. , Orthogonal basis of a nite dimensional ultrametric semi-normed space

. Lemma, Let (K, |.|) be a spherically complete ultrametric valued eld

A. Blass, Existence of bases implies the axiom of choice, Axiomatic set theory, vol.31, p.3133, 1983.

M. N. Bleicher, Some theorems on vector spaces and the axiom of choice, Fund. Math, vol.54, p.95107, 1964.

W. Hodges, Model theory, of Encyclopedia of Mathematics and its Applications, vol.42, 1993.

P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, vol.59, 1998.

P. Howard and E. Tachtsis, On vector spaces over specic elds without choice, MLQ Math. Log. Q, vol.59, issue.3, p.128146, 2013.

A. W. Ingleton, The Hahn-Banach theorem for non-Archimedean valued elds, Proc. Cambridge Philos. Soc, vol.48, p.4145, 1952.

T. J. Jech, The Axiom of Choice, 1973.

W. A. Luxemburg, Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos, p.123137, 1967.

M. Morillon, Linear forms and axioms of choice, Comment. Math. Univ. Carolin, vol.50, issue.3, p.421431, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01186172

L. Narici, E. Beckenstein, and G. Bachman, Functional analysis and valuation theory, Pure and Applied Mathematics, vol.5, 1971.

P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, 2002.

A. C. Van-rooij, Non-Archimedean functional analysis, volume 51 of Monographs and Textbooks in Pure and Applied Math, 1978.

A. C. Van-rooij, The axiom of choice in p-adic functional analysis, p-adic functional analysis, vol.137, p.151156, 1990.

S. Warner, Topological elds, North-Holland Mathematics Studies, vol.157, p.126, 1989.

. Laboratoire-d'informatique and . Mathématiques, Bâtiment 2, 2 rue Joseph Wetzell, 97490 Sainte Clotilde Email address: Marianne.Morillon@univ-reunion