoint equation (4.12) can be proved similarly as Theorem 4.3. For non-
homogeneous divergence, this can be done as in Remark 4.4.

Now assume that the derivative of the cost functional can be written as

〈∂uJ (u, p, α), δu〉 = 〈∂uJΩ(u, p, α), δu〉X∗×X + 〈∂uJΓ(u, p, α), δu〉H−1/2×H1/2 ,

〈∂pJ (u, p, α), δp〉 = (∂pJ (u, p, α), δp)L2(Ω) ,

where (∂uJΩ(ū, p̄, ᾱ), ∂uJΓ(ū, p̄, ᾱ)) ∈ X∗ ×H−1/2(Γ2,R3). The first order optimality condition (4.11) can
finally be recast as follow

(ū, p̄) ∈ X× L2(Ω) satisfy (2.5),

(w̄, q̄) ∈ X× L2(Ω) satisfy (4.13) with div w̄ = ga, (4.14)

where ga = ∂pJ (ū, p̄, ᾱ) and (fa, ϕa) = (∂uJΩ(ū, p̄, ᾱ), ∂uJΓ(ū, p̄, ᾱ)) ,

(∂αJ (ū, p̄, ᾱ)− ∂αa(ū, w̄)− ∂αN(u,u,w)) [ᾱ− δα] ≥ 0, ∀δα ∈ Uad,

with

∂αa(u,w)[δα] = ν

d∑
j=1

∫
Ω

(−τδα)e−τα∇uj · ∇vjdx+

∫
Ω

δαu · vdx

∂αN(u,u,w)[δα] = τ

∫
Ω

(
e−2τα|u|2div(w) + 2e−2ταu× (∇× u) ·w

)
δαdx.
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We finally emphasize that the first order optimality conditions (4.14) correspond to the standard adjoint
method (see e.g. [34] Corollary 5.2.4).

Remark 4.6 (Derivatives of J with regularization terms). We give here the derivative of the cost
functional (4.3) involving regularization terms which ensures that α belong to a strong compact of L∞(Ω).

In the case where J1(α) = c1
q ‖α‖

q
Lq(Ωp) + c2

q ‖∇α‖
q
Lq(Ωp) + c3

2 ‖∇α‖
2
L2(Ωp) for α ∈W 1,q

0 (Ωp) with q > d, one

has ∀δα ∈W 1,q
0 (Ωp),

∂αJ1(α)[δα] =

∫
Ωp

c1|α|q−2αδα+ c2|∇α|q−2∇α · ∇δα+ c3∇α · ∇δαdx

= −
∫

Ωp

(
div((c3 + c2|∇α|q−2)∇α)− c1|α|q−2α

)
δα dx.

Therefore we end up with solving a nonlinear coercive elliptic problem involving the q-Laplacian.
In the case J1(α) = c1

2 ‖α‖
2
L2(Ωp) + c2

2 ‖∇α‖
2
L2(Ωp) + c3

2

∑d
i,j=1 ‖∂i∂jα‖

2
L2(Ωp) with α ∈ H2

0 (Ωp) we get

∀δα ∈ H2
0 (Ωp), ∂αJ1(α)[δα] =

∫
Ωp

(
c1α− c2∆α+ c3∆2α

)
δα.

We then need to solve a fourth order problem.

5. Numerical illustration: Velocity tracking. In this section, we wish to give an illustration of the
penalized Navier-Stokes-Darcy model applied to topology optimization. We would like to emphasize that the
goal of this section is to show some numerical illustration and thus we do not intend to prove that all the
algorithms and discretization used converges. Nevertheless, the convergence of finite element method applied
to the penalized Stokes-Darcy model can be deduced from [28] since both problems have a coercive principal
part. Having this in mind, we are going to use FreeFEM ++[32].

Let Ω = [0, 1]× [0, 2] be an enclosure where air flows comes from the left of the room with a given velocity
u0 = (1, 0). The velocity and pressure of air in the room then satisfy a steady state Stokes equation with
inhomogeneous Dirichlet boundary condition. We are interested in finding the location of a Darcy porous
medium with porosity α such that the following velocity-tracking cost functional is minimized

J (α) =
1

2

∫
Ω

|u− ud|2dx

where ud = (1, 0), ub = (1, 0). We chose to take into account the porous media with the following penalized
Stokes-Darcy model 

−div (νe−τα∇u− pI3) + αu = 0 in Ω,
div(u) = 0 in Ω,

u = u0 on {0} × [0, 1],
u = 0 on [0, 2]× ({0} ∪ {1}) ,

νe−τα∂nu− pn = 0 on {2} × [0, 1].

(5.1)

The velocity-tracking optimisation problem is now given as

min
(u,p,α)∈X×L2(Ω)×U

J (α), (u, p) satisfies (5.1), α ∈ Uad, (5.2)

where the set Uad is defined below

Uad = {α ∈ L∞(Ω) | α(x) = 0 or α(x) ≥ αmin} .
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We are going to need the adjoint equation associated to problem (5.2). The latter can be obtained from
(4.13) and reads here 

−div (νe−τα∇v − qI3) + αv = f in Ω,
div(v) = 0 in Ω,

v = 0 on {0} × [0, 1],
v = 0 on [0, 2]× ({0} ∪ {1}) ,

νe−τα∂nv − qn = 0 on {2} × [0, 1],

(5.3)

where f = −(u− ud).
The variational formulation of the direct and adjoint problems can be respectively found in Equations

(2.5) and (4.12) setting N = N ′ = 0. The finite element discretisation is done with a regular mesh composed
of triangles build from a uniform n × n grid. Both direct and adjoint states are computed with P2 finite
element for the velocity fields and P1 for pressure. The porosity fields α is sought in P0 and is thus a piecewise
constant function.

The optimization problem (5.2) is now solved with a steepest descent algorithm. The derivative of J
with respect to α can be computed thanks to (4.10) (see also (4.14)) which is actually the standard adjoint
algorithm for PDE-constrained optimization problem [33, 39].

Algorithm 1:
1. α = 0 ∈ P0 is given.
2. Compute (uh, ph) ∈ P2 × P1 satisfying Problem (5.1).
3. Compute (vh, qh) ∈ P2 × P1 satisfying the adjoint problem (5.3).
4. Update the porosity thanks to the optimality condition (4.14)

β = max

0, α− λΠh

−ντe−τα
d∑
j=1

(∇uj,h · ∇vj,h) + uh · vh

 ,

α = max {αmin, β}χ(β>0)

where Πh : L2(Ω) → P0 is the finite element projector and the max has to be understood on each
cell of the mesh. Also, χ(β>0) is defined on each cell of the mesh and return zero if β = 0 and the
value of β if β > 0.

5. Return to Step 2.
Remark 5.1. We use the Crout solver to solve both direct and adjoint problem. The latter needs every

sub-matrices to be invertible and we thus add the term επ, π = p, q, in the incompressibility condition of both
direct and adjoint problems. The convergence, as ε→ 0, of the solution to the discrete perturbed problems to
the solution of the discrete original one is of the order of ε aas proved in [43]. The analysis can be extended
for our penalized Navier-Stokes-Darcy model since both problem share the same mathematical structure.

The following parameters are used in the numerical simulations

αmin = 10, ν = 1, τ = 10, n = 100, λ = 10, niter = 1500, ε = 0.000001.

We chose ν = 1 since we work with Stokes equation that can be used as a model for fluid flow at low Reynolds
number. We emphasize that we run Algorithm 1 with 1500 iterations since, as we show below in Figure 5.1
the values of the cost functional are stationary, when rounding up to four digits, before reaching the end of
iterates. Values of the cost function without porous medium embedded in Ω is J = 0.1801 and after 1500
iterations is J = 0.0043 hence reducing the initial value of the cost function by a factor 42.

We represent in Figure 5.2 the velocity field when no porosity is embedded in Ω and in Figure 5.3 after
1500 iteration of the steepest descent algorithm. The optimal porosity design can be found in Figure 5.4.
Note that most of the porous media is added at the outlet of the room. This can be explained by the fact
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Fig. 5.1. Value of cost functions over iteration.

Fig. 5.2. Velocity fields without porosity. Left: u1, Right: u2.

that we impose u0 = (1, 0) = ud at the entrance. Finally, we represent the term exp(−τα) in Figure 5.4.
This clearly shows where the the porous media is located. Note that, when α > 0, exp(−τα) numerically
vanished and so the penalized model (5.1) is actually the Darcy model for porous media. As a result, we
have the Stokes model inside the blue zone and the Darcy model inside the red zones.

6. Conclusions and Perspectives. This paper proposed a penalization model for the Navier-Stokes-
Darcy system and its application to topology optimization problems. The main advantage of this approach
is that one can use the porosity as optimization parameter and thus find optimal design that are porous
medium. We first prove that we recover the standard Navier-Stokes-Darcy model as the weak-limit of our
penalization model. We then gave necessary condition on both the control set and the cost functional to have
at least one optimal solution. We also derive the first order optimality condition and finally end this paper
with some numerical simulations, on Stokes flow, to show the interest of the approach.

A first perspective is to perform more intensive numerical simulation of the penalized Navier-Stokes-Darcy
model applied to topology optimization. Indeed, we used in this paper one of the simplest optimization al-
gorithm (steepest descent) and this could be worth using, for instance, Newton method. Also, we emphasize
that, at the continuous level, one needs the porosity to belong to a strong compact of L∞ to get at least
on optimal design and we thus propose to add some regularization terms (see Remark 4.6) that were not
considered in the numerical simulation. The impact of those terms on the optimal design could be studied as
well. Another perspective could be to consider other methods for solving both primal and adjoint problem.
For instance, domain decomposition methods should be more suitable to handle the heterogeneous nature of
the fluid-porous media transmission problem.
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Fig. 5.3. Velocity fields after optimization. Left: u1, Right: u2.

Fig. 5.4. α after 1500 iteration. Left: α, Right: exp(−τα).

Error estimates for the numerical approximation of the optimality condition could also be investigated for
finite element or finite volume method. Such analysis has already been carried out for finite element ap-
proximation of distributed control problem for Navier-Stokes equation [15, 30]. Convergence of finite volume
method has been proved in [21] for a control problem in linear conduction coefficient. All of these previous
works can serve as a basis to handle the case of topology optimization with our penalized model.
Another possible future work is linked to the topological asymptotic expansion [2, 3] which compute the
so-called topological derivative as the first order term in the asymptotic expansion of the solution to PDE in
domain with hole with vanishing size. An idea could be to replace the hole by a porous medium with a given
permeability and compute the asymptotic expansion of the solution to the fluid-porous medium transmission
problem as the characteristic size of the porous medium goes to zero.
A last direction for future work is related to the derivation of similar penalization model for other modeling
of porous media (see e.g. [20]). For instance the Brinkman model [5] involves a second order term, with
an effective viscosity, in the porous medium and can be used to account high porosity of the porous media.
Another example is the Forchheimer model [14] whose model involves an additional non-linear term inside
the porous media to deal with microscopic inertial effects. The case of time-dependent model is also an
interesting continuation of the present work.
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