, Available: http://www. who.int/campaigns/world-health-day, WHO | About vector-borne diseases. In: WHO [Internet]. [cited 15, 2014.

K. Tsetsarkin, D. Vanlandingham, C. Mcgee, and S. Higgs, A Single Mutation in Chikungunya Virus Affects Vector Specificity and Epidemic Potential, PLoS Pathogens, vol.1, issue.12, p.18069894, 2007.
DOI : 10.1371/journal.ppat.0030201.st002

K. Tsetsarkin and S. Weaver, Sequential Adaptive Mutations Enhance Efficient Vector Switching by Chikungunya Virus and Its Epidemic Emergence, PLoS Pathogens, vol.344, issue.7877, p.22174678, 2011.
DOI : 10.1371/journal.ppat.1002412.s006

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1002412&type=printable

X. De-lamballerie, E. Leroy, R. Charrel, K. Ttsetsarkin, S. Higgs et al., Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come?, Virology Journal, vol.5, issue.1, p.18304328, 2008.
DOI : 10.1186/1743-422X-5-33

R. Angelini, A. Finarelli, P. Angelini, C. Po, K. Petropulacos et al., Chikungunya in north-eastern Italy: a summing up of the outbreak, Weekly releases (1997???2007), vol.12, issue.47, pp.71122-71124, 2007.
DOI : 10.2807/esw.12.47.03313-en

L. Ruche, G. Souarès, Y. Armengaud, A. Peloux-petiot, F. Delaunay et al., First two autochthonous dengue virus infections in metropolitan France, Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull, vol.15, 2010.

I. Leparc-goffart, A. Nougairede, S. Cassadou, C. Prat, and X. De-lamballerie, Chikungunya in the Americas, The Lancet, vol.383, issue.9916, pp.514-524, 2014.
DOI : 10.1016/S0140-6736(14)60185-9

URL : https://hal.archives-ouvertes.fr/hal-01213833

W. Chikungunya and ?. France, WHO [Internet]. [cited 15, 2014.

M. Bonizzoni, G. Gasperi, X. Chen, and A. James, The invasive mosquito species Aedes albopictus: current knowledge and future perspectives, Trends in Parasitology, vol.29, issue.9, pp.460-468, 2013.
DOI : 10.1016/j.pt.2013.07.003

M. Benedict, R. Levine, W. Hawley, and L. Lounibos, Vector-Borne and Zoonotic Diseases, vol.7, issue.1, pp.76-85, 2007.
DOI : 10.1089/vbz.2006.0562

J. David, E. Coissac, C. Melodelima, R. Poupardin, M. Riaz et al., Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology, BMC Genomics, vol.11, issue.1, p.20356352, 2010.
DOI : 10.1186/1471-2164-11-216

M. Christodoulou, Biological vector control of mosquito-borne diseases, The Lancet Infectious Diseases, vol.11, issue.2, pp.84-85, 2011.
DOI : 10.1016/S1473-3099(11)70017-2

B. Slatko, A. Luck, S. Dobson, and J. Foster,

, Mol Biochem Parasitol, vol.195, pp.88-95, 2014.

G. Bian, D. Joshi, Y. Dong, P. Lu, G. Zhou et al., Wolbachia Invades Anopheles stephensi Populations and Induces Refractoriness to Plasmodium Infection, Science, vol.283, issue.6, pp.748-751, 2013.
DOI : 10.1074/jbc.M705873200

F. Frentiu, T. Zakir, T. Walker, J. Popovici, A. Pyke et al., Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia, PLoS Neglected Tropical Diseases, vol.87, issue.2, p.24587459, 2014.
DOI : 10.1371/journal.pntd.0002688.s002

URL : https://doi.org/10.1371/journal.pntd.0002688

R. Zug and P. Hammerstein, Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected, PLoS ONE, vol.176, issue.6, p.22685581, 2012.
DOI : 10.1371/journal.pone.0038544.t001

J. Werren, L. Baldo, and M. Clark, Wolbachia: master manipulators of invertebrate biology, Nature Reviews Microbiology, vol.12, issue.10, pp.741-751, 2008.
DOI : 10.1099/ijs.0.64515-0

G. Bian, Y. Xu, P. Lu, Y. Xie, and Z. Xi, The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti, PLoS Pathogens, vol.17, issue.4, p.20368968, 2010.
DOI : 10.1371/journal.ppat.1000833.s001

URL : https://doi.org/10.1371/journal.ppat.1000833

L. Moreira, I. Iturbe-ormaetxe, J. Jeffery, G. Lu, A. Pyke et al., A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium, Cell, vol.139, issue.7, pp.1268-1278, 2009.
DOI : 10.1016/j.cell.2009.11.042

URL : https://doi.org/10.1016/j.cell.2009.11.042

A. Van-den-hurk, S. Hall-mendelin, A. Pyke, F. Frentiu, K. Mcelroy et al., Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti, PLoS Neglected Tropical Diseases, vol.5, issue.11, p.23133693, 2012.
DOI : 10.1371/journal.pntd.0001892.t002

M. Hussain, G. Lu, S. Torres, J. Edmonds, B. Kay et al., Effect of Wolbachia on Replication of West Nile Virus in a Mosquito Cell Line and Adult Mosquitoes, Journal of Virology, vol.87, issue.2, pp.851-858, 2013.
DOI : 10.1128/JVI.01837-12

F. Zélé, A. Nicot, A. Berthomieu, M. Weill, O. Duron et al., Wolbachia increases susceptibility to Plasmodium infection in a natural system, Proceedings of the Royal Society B: Biological Sciences, vol.177, issue.4, p.24500167, 2014.
DOI : 10.1086/659002

K. Zouache, D. Voronin, V. Tran-van, L. Mousson, A. Failloux et al., Persistent Wolbachia and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the Mosquito Vector Aedes albopictus, PLoS ONE, vol.71, issue.1546, 2009.
DOI : 10.1371/journal.pone.0006388.s001

URL : https://hal.archives-ouvertes.fr/pasteur-01681435

K. Zouache, F. Raharimalala, V. Raquin, V. Tran-van, L. Raveloson et al., Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar, FEMS Microbiology Ecology, vol.4, issue.3, pp.377-389, 2011.
DOI : 10.1371/journal.pone.0006388

URL : https://hal.archives-ouvertes.fr/halsde-00724643

L. Mousson, K. Zouache, C. Arias-goeta, V. Raquin, P. Mavingui et al., The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in Aedes albopictus, PLoS Neglected Tropical Diseases, vol.185, issue.12, p.23301109, 2012.
DOI : 10.1371/journal.pntd.0001989.g006

URL : https://hal.archives-ouvertes.fr/pasteur-01680937

L. Mousson, E. Martin, K. Zouache, Y. Madec, P. Mavingui et al., Molecular Ecology, vol.75, issue.9, pp.1953-1964, 2010.
DOI : 10.1590/S0074-02762009000400017

E. Caragata, E. Rancès, L. Hedges, A. Gofton, K. Johnson et al., Dietary Cholesterol Modulates Pathogen Blocking by Wolbachia, PLoS Pathogens, vol.19, issue.6, p.23825950, 2013.
DOI : 10.1371/journal.ppat.1003459.s003

E. Caragata, E. Rancès, O. Neill, S. Mcgraw, and E. , Competition for Amino Acids Between Wolbachia and the Mosquito Host, Aedes aegypti, Microbial Ecology, vol.68, issue.1, pp.205-218, 2014.
DOI : 10.1128/MMBR.68.4.745-770.2004

D. Voronin, D. Cook, A. Steven, and M. Taylor, Autophagy regulates Wolbachia populations across diverse symbiotic associations, Proceedings of the National Academy of Sciences, vol.135, issue.1, pp.1638-1646, 2012.
DOI : 10.1016/j.molbiopara.2004.01.006

L. Brennan, B. Keddie, H. Braig, and H. Harris, The Endosymbiont Wolbachia pipientis Induces the Expression of Host Antioxidant Proteins in an Aedes albopictus Cell Line, PLoS ONE, vol.279, issue.5, p.18461124, 2008.
DOI : 10.1371/journal.pone.0002083.t001

M. Hussain, F. Frentiu, L. Moreira, O. Neill, S. Asgari et al., Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti, Proceedings of the National Academy of Sciences, vol.180, issue.9, pp.9250-9255, 2011.
DOI : 10.1093/bioinformatics/19.2.185

E. Rancès, Y. Ye, M. Woolfit, E. Mcgraw, O. Neill et al., The relative importance of innate immune priming in Wolbachia-mediated dengue interference, PLoS Pathog, vol.8, p.22383881, 2012.

M. Hussain, O. Neill, S. Asgari, and S. , by manipulating the host microRNAs, RNA Biology, vol.3, issue.12, pp.1868-1875, 2013.
DOI : 10.4161/rna.4.2.4640

G. Hughes, X. Ren, J. Ramirez, J. Sakamoto, J. Bailey et al., Wolbachia Infections in Anopheles gambiae Cells: Transcriptomic Characterization of a Novel Host-Symbiont Interaction, PLoS Pathogens, vol.6, issue.2, p.21379333, 2011.
DOI : 10.1371/journal.ppat.1001296.s004

F. Frentiu, J. Robinson, P. Young, E. Mcgraw, O. Neill et al., Wolbachia-Mediated Resistance to Dengue Virus Infection and Death at the Cellular Level, PLoS ONE, vol.30, issue.10, p.20976219, 2010.
DOI : 10.1371/journal.pone.0013398.g003

URL : https://doi.org/10.1371/journal.pone.0013398

O. Neill, S. Pettigrew, M. Sinkins, S. Braig, H. Andreadis et al., In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line, Insect Molecular Biology, vol.6, issue.1, pp.33-39, 1997.
DOI : 10.1046/j.1365-2583.1997.00157.x

I. Schuffenecker, I. Iteman, A. Michault, S. Murri, L. Frangeul et al., Genome Microevolution of Chikungunya Viruses Causing the Indian Ocean Outbreak, PLoS Medicine, vol.105, issue.7, p.16700631, 2006.
DOI : 10.1371/journal.pmed.0030263.st005

URL : https://hal.archives-ouvertes.fr/pasteur-01659363

M. Dubrulle, L. Mousson, S. Moutailler, M. Vazeille, and A. Failloux, Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection, PLoS ONE, vol.4, issue.6, 2009.
DOI : 10.1371/journal.pone.0005895.g005

URL : https://hal.archives-ouvertes.fr/pasteur-00395262

A. Payne, I. Binduga-gajewska, E. Kauffman, and L. Kramer, Quantitation of flaviviruses by fluorescent focus assay, Journal of Virological Methods, vol.134, issue.1-2, pp.183-189, 2006.
DOI : 10.1016/j.jviromet.2006.01.003

C. Venard, P. Crain, and S. Dobson, SYTO11 staining vs FISH staining: a comparison of two methods to stain Wolbachia pipientis in cell cultures, Letters in Applied Microbiology, vol.265, issue.2, pp.168-176, 2011.
DOI : 10.1098/rspb.1998.0324

F. Fenollar, L. Scola, B. Inokuma, H. Dumler, J. Taylor et al., Culture and Phenotypic Characterization of a Wolbachia pipientis Isolate, Journal of Clinical Microbiology, vol.41, issue.12, pp.5434-5441, 2003.
DOI : 10.1128/JCM.41.12.5434-5441.2003

URL : http://jcm.asm.org/content/41/12/5434.full.pdf

D. Voronin, V. Tran-van, P. Potier, and P. Mavingui, Transinfection and growth discrepancy of Drosophila Wolbachia strain wMel in cell lines of the mosquito Aedes albopictus, J Appl Microbiol, vol.108, pp.2133-2141, 2010.

S. Osborne, Y. Leong, O. Neill, S. Johnson, and K. , Variation in Antiviral Protection Mediated by Different Wolbachia Strains in Drosophila simulans, PLoS Pathogens, vol.76, issue.11, 2009.
DOI : 10.1371/journal.ppat.1000656.t001

URL : https://doi.org/10.1371/journal.ppat.1000656

V. Raquin, M. Wannagat, K. Zouache, C. Legras-lachuer, C. Moro et al., Detection of dengue group viruses by fluorescence in situ hybridization, Parasites & Vectors, vol.5, issue.1, pp.243-23110979, 2012.
DOI : 10.1186/1756-3305-3-95

URL : https://hal.archives-ouvertes.fr/pasteur-00758021

P. Bonilauri, R. Bellini, M. Calzolari, R. Angelini, L. Venturi et al., , Italy, Emerging Infectious Diseases, vol.14, issue.5, pp.852-854, 2008.
DOI : 10.3201/eid1405.071144

K. Tsetsarkin, R. Chen, R. Yun, S. Rossi, K. Plante et al., Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes, Nature Communications, vol.2, issue.1, pp.4084-4094, 2014.
DOI : 10.1371/journal.pcbi.0020062

URL : http://www.nature.com/articles/ncomms5084.pdf

H. Delatte, C. Paupy, J. Dehecq, J. Thiria, A. Failloux et al., , vecteur des virus du chikungunya et de la dengue ?? la R??union : biologie et contr??le, Parasite, vol.15, issue.1, pp.3-13, 2008.
DOI : 10.1051/parasite/2008151003

URL : http://www.parasite-journal.org/articles/parasite/pdf/2008/01/parasite2008151p3.pdf

A. Ponlawat, J. Scott, and L. Harrington, Insecticide Susceptibility of <I>Aedes aegypti</I> and <I>Aedes albopictus</I> across Thailand, Journal of Medical Entomology, vol.42, issue.5, pp.821-825, 2005.
DOI : 10.1016/S0035-9203(00)90416-4

M. Blagrove, C. Arias-goeta, D. Genua, C. Failloux, A. Sinkins et al., A Wolbachia wMel Transinfection in Aedes albopictus Is Not Detrimental to Host Fitness and Inhibits Chikungunya Virus, PLoS Neglected Tropical Diseases, vol.476, issue.3, p.23556030, 2013.
DOI : 10.1371/journal.pntd.0002152.g004

URL : https://hal.archives-ouvertes.fr/pasteur-01680359

M. Blagrove, C. Arias-goeta, A. Failloux, and S. Sinkins, Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus, Proceedings of the National Academy of Sciences, vol.72, issue.11, pp.255-260, 2012.
DOI : 10.1128/AEM.01673-06

URL : https://hal.archives-ouvertes.fr/pasteur-00647866

P. Lu, G. Bian, X. Pan, and Z. Xi, Wolbachia Induces Density-Dependent Inhibition to Dengue Virus in Mosquito Cells, PLoS Neglected Tropical Diseases, vol.22, issue.7, p.22848774, 2012.
DOI : 10.1371/journal.pntd.0001754.t001

URL : https://doi.org/10.1371/journal.pntd.0001754

C. Mcmeniman, A. Lane, A. Fong, D. Voronin, I. Iturbe-ormaetxe et al., Host Adaptation of a Wolbachia Strain after Long-Term Serial Passage in Mosquito Cell Lines, Applied and Environmental Microbiology, vol.74, issue.22, pp.6963-6969, 2008.
DOI : 10.1128/AEM.01038-08

A. Fallon and B. Witthuhn, Proteasome activity in a na??ve mosquito cell line infected with Wolbachia pipientis wAlbB, In Vitro Cellular & Developmental Biology - Animal, vol.2, issue.2, pp.460-466, 2009.
DOI : 10.1007/978-94-009-1535-0_36

URL : http://europepmc.org/articles/pmc2732765?pdf=render

A. Fallon, G. Baldridge, L. Higgins, and B. Witthuhn, Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells, In Vitro Cellular & Developmental Biology - Animal, vol.232, issue.1, pp.66-73, 2013.
DOI : 10.1038/232657a0

C. Khoo, C. Venard, Y. Fu, D. Mercer, and S. Dobson, Infection, growth and maintenance of Wolbachia pipientis in clonal and non-clonal Aedes albopictus cell cultures, Bulletin of Entomological Research, vol.7, issue.03, pp.251-260, 2013.
DOI : 10.1038/nrg1870

H. Noda, T. Miyoshi, and Y. Koizumi, IN VITRO CULTIVATION OF WOLBACHIA IN INSECT AND MAMMALIAN CELL LINES, In Vitro Cellular & Developmental Biology - Animal, vol.38, issue.7, pp.423-427, 2002.
DOI : 10.1128/jb.173.2.697-703.1991

M. Salazar, J. Richardson, I. Sánchez-vargas, K. Olson, and B. Beaty, Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes, BMC Microbiol, vol.7, issue.9, p.17263893, 2007.

S. Osborne, I. Iturbe-ormaetxe, J. Brownlie, O. Neill, S. Johnson et al., ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.19, pp.6922-6929, 2012.
DOI : 10.1128/AEM.01727-12

M. Kingsolver, Z. Huang, and R. Hardy, Insect Antiviral Innate Immunity: Pathways, Effectors, and Connections, Journal of Molecular Biology, vol.425, issue.24, pp.4921-4936, 2013.
DOI : 10.1016/j.jmb.2013.10.006

URL : http://europepmc.org/articles/pmc4007215?pdf=render

D. Brackney, J. Scott, F. Sagawa, J. Woodward, N. Miller et al., C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response, PLoS Neglected Tropical Diseases, vol.36, issue.7, p.21049065, 2010.
DOI : 10.1371/journal.pntd.0000856.t001

URL : https://doi.org/10.1371/journal.pntd.0000856

G. Zhang, M. Hussain, O. Neill, S. Asgari, and S. , Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti, Proceedings of the National Academy of Sciences, vol.50, issue.10, pp.10276-10281, 2013.
DOI : 10.1016/j.jinsphys.2004.07.009

G. Zhang, M. Hussain, and S. Asgari, Regulation of arginine methyltransferase 3 by a Wolbachia-induced microRNA in Aedes aegypti and its effect on Wolbachia and dengue virus replication, Insect Biochemistry and Molecular Biology, vol.53, pp.81-88, 2014.
DOI : 10.1016/j.ibmb.2014.08.003

N. Kremer, D. Voronin, D. Charif, P. Mavingui, B. Mollereau et al., Wolbachia Interferes with Ferritin Expression and Iron Metabolism in Insects, PLoS Pathogens, vol.14, issue.2, 2009.
DOI : 10.1371/journal.ppat.1000630.s001

URL : https://hal.archives-ouvertes.fr/hal-00539322

U. Schaible and S. Kaufmann, Iron and microbial infection, Nature Reviews Microbiology, vol.113, issue.Suppl. 1, pp.946-953, 2004.
DOI : 10.1172/JCI200420945

P. Krejbich-trotot, B. Gay, G. Li-pat-yuen, J. Hoarau, M. Jaffar-bandjee et al., Chikungunya triggers an autophagic process which promotes viral replication, Virology Journal, vol.8, issue.1, pp.432-442, 2011.
DOI : 10.1126/science.1126766

URL : https://hal.archives-ouvertes.fr/hal-00623020

G. Baldridge, A. Baldridge, B. Witthuhn, L. Higgins, T. Markowski et al., mosquito cell line, Molecular Microbiology, vol.7, issue.3, pp.537-556, 2014.
DOI : 10.1111/brv.12098

A. Darby, C. Gill, A. Armstrong, S. Hartley, C. Xia et al., Integrated transcriptomic and proteomic analysis of the global response of Wolbachia to doxycycline-induced stress, The ISME Journal, vol.7, issue.4, pp.925-937, 2014.
DOI : 10.1371/journal.pone.0038544

Z. Kambris, A. Blagborough, S. Pinto, M. Blagrove, H. Godfray et al., Wolbachia Stimulates Immune Gene Expression and Inhibits Plasmodium Development in Anopheles gambiae, PLoS Pathogens, vol.113, issue.10, p.20949079, 2010.
DOI : 10.1371/journal.ppat.1001143.t001

URL : https://doi.org/10.1371/journal.ppat.1001143

J. Ramirez, S. Short, A. Bahia, R. Saraiva, Y. Dong et al., Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities, PLoS Pathogens, vol.7, issue.9, p.25340821, 2014.
DOI : 10.1371/journal.ppat.1004398.s010

URL : https://doi.org/10.1371/journal.ppat.1004398

K. Bourtzis, S. Dobson, Z. Xi, J. Rasgon, M. Calvitti et al., Harnessing mosquito???Wolbachia symbiosis for vector and disease control, Acta Tropica, vol.132, p.24252486, 2014.
DOI : 10.1016/j.actatropica.2013.11.004

T. Fansiri, A. Fontaine, L. Diancourt, V. Caro, B. Thaisomboonsuk et al., Genetic Mapping of Specific Interactions between Aedes aegypti Mosquitoes and Dengue Viruses, PLoS Genetics, vol.27, issue.8, p.23935524, 2013.
DOI : 10.1371/journal.pgen.1003621.s014

URL : https://hal.archives-ouvertes.fr/pasteur-00854586

S. Richards, S. Anderson, C. Lord, and W. Tabachnick, Effects of Virus Dose and Extrinsic Incubation Temperature on Vector Competence of <I>Culex nigripalpus</I> (Diptera: Culicidae) for St. Louis Encephalitis Virus, Journal of Medical Entomology, vol.49, issue.6, pp.1502-1506, 2012.
DOI : 10.1603/ME12054

L. Carrington, S. Seifert, M. Armijos, L. Lambrechts, and T. Scott, Reduction of Aedes aegypti Vector Competence for Dengue Virus under Large Temperature Fluctuations, The American Journal of Tropical Medicine and Hygiene, vol.88, issue.4, pp.689-697, 2013.
DOI : 10.4269/ajtmh.12-0488

URL : http://www.ajtmh.org/deliver/fulltext/14761645/88/4/689.pdf?itemId=/content/journals/10.4269/ajtmh.12-0488&mimeType=pdf&containerItemId=content/journals/14761645

N. Jupatanakul, S. Sim, and G. Dimopoulos, The Insect Microbiome Modulates Vector Competence for Arboviruses, Viruses, vol.3, issue.11, pp.4294-4313, 2014.
DOI : 10.1016/j.mib.2011.12.012

URL : http://www.mdpi.com/1999-4915/6/11/4294/pdf

C. Murdock, S. Blanford, G. Hughes, J. Rasgon, and M. Thomas, Temperature alters Plasmodium blocking by Wolbachia, Scientific Reports, vol.60, issue.1, pp.3932-3942, 2014.
DOI : 10.1111/j.0014-3820.2006.tb01215.x

URL : http://www.nature.com/articles/srep03932.pdf

G. Hughes, B. Dodson, R. Johnson, C. Murdock, H. Tsujimoto et al., Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes, Proceedings of the National Academy of Sciences, vol.72, issue.7, pp.12498-12503, 2014.
DOI : 10.1128/AEM.03006-05

URL : http://www.pnas.org/content/111/34/12498.full.pdf

P. Tortosa, A. Courtiol, S. Moutailler, A. Failloux, and M. Weill, Insect Molecular Biology, vol.22, issue.6, pp.677-684, 2008.
DOI : 10.1007/978-0-387-21706-2

M. Vazeille, S. Moutailler, D. Coudrier, C. Rousseaux, H. Khun et al., Two Chikungunya Isolates from the Outbreak of La Reunion (Indian Ocean) Exhibit Different Patterns of Infection in the Mosquito, Aedes albopictus, PLoS ONE, vol.103, issue.11, p.18000540, 2007.
DOI : 10.1371/journal.pone.0001168.t003

URL : https://hal.archives-ouvertes.fr/hal-00196860

H. Sanguin, A. Herrera, C. Oger-desfeux, A. Dechesne, P. Simonet et al., Development and validation of a prototype 16S rRNA-based taxonomic microarray for Alphaproteobacteria, Environmental Microbiology, vol.51, issue.2, pp.289-307, 2006.
DOI : 10.1016/S0038-0717(03)00124-X

URL : https://hal.archives-ouvertes.fr/hal-00124522

A. Heddi, A. Grenier, C. Khatchadourian, H. Charles, and P. Nardon, Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia, Proceedings of the National Academy of Sciences, vol.35, issue.5, pp.6814-6819, 1999.
DOI : 10.1007/BF00171817