C. De-la, B. Sierra, G. Kouri, and M. G. Guzman, Race: a risk factor for dengue hemorrhagic fever, Arch Virol, vol.152, pp.533-575, 2007.

M. G. Guzman, S. B. Halstead, and H. Artsob, Dengue: a continuing global threat, Nat Rev Microbiol, vol.8, pp.7-16, 2010.

L. L. Coffey, E. Mertens, and A. C. Brehin, Human genetic determinants of dengue virus susceptibility. Microbes and infection, Institut Pasteur, vol.11, pp.143-56, 2009.

R. F. Chen, L. Wang, and J. T. Cheng, Combination of CTLA-4 and TGFbeta1 gene polymorphisms associated with dengue hemorrhagic fever and virus load in a dengue-2 outbreak, Clin Immunol, vol.131, pp.404-413, 2009.

M. T. Fernandez-mestre, K. Gendzekhadze, P. Rivas-vetencourt, and Z. Layrisse, TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients, Tissue Antigens, vol.64, pp.469-72, 2004.

H. Loke, D. Bethell, and C. X. Phuong, Susceptibility to dengue hemorrhagic fever in vietnam: evidence of an association with variation in the vitamin d receptor and Fc gamma receptor IIa genes, Am J Trop Med Hyg, vol.67, pp.102-108, 2002.

J. R. Polizel, D. Bueno, and J. E. Visentainer, Association of human leukocyte antigen DQ1 and dengue fever in a white Southern Brazilian population, Mem Inst Oswaldo Cruz, vol.99, pp.559-62, 2004.

A. Sakuntabhai, C. Turbpaiboon, and I. Casademont, A variant in the CD209 promoter is associated with severity of dengue disease, Nat Genet, vol.37, pp.507-520, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00177402

I. Zivna, S. Green, and D. W. Vaughn, T cell responses to an HLA-B*07-restricted epitope on the dengue NS3 protein correlate with disease severity, J Immunol, vol.168, pp.5959-65, 2002.

C. C. Khor, T. N. Chau, and J. Pang, Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1, Nat Genet, vol.43, pp.1139-1180, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02069107

R. H. Silverman, Viral encounters with 2?,5?-oligoadenylate synthetase and RNase L during the interferon antiviral response, J Virol, vol.81, pp.12720-12729, 2007.

U. Y. Choi, J. S. Kang, Y. S. Hwang, and Y. J. Kim, Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases, Exp Mol Med, vol.47, p.144, 2015.

H. Kristiansen, H. H. Gad, S. Eskildsen-larsen, P. Despres, and R. Hartmann, The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities, J Interferon Cytokine Res, vol.31, pp.41-48, 2011.

V. Hornung, R. Hartmann, A. Ablasser, and K. P. Hopfner, OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids, Nat Rev Immunol, vol.14, pp.521-529, 2014.

T. Mashimo, M. Lucas, and D. Simon-chazottes, A nonsense mutation in the gene encoding 2?-5?-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice, Proc Natl Acad Sci U S A, vol.99, pp.11311-11317, 2002.

R. J. Lin, H. P. Yu, B. L. Chang, W. C. Tang, C. L. Liao et al., Distinct antiviral roles for human 2?,5?-oligoadenylate synthetase family members against dengue virus infection, J Immunol, vol.183, pp.8035-8078, 2009.

J. K. Lim, A. Lisco, and D. H. Mcdermott, Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man, PLoS Pathog, vol.5, p.1000321, 2009.

I. Yakub, K. M. Lillibridge, and A. Moran, Single nucleotide polymorphisms in genes for 2?-5?-oligoadenylate synthetase and RNase L inpatients hospitalized with West Nile virus infection, J Infect Dis, vol.192, pp.1741-1749, 2005.

I. H. Haralambieva, I. G. Ovsyannikova, and B. J. Umlauf, Genetic polymorphisms in host antiviral genes: associations with humoral and cellular immunity to measles vaccine, Vaccine, vol.29, pp.8988-97, 2011.

S. Knapp, L. J. Yee, and A. J. Frodsham, Polymorphisms in interferoninduced genes and the outcome of hepatitis C virus infection: roles of MxA, OAS-1 and PKR, Genes Immun, vol.4, pp.411-420, 2003.

A. C. Brehin, I. Casademont, M. P. Frenkiel, C. Julier, A. Sakuntabhai et al., The large form of human 2?,5?-Oligoadenylate Synthetase (OAS3) exerts antiviral effect against Chikungunya virus, Virology, vol.384, pp.216-238, 2009.

J. Chebath, P. Benech, M. Revel, and M. Vigneron, Constitutive expression of (2?-5?) oligo A synthetase confers resistance to picornavirus infection, Nature, vol.330, pp.587-595, 1987.

I. Marie, D. Rebouillat, and A. G. Hovanessian, The expression of both domains of the 69/71 kDa 2?,5? oligoadenylate synthetase generates a catalytically active enzyme and mediates an anti-viral response, Eur J Biochem, vol.262, pp.155-65, 1999.

J. Marques, J. Anwar, and S. Eskildsen-larsen, The p59 oligoadenylate synthetase-like protein possesses antiviral activity that requires the C-terminal ubiquitin-like domain, J Gen Virol, vol.89, pp.2767-72, 2008.

K. Alagarasu, T. Honap, I. M. Damle, A. P. Mulay, P. S. Shah et al., Polymorphisms in the oligoadenylate synthetase gene cluster and its association with clinical outcomes of dengue virus infection, Infect Genet Evol, vol.14, pp.390-395, 2013.

, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition, 2009.

, Dengue hemorrhagic fever: diagnosis, treatment, prevention and control, 1997.

Y. L. Lin, C. L. Liao, and L. K. Chen, Study of Dengue virus infection in SCID mice engrafted with human K562 cells, J Virol, vol.72, pp.9729-9766, 1998.

L. Excoffier, G. Laval, and S. Schneider, Arlequin (version 3.0): an integrated software package for population genetics data analysis, Evol Bioinform Online, vol.1, pp.47-50, 2005.

, High Anti-DENV Activity of the OAS Gene Family ? JID, vol.2015, p.212, 2019.

J. R. Bravo, M. G. Guzman, and G. P. Kouri, Why dengue haemorrhagic fever in Cuba? 1. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS), Trans R Soc Trop Med Hyg, vol.81, pp.816-836, 1987.

M. G. Guzman, G. P. Kouri, J. Bravo, M. Soler, S. Vazquez et al., Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study, Am J Trop Med Hyg, vol.42, pp.179-84, 1990.

K. C. Shekhar and O. L. Huat, Epidemiology of dengue/dengue hemorrhagic fever in Malaysia-a retrospective epidemiological study. 1973-1987. Part II: Dengue fever (DF), Asia Pac J Public Health, vol.6, pp.126-159, 1992.

K. C. Shekhar and O. L. Huat, Epidemiology of dengue/dengue hemorrhagic fever in Malaysia-a retrospective epidemiological study 1973-1987. Part I: Dengue hemorrhagic fever (DHF), Asia Pac J Public Health, vol.6, pp.15-25, 1992.

V. Bonnevie-nielsen, L. L. Field, and S. Lu, Variation in antiviral 2?,5?-oligoadenylate synthetase (2?5?AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene, Am J Hum Genet, vol.76, pp.623-656, 2005.

J. Donovan, M. Dufner, and A. Korennykh, Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1, Proc Natl Acad Sci U S A, vol.110, pp.1652-1659, 2013.

R. Kodym, E. Kodym, and M. D. Story, 2?-5?-Oligoadenylate synthetase is activated by a specific RNA sequence motif, Bioch:em Biophys Res Commun, vol.388, pp.317-339, 2009.

P. Luthra, D. Sun, R. H. Silverman, and B. He, Activation of IFN-β expression by a viral mRNA through RNase L and MDA5, Proc Natl Acad Sci U S A, vol.108, pp.2118-2141, 2011.

K. Malathi, B. Dong, M. Gale, and R. H. Silverman, Small self-RNA generated by RNase L amplifies antiviral innate immunity, Nature, vol.448, pp.816-825, 2007.

L. Gitlin, W. Barchet, and S. Gilfillan, Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus, Proc Natl Acad Sci, vol.103, pp.8459-64, 2006.

B. E. Martina, P. Koraka, and A. D. Osterhaus, Dengue virus pathogenesis: an integrated view, Clin Microbiol Rev, vol.22, pp.564-81, 2009.

A. L. Rothman, Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms, Nat Rev Immunol, vol.11, pp.532-575, 2011.

R. F. Chen, J. W. Liu, and W. T. Yeh, Altered T helper 1 reaction but not increase of virus load in patients with dengue hemorrhagic fever, FEMS Immunol Med Microbiol, vol.44, pp.43-50, 2005.

T. M. Sudiro, J. Zivny, and H. Ishiko, Analysis of plasma viral RNA levels during acute dengue virus infection using quantitative competitor reverse transcription-polymerase chain reaction, J Med Virol, vol.63, pp.29-34, 2001.

D. W. Vaughn, S. Green, and S. Kalayanarooj, Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity, J Infect Dis, vol.181, pp.2-9, 2000.

W. K. Wang, D. Y. Chao, and C. L. Kao, High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis, Virology, vol.305, pp.330-338, 2003.

D. Gonzalez, O. E. Castro, and G. Kouri, Classical dengue hemorrhagic fever resulting from two dengue infections spaced 20 years or more apart: Havana, dengue 3 epidemic, Int J Infect Dis, vol.9, pp.280-285, 2001.

S. B. Halstead, T. G. Streit, and J. G. Lafontant, Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission, Am J Trop Med Hyg, vol.65, pp.180-183, 2001.