
Importing, Translating and Exporting Knowledge via
an Ontology of Knowledge Representation Languages

 Philippe MARTIN
EA2525 LIM, ESIROI, Uni. of La Réunion,

F-97490 Sainte Clotilde, France, +262 262 48 33 30
+ adjunct researcher of the School of I.C.T.

at Griffith University, Australia
 Philippe.Martin@univ-reunion.fr

Jérémy BÉNARD
GTH, Logicells, 55 rue Labourdonnais,

97400 Saint Denis, France

+262 262 20 93 85
Jeremy.Benard@logicells.com

ABSTRACT
This article introduces KRLO, an ontology of knowledge
representation languages (KRLs), the first to represent KRL abstract
models in a uniform way and the first to represent KRL notations,
aka concrete models. More precisely, this article illustrates the
content, principles and kinds of use cases for such an ontology. One
kind is to help design tools handling many KRLs, and hence parsing,
semantically analyzing and exporting knowledge expressed in these
KRLs. Another kind is to let the end-users of these tools design or
adapt KRLs. This ontology also supports translations based on
equivalence or implication relations between types as well as some
structural translations. They can be exploited by inference engines
handling the expressiveness of RIF-BLD, i.e., of Datalog like rules.

CCS Concepts
• Artificial Intelligence➝Knowledge Representation Formalisms
and Methods • Representation languages

Keywords
Knowledge Representation Languages (KRLs); Ontology of
KRLs; Knowledge Integration; Language Technologies.

1. INTRODUCTION
KRLs are languages which permit to represent information into
logic-based forms – knowledge representations (KRs) – within
knowledge bases (KBs). KRs are exploited by inference engines or
KB management systems (KBMSs). They ease precision-oriented
information sharing, retrieval and problem solving. The W3C has
popularized the interest of using and interconnecting “KRs on the
Web”, aka “Linked Data”. The “Semantic Web” is the set of
representations that use W3C KRLs promoted by the W3C.

Many KRLs exist. A unique one would not be adequate for every
kind of knowledge modelling or exploitation, nor for every person
or tool. An expressive KRL with a rich and concise textual notation
is useful for modelling and sharing complex information such as
i) the content of some natural language sentences or ii) an ontology

that precisely define complex types of concepts or relations. To such
ends, it is preferable or necessary to use KRLs with a second-order
notation and syntactic sugar for meta-statements and numerical
quantifiers. On the other hand, less expressive KRLs can be simpler
to learn and they have better computational properties that some
applications require. This is why the W3C proposes different KRLs,
all of which are less expressive that First-Order Logic (FOL).
However, expressiveness restrictions also lead people not to
represent some knowledge or to represent it in biased ways. Many
applications can benefit from expressive unbiased knowledge. E.g.,
i) they can use powerful inference engines, ii) they use expressive
KRs only for KB checking purposes, or iii) they are information
retrieval applications only using structure matching techniques
instead of complete and consistent deduction techniques. Thus, many
KBs use expressive KRLs and many applications require handling
many KRLs. More generally, for knowledge entering, reuse and
interoperability purposes, importing, exporting or translating KRs
expressed in different KRLs is needed, especially on the Web.

KRLs may have abstract models, e.g., RDF+OWL2 models or
Common Logics (CL), the ANSI standard for KRLs based on FOL.
These are abstract data structure models, such as the models or meta-
models of Model Driven Engineering (MDE). These are not theory
models of model-theoretic semantics. Different abstract models may
follow different logics, e.g., FOL or the SHOIN(D) description logic.
An abstract model may be formally presented via different notations,
aka concrete models or concrete syntaxes, e.g., CLIF, Turtle or
XML-based notations. From now on, unless preceded by “concrete”,
“model” refers to an abstract model. Models and notations are
themselves KRLs: a KRL is a model and/or a notation. In this article,
an element is a KRL element. A concrete element (CE) is a notation
element, e.g., an infix or prefix representation, as in “3 = 2 + 1” and
“= (3 +(2 1))” or “(= 3 (+ 2 1))”. An abstract element (AE) is an
element of a model. A model is a set of AEs. An AE may be i) a
formula, i.e., something denoting a fact, ii) an abstract term, i.e.,
something denoting a logic object, e.g., a variable or function call, or
iii) a symbol, e.g., one for a quantifier, variable or constant.

Importing KRs is done by a syntactic parser and a semantic analyser.
One input of the parser is a file, e.g., containing a text or a graphic.
Another input is a concrete grammar, hence a concrete model. The
parser outputs CEs, generally organized into a Concrete Syntax Tree
(CST). It may also outputs syntax related AEs, typically organized
into an Abstract Syntax Tree (AST). From these CEs or AEs, the
semantic analyser creates semantically structured AEs, typically
organized into an Abstract Semantic Graph (ASG). If these AEs are
not the ones required by the importing tool, a translation to other AEs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEMANTiCS ’16, September 12-15, 2016, Leipzig, Germany.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

occurs. When, as with XML based notations, the input notations are
homo-iconic, i.e., when the structure of the CEs mirrors the structure
of the AEs, the parser may also directly be a semantic analyser.

Exporting KRs expressed in a KRL goes in the reverse direction.

Translating KRs is translating their logic or non-logic objects. Thus,
if the source and target KRLs are different, KRL translation first
occurs, e.g., between CL AEs and RDF+OWL AEs or between
CLIF CEs and RDF+OWL/XML CEs. Then, KR content translation
occurs if the source and target content ontologies are different, i.e., if
different non-logic objects or different names for these objects are
used for expressing the source and target KRs. E.g., this is the case
when translating between physical units. Content translation exploits
relations between objects in the source and target content ontologies,
e.g., between one medical ontology and another. Such relations may
come from ontology mapping. KR translation, i.e., the translation of
KRLs or KR content, may be directly between CEs. More
flexibility and genericity is achieved when translation between AEs
is involved, i.e., when the import, translation and export processes
are separated. Thus, current research works on translation focus on
translation between AEs. However, they assume that the import and
export processes are done separately, via other techniques.

This article is not about KR content translation. It is about the KRL
related part of importing, translating and exporting KRs. The
advantages of our approach first come from its exploitation of an
ontology of KRLs in each of the last three processes. These
advantages also come from the three originalities of the particular
exploited ontology of KRLs. We named it KRLO. It is the first to
represent KRL abstract models of different families in a uniform
way, e.g., the RDF+OWL models and the CL model. KRLO is also
the first to include an ontology of KRL notations. Finally, KRLO is
the first to include rules and functions specifying default methods
for input, translation and export purposes. Thus, this article is also
about this ontology. We have designed some tools to help exploit it.
Our approach, KRLO and these tools are meant to ease the
implementation of applications handling many KRLs, including
KRLs specified by end-users. These tools are: a generic KRL parser
and semantic analyser, a KRL translation Web server based on it,
and a Web server allowing its users to complete KRLO, for example
with new models and notations. This last server directly reuses our
shared KB server WebKB. Its KB sharing protocols have already
been published [14, 15] and hence will not be presented in this
article. KRLO, these servers, and this article with additions that did
not fit here, are accessible from http://www.webkb.org/KRLs/.

Section 2 gives uses cases for our approach and situates it with
respect to other ones. Section 3 gives examples and principles for
the specification of KRLs in or via KRLO. Section 4 introduces the
default rules or functions represented in KRLO for importing,
translating and exporting knowledge. Section 5 concludes.

2. COMPARISONS AND USE CASES

2.1 For Importing Knowledge
Classic parser generators, such as Lex&Yacc, are given a concrete
grammar with actions associated to its rules for building AEs in
main memory. Implementing and updating the code for these
actions is – or is akin to – a programming task, hence long and error
prone. Programming environment generators are designed to ease
this task, including in knowledge engineering [4]. E.g., Centaur [2]
proposed declarative languages for specifying concrete grammars,
abstract grammars and rules bridging them. Based on them, it could
generate structured editors, parsers, type checkers, interpreters,

compilers and translators. However, its declarative languages were
execution oriented rather than modelling oriented: they did not ease
the creation and reuse of ontologies. Thus, as with procedural code,
i) small changes in the specified languages often led to important
changes in the specifications, and ii) the specifications were difficult
to organize into an ontology and hence were not as easy to compare,
automatically analyze and reuse as in an ontology based approach.
The API based approach, e.g., via OKBC for knowledge exchange
between KBMSs, is also a procedural approach.

Languages created via structure description languages such as XML,
MOF – the Meta-Object Facility of the OMG (Object Management
Group) – or those used in Model Driven Engineering (MDE) are
easy to parse and check via rather generic tools. E.g., XML tools
also work on RDF/XML. However, i) these “rather generic tools”
do not perform logical inferences, and ii) the concrete descriptions
they exploit are often not concise or high-level enough to be used
directly for knowledge entering/display or by tools for knowledge
handling. E.g., which KBMS or inference engine uses XML objects
internally? Hence, translations from/to other models or notations are
still necessary. Our approach provides an ontology-based concise
alternative to the use of XML as a meta-language for creating KRLs
that follow given KRL ontologies. Thus, any notation can be used
for the specifications and XML is not a required pivot notation.

To sum up, a first kind of use case for an approach based on an
ontology like KRLO is to ease the task of implementing tools that
parse and check KRs written in many KRLs. Our generic KRL
parser can be reused and adapted. Alternatively, since KRLO has
the expressiveness of RIF-BLD [16], any inference engine handling
this expressiveness can be reused to parse KRLO. Then, such an
engine can exploit the KRL specifications in KRLO for importing
knowledge written in these KRLs. RIF-BLD (Rule Interchange
Format - Basic Logic Dialect) is the W3C recommendation and
interchange model for definite Horn rules with equality, i.e., for
Datalog like KRLs. Since there is no negation, no closed world
assumption is necessary. More precisely, in FL [14], i.e., in the KRL
in which KRLO was originally designed, KRLO uses a bit more
expressiveness than RIF-BLD. E.g., it uses subtype partitions, i.e.,
complete sets of disjoint subtypes for types. However, this
additional expressiveness is not exploited by the import, translation
and export methods we propose, and hence can be dropped out
when translating KRLO to a RIF-BLD compatible KRL.

A related second kind of use case is to enable the end users of tools
to extend or adapt KRLs in more advanced ways than what other
approaches can support. E.g., even though the Model Driven
Engineering tool BAM is designed to handle many models and
notations, its meta-model is predefined and hence, for notation
extension purposes, BAM only proposes macros and informal
annotations. An ontology based approach lets each user specify new
abstract models or notations, e.g., by adapting existing ones via
menus, as in an ontology editor tailored to a particular domain. This
permits application developers as well as knowledge providers or
consumers to tailor notations to their tastes and needs, or to the ones
of a group of persons. Indeed, in many cases, implementing or
extending a KRL parser, translator, displayer or navigator is either
not an option or a cumbersome one. Yet, it is also often interesting
to add syntactic sugar or new structures to a particular notation, to
gain conciseness, ease readability or lift some expressiveness
restrictions. Each time we designed complex ontologies, to help us
visualize the KRs and their relationships, we added syntactic sugar to
our in-house KRL (FL), e.g., for numeric quantifiers, interpretations
of relations to sets or meta-statements, and some ubiquitous
functions such as the f_in and f_dest in KRLO (cf. Table 1).

Nowadays, when people want to represent knowledge that cannot
be fully expressed with the KRLs they need or wish to use, they
represent the knowledge in incomplete or ad hoc and biased ways.
Instead, with our approach they can extend their KRLs. Conversely,
our approach also provides a way to exploit KBs even if they
include syntactically or semantically incorrect KRs, as long as the
kinds of errors are systematic. Indeed, with our approach, the used
KRL model, notation or parser can be easily adapted to interpret some
systematic incorrect usages in special ways. This can often be useful:
in the study of [1], only 37.6% of Datahub resources for Linked
Data proved fully machine-processable. Adaptations by an end-user
is hardly possible when no declarative specification is used for the
KRL models. With Centaur, this was possible but complex, if only
because the specifications were not ontology based. Since any
structure used in a Web resource can be described in KRLO, the
approach we propose for KRLs can be extended and used for
generating Semantic Web wrappers, i.e., tools parsing structures in
certain resources to extract KRs.

A third kind of use case is the checking of input files with respect to
a KRL model and notation. E.g., specifications in KRLO for
profiles of OWL2 [11] can be exploited to check if a KB follows a
given profile. Profile discovering can similarly be done. In KRLO,
the informal presentation of KRs – e.g., the use of a certain form of
indentation – can be specified too and then checked too. However,
KRLO does not yet provide rules or functions specifying a way to do
those checks or profile matching. Nevertheless, the possibilities and
flexibility offered by an ontology of KRLs exceed what is possible
with tools and languages solely based on XML, XSLT and CSS.

2.2 For Translating Between KRLs
KRL translation is often specified from one KRL to another, between
CEs or between AEs. This is the direct mapping approach. E.g., in
Centaur, translations rules could be specified between two abstract
grammars. Tools such as ODE [6] proposed rule based languages
for specifying lexical, syntactic, semantic and pragmatic translations
between CEs or AEs, from a KRL to another. [13] proposes rules
translating CEs of the OWL2 Functional-Style Syntax (FSS) into CEs
of the RIF-PS notation for the RIF-BLD model. The W3C does not
propose translations between AEs since i) RIF-BLD is not represented
into an ontology, and ii) CEs of FSS directly represent AEs of the
OWL2 Structural Specification. In [12] the W3C proposes rules to
translate CEs of FSS into CEs of Triples notation for the RDF model.
Thus, more generally, the W3C adopted the layered approach, i.e.,
translations based on models of increased expressiveness with direct
mappings between each level of expressiveness. An alternative way
to reduce the number of direct mappings between KRLs is the pivot
approach, i.e., translations between each KRL and an expressive
interlingua. In the 1990s, this led to the creation of KIF (Knowledge
Interchange Format), a FOL based KRL with a second-order
notation, and then to Ontolingua, a library of ontologies written in
KIF. In the 2000s, these works led to the CL model and its notations
(CLIF, CGIF and XCL), COLORE (the Common Logic Repository)
and IKL [9]. IKL is based on CL but, like KIF, can represent notions
which are important for knowledge sharing but which are usually
only found in KRLs based on Higher-order Logics (HOLs), e.g.,
certain kinds of meta-statements and numeric quantifiers.

None of the above cited works specifies or uses an ontology of KRLs.
E.g., since KIF came to be the de-facto interlingua, Ontolingua did
not include specifications for particular KRL models or notations.
Its only KRL related ontology, the “Frame Ontology”, included
definitions for objects similar to those of OWL. [8] showed that the
mapping, layered and pivot approaches are generalized when an

ontology of KRL models is used, one where AEs – and then models –
are related by certain translation relations. Each of these relations
has an associated definition for performing the translation. Each
relation also represents translation properties, i.e., whether or not the
translation preserves the model-theoretic semantics, interpretations,
and logic consequences of the translated AEs. Thus, given AEs to
translate, a tool exploiting this approach may propose its users to
choose different target models according to what they want the
translations to preserve. As a proof-of-concept, [8] used XSLT to
implement about 40 translation relations between AEs belonging to
25 description logics. The LATIN (Logic Atlas and Integrator)
Project (2009-2012) [3] went further by representing such translation
relations between many different logics. Via HETS (Heterogeneous
Tool Set), LATIN exploits several FOL KRLs and HOL KRLs, e.g.,
Isabelle and HasCASL. Via DOL (Distributed Ontology, Modeling,
and Specification Language) [7], the OMG proposes a standard
KRL for i) specifying particular kinds of translation relations
between KRL models and ii) using several KRLs in a same DOL
document. DOL is also implemented via HETS and the authors of
DOL see some results of LATIN as avenues for future extensions
[7]. Ontohub is a DOL based repository which includes KRL
models and translation relations between them. DOL and HETS do
not specify notations. They rely on external parsers and exporters.

None of the above cited works specifies or exploits an ontology
representing AEs of different KRL models in a uniform and organized
way. KRLO does so by setting as many generalization relations and
partOf relations as possible and, for these last ones, using the
operator-arguments schema detailed in Section 3. Thus, KRLO can
be seen or used as a way to align and integrate other KRL translation
related ontologies. When direct relations cannot be used, functions
and rules are used. Translations between structures do not require
much expressiveness. So far, in KRLO, the few proposed translation
rules between structures only require the expressiveness of definite
Horn rules with equality. This is why KRLO has a version using
OWL-RL and RIF-BLD, the W3C KRL model for rules with such
expressiveness. In KRLO, since the translated structures are akin to
reified statements, the original statements can even follow an HOL
model, this does not change the expressiveness required to convert
structures. Currently, translations represented via rules in KRLO are
semantic-preserving structure translation rules. For other translations,
KRLO users have to also exploit complementary ontologies and,
possibly, more powerful inference engines. In the future, KRLO will
be added to Ontohub and made exploitable via HETS.

None of the above cited works specifies or exploits an ontology of
notations. KRLO does. This permits the import, translation and
export tasks to exploit an ontology of KRLs and the same one. Thus,
our approach extends the one presented in [8] and may be seen a
pivot approach based on such an ontology of KRLs instead of a KRL.
As illustrated in Section 4, the use of generalization relations between
AEs, models or notations can maximize modularity and reuse.

Besides KRLO and Ontohub, there is another ontology relating
KRL models not belonging to a same family: ODM 1.1 [10], an
OMG specification. It uses UML for representing four KRL models:
RDF, OWL, CL and Topic Maps. It also relates a few AEs of
different models via semantic relations such as generalization or
equivalence relations. Finally, it gives QVT rules for direct mappings
between AEs of different models. Since direct mappings are used
instead of few primitives for defining and relating the various AEs,
the heterogeneity of the various KRL models is not eliminated. This
heterogeneity makes the AEs difficult to compare or exploit in a
uniform way. Finally, QVT rules are not directly usable by inference
engines and translating them into KRLs may not be easy. We are not

aware of works using ODM for KR import, translation or export
purposes. Similarly, we have not found ontologies for notations,
even for RDF. Hence, apart from our KRLO based translator, it
seems there is no other translator based on an ontology for a KRL
model and a notation. There are translators between notations for
the RDF model, e.g., RDF-translator, EasyRDF and RDF2RDF.
Their Web interfaces or APIs propose no way to parameter their
knowledge import, translation and export processes.

To sum up, regarding KRL translation, a kind of use case for our
approach is an increased simplification of the implementation of
this process. A related kind of use case is to enable end users to
parameter, extend or adapt KRL translations. Adding a new KRL
specification to KRLO – e.g., via its Web servers – may be sufficient
to specify the structural translation of this KRL to other represented
KRLs: no transformation rule may be required. Another convenient
feature is that no specific KRLs such as those of ODE is necessary:
any KRL with at least RIF-BLD expressiveness can be used.
Finally, as detailed by the authors of DOL, LATIN and [8], it is
easier to implement a tool generating proofs for the properties of its
translations if the tool exploits rules or relations in an ontology.

2.3 For Exporting into a KRL
Without abstract and concrete models, exporting has to be done
procedurally. Centaur exploited concrete and abstract grammars for
both export and import purposes. For KRL models that have a MOF
or XML based notation, languages such as Mof2Text, XSLT and
CSS can be used for generating KRs in other notations. However,
this is not easy since these languages are not KRLs or KR query
languages. This is why there have been several works on rule based
and/or style-sheet based transformation languages for RDF. They
specify how RDF AEs may be presented, e.g., in a certain notation,
in a certain order, in bold, in a pop-up window, etc. Examples of
such tools are Xenon, Fresnel, OWL-PL and SPARQL Template [5].

These tools were not initially meant to use a notation ontology: they
initially required the use of a new style-sheet for each target
notation. However, some of these tools – e.g., SPARQL Template –
could exploit KRLO since it can be represented in RDF+OWL2-RL
and SWRL, an RDF-based KRL for representing Horn rules. This is
an upcoming work with the author of SPARQL template.

Here again, a kind of use case for our approach is the simplification
of KR export according to each user's preferences. Exporting KRs
may include the generation of hyperlinks to let users navigate from
CEs in query results to other KRs of the queried KB. A related kind
of use case is to enable end users to parameter, extend or adapt such
exports, e.g., for knowledge pretty-printing.

3. PRINCIPLES AND EXAMPLES FOR
KRL SPECIFICATIONS

As formally represented in Figure 1, KRLO distinguishes between
i) the content of a description, i.e., its meaning, what it describes,
and ii) the instruments used for the description such as languages
and language elements such as AEs and CEs. The notions of “types
as description content”, “types (as description instruments)” and
“identifiers of types (as description instruments)” are distinguished.
The top-level of KRLO, i.e., the part reused and specialized by
specifications for particular KRLs, currently includes over 900 AE
types. The structure of each KRL element is represented in a
uniform way, like the structure of a function, i.e, as an operator with
an optional set of arguments and a result. Thus, in KRLO, the six
most important primitive relation types for relating AEs are named
has_operator, has_argument, has_arguments, has_result, has_parts
and has_part. The first two are subtypes of the last since the
operator and arguments of an AE are also its parts. The structure of
a relation is defined as having for operator a relation type, for
arguments a list of AEs and for result a boolean. E.g., the structure

 Thing
has_descr_content

 Description_content
has_descr_instrument

 Description_instrument
has_ descr_container

Description_container
 (e.g., Process, (e.g., Proposition, (typically, a File)
 Physical_entity) Type_of_thing) has_physical_support

Language
 has_member

Language_element Physical_Entity

 Language_abstract-model Notation KRL Grammar AE (abstract element)
has_CE

CE (concrete element)

 Phrase (e.g., Formula or reference to one)

 VoR (Value_or_reference) NR_phrase (or: Non-reference_phrase)

Token_VoR Structured_VoR Value Reference (result: the referred thing)
(VoR without AE as part, (VoR with AEs as part, e.g., (VoR with itself as (structured – e.g., Function_call, Frame_as_reference –
 e.g., Literal: Integer, ...) Function_call, Collection) result, e.g., Literal) or not – e.g., Type, Identifier, Name)

 Type (reference to a Type_of_thing, hence to a Description_content) Reference_to_a_thing_that_is_not_a_phrase Reference_to_a_phrase

Concept_type (e.g., owl:Class, rdfs:Literal) Relation_type (e.g., Binary-relation_type which has for subtypes owl:Property and Binary_FOL-predicate)

Legend. The arrow represents a supertype (rdfs:subClassOf) relation. The other kind of arrow (with an associated relation type in italics and a
destination cardinality if different from 0..*, alias 0–N) is used for other relations. For readability purposes, the boxes around classes (aka concept types) are
not drawn. A comment about a type is within parenthesis next to this type. Within comments, definitions are in italics and the “has_” prefix of relation type
names is omitted. Since each subclass set is here a subclass partition, its “{disjoint, complete}” UML annotation is left implicit.

Figure 1. Slightly adapted UML representation of some relations between some top-level types in KRLO.

for the relation “has_part (USA Iowa)” has for operator has_part,
for arguments USA and Iowa, and for result True. The structure of a
quantification is defined as having for operator a quantifier, some
arguments and for result a boolean. A function call is defined as
having for operator a function type, some arguments and a result. A
variable or an identifier is (partially) defined as having for operator
a name, for arguments an empty list of AEs and for result an AE of
a certain type. Thus, in KRLO, an AE operator may be a
function/relation/collection type, a quantifier or a value. Being an
operator is only a structural role that different kinds of elements
may have. When the AE is a formula, representing its structure is
not representing its meaning directly. E.g., a relation does not
actually have a boolean as result. In RDF, this is illustrated by the
difference between a statement and its reification.

Since RIF distinguishes between two relation types – logic predicate
and properties – so does KRL0, as shown at the end of Figure 1. In
RIF, all RDF triples are represented as ternary relations of a same
type named “T”. In RDF terminology this time, the three arguments
are the predicate (an instance of rdf:Property), the subject and the

object. Thus, in such a triple, a variable can be used for the predicate
without this implying the use of an higher-order logic.

Figure 2 shows some important subtypes of NR_phrase, i.e., types
for statements, not references to statements. In RIF and KRLO, a
frame is a conjunction of triples sharing a same source. Since many
KRLs allow either frames or conjunction of relations using logic
predicates but not both, KRLO proposes a way to translate between
them, via rules based on relations of type owl:equivalentClass and
has_descr_instrument, as shown in Figure 2. By modifying the list
of subtypes of the sources of these relations, a user can choose the
kinds of KRs to which this translation is applied. In KRLO, most
translation rules use the same principle. The end of Figure 2 gives
an example. The authors of RIF do not propose a way to support the
above cited translation but note that it is always correct when the
translated KR does not use more expressiveness than RIF-BLD [16].

Table 1 illustrates the way that particular models and notations for
them are specified in KRLO. The notation related part is discussed in
Section 4.2. Table 1 shows how the AE types for a model specialize

 NR_phrase (or: Non-reference_phrase)

Modularizing_NR_phrase NR_phrase_on_at_least_one_phrase
(e.g., Module_context, NR_formula
 Module_body, Document)

 Definition Inference_rule Sentence
 Composite_formula NR_atomic_formula (e.g., Production_rule) (e.g., Axiom,
 Belief)

 Connective_formula (e.g., a disjunction) Quantification
 [has_operator -> 1 Connective [has_operator -> 1 Quantifier
 has_argument -> 1..* NR_phrase] has_ argument -> 1..* Variable
 has_argument -> 1 NR_phrase] Frame_as_NR-phrase Formula_with_1_logic_predicate
 [has_operator -> 1 Concept_node [has_operator -> 1 Relation_type

Thing_that_can_be_represented_via_a_frame
 has_descr_instrument has_argument -> 1..* Half-property] has_argument -> 1..* Type]

 owl:equivalentClass (by default: cf. text below) Minimal_frame_as_NR-phrase

 Thing_that_can_be_represented_via_binary-relations_from_a_same_source Formula_with_1_logic_predicate_on_at_least_one_phrase
 [has_operator -> 1 Relation_type
 has_descr_instrument has_argument -> 1..* Phrase]

Conjunction_of_binary-relations_from_a_same_source [has_operator -> And_logical-connector has_argument -> 1..* Binary_relation]

Legend. Same as in Figure 1 plus i) “1..*” means “at least 1”, and ii) for readability reasons, properties of a frame are not represented via UML associations
but as in RIF-PS (i.e., using“[...]” and “->”) except that cardinalities are also given before the destination, as in UML.

Example of translation rule. Translating between a frame and a conjunction of relations using logic predicates requires rather complex rules,
for example to take into account the quantification of variables. Hence, a simpler translation rule based on the same principle is now illustrated:
the one between binary relations and non-binary one. It relates the structures of two AEs that are description instruments of something that is both a
Thing_that_can_be_represented_via_a_non-binary_relation and a Thing_that_can_be_represented_via_a_binary_relation. By default, in KRLO, these
two types are related by an equivalence relation. The next rule can be used for translations in both directions. It is in RIF-BLD/RIF-PS, i.e., it follows the
RIF-BLD model and is linearized with the RIF-PS notation. “:-” means “<=”. It can be read as follows: “if a thing ?t is, because of its types, known to be
representable both via a binary relation and a non_binary one, then i) these two representations have the same first argument, and ii) the second argument of
the binary relation is the list of the non-first argument of the non-binary relation”. This rule only works when the relation types for the two kinds of relations
are already known in the ontology. Indeed, no generation for relation type names is here specified. This rule also relies on the fact that, by default, it is stated
in KRLO that any proposition can be represented via both a binary relation and a non_binary one. The user can modify this to control the translations.

Forall ?t ?binRel ?binRelArg1 ?binRelArg2 ?nonBinRel ?nbrArg1 ?nbrArgsExcept1st (
 And (?binRelArg1 = ?nbrArg1 ?binRelArg2 = ?nbrArgsExcept1st)
 :- And(?t [rdf:type -> Thing_that_can_be_represented_via_a_non-binary_relation rdf:type -> Thing_that_can_be_represented_via_a_binary_relation
 r_descr_instrument -> ?nonBinRel r_descr_instrument ->?binRel]
 ?binRel [rdf:type -> Binary_relation r_1st_arg -> ?binRelArg1 r_2nd_arg -> ?binRelArg2]
 ?nonBinRel [rdf:type -> Non-binary_relation r_args -> List(?nbrArg1 | ?nbrArgsExcept1st)]))

Figure 2. Slightly adapted UML representation of some important types of phrases and example of structure translation rule in KRLO.

AE types from a more general model or the top-level types of
KRLO. It also shows how, when needed, the structures of these AE
types can be restricted, i.e., re-defined with more specialized parts or
results. In Table 1 this is done via subtype partitions and the use of a
function named f_in explained in this table. This model restriction
approach is modular and concise. It exploits subtype and has_part

relations between AE types and between model types as well as
has_part relations from models to AE types. It worked for very
different kinds of models, e.g., CL, the RIF models, RDF, JSON-LD,
OWL and its profiles. With our FL notation, only 65 lines were
necessary to define CL, 300 lines for the RIF models (without RIF-
PRD) and about 500 lines for RDF, OWL and its profiles.

Table 1. The second row partially specifies RIF-M/RIF-PS, a KRL having for model RIF-M, an invented simple submodel of RIF-BLD, and
for notation the RIF Presentation Syntax for this submodel. The first row gives a grammar for this KRL and examples of KRs in this KRL.

W3C EBNF grammar for RIF-M/RIF-PS:
Document ::= Formula * //"X*": "0 or more X"; "X+": "1 or more X"
Formula ::= Rule | AND-Formula
Rule ::= AND-Formula ':-' AND-Formula //implicitly universally quantified
AND-Formula := AtomicF | 'And' '(' AtomicF + ')'
AtomicF ::= Relation | Frame Relation ::= Const '(' Term* ')'
Frame ::= Term '[' (Term '->' Term)* ']' Term ::= Var | Const
Var ::= '?' Const //for Const, see the RIF-PS grammar

Four examples of RIF-M/RIF-PS representations (one alternative per
line) for the sentences “Paris is a city. Every city is a place”:
1) City (Paris) Place(?x) :- City(?x)
2) Paris [rdf:type -> City] ?x [rdf:type -> Place] :- ?x [rdf:type-> City]
3) Paris [rdf:type -> City] Place [rdf:subClassOf -> City]
4) rdf:type (Paris City) rdf:subClassOf (City Place)

Figure 2 has illustrated the way structure translation rules can be written to
deal with such alternatives.

Below, the specifications for AEs use the function f_in. The specifications for CEs use the functions f_dest, fc_OP_from, fc_ARGS_from and fc_ARG.
 f_dest is used for referring to the destination of a property of given type, from a given source. Here are definitions of f_dest in RIF-BLD/RIF-PS:
 Forall ?pSource ?pType ?pDest (f_dest(?pSource ?pType) = ?pDest :- ?pSource [?pType -> ?pDest])
 Forall ?pSource ?pType ?pDest (?pSource [?pType -> ?pDest] :- f_dest(?pSource ?pType) = ?pDest)
The other functions also have definitions in RIF-BLD/RIF-PS. The functions beginning by “fc_” are explained after the graphic.
The function f_in(?elemType ?modelType) returns a type ?elemTypeInLanguage that is “the specialization in the model ?modelType” of the type ?elemType.
This means that any instance of ?elemTypeInLanguage is instance of ?elemType, belongs to ?modelType and any of its parts that is of type ?elemType
 belongs to ?modelType. This function cannot be directly fully expressed in RIF-BLD but, when KRLO is translated into RIF-BLD and whenever a call to
 this function appears, it can be replaced by a generated type defined with a RIF-BLD definition. The use of such a function is one of the ideas that led to
 simpler and better specifications in KRLO compared to its early versions. Given the meaning of f_in, the type f_in(AE RIF-M) below is subtype of AE. It
 can also be set as a subtype of f_in(AE RIF-BLD) if RIF-M is defined as a part of RIF-BLD.

 f_in(AE RIF-M) ?rifAE

 //Each AE in RIF-M has CEs in RIF-PS specified by the destination of the next rc_spec link

rc_spec

 fc_spec (List(fc_OP_from(?rifAE) "("
 fc_ARGS_from_(?rifAE) ")") List(RIF_PS))

 f_in(VoR RIF-M) f_in(NR_formula RIF-M) RIF-M_AE_that_has_also_and_preferably_an_infix_presentation_in_RIF_PS ?i

rc_spec

fc_spec (List(fc_ARG(f_dest(?i has_link_source))
 fc_OP_from(?i)
f_in(Constant RIF-M) fc_ARG(f_dest(?i has_link_destination))
f_in(Universally_quantified_variable RIF-M)) List(RIF_PS))

 f_in(NR_atomic_formula RIF-M) f_in(Composite_formula RIF-M)

f_in(Minimal_frame_as_NR-phrase RIF-M) f_in(Formula_with_1_logic_predicate RIF-M) f_in(And-formula RIF-M) f_in(Rule RIF-M)

Note. The CE specifications for frames and variables are not shown but are similar to the two shown above. For more details, see in KRLO the specifications
for the models of RIF and for their presentation in RIF-PS. The difference with the RIF-PS ones is that universal quantification is not implicit in RIF-PS.

Legend. Same as in Figure 2 except that i) next to some defined types is a(n implicitly) universally quantified variable of that type (see the comment beginning
by “//”), ii) the word “link” is used as a synonym for “binary relation”, and iii) the type of the destination of each rc_spec link is specified by a call to the
fc_spec function and this call is represented in RIF-BLD/RIF-PS, i.e., RIF-BLD linearized with RIF-PS.

Explanations for the rc_spec relations and the functions beginning by "fc_". They can for example be read when referred to at the end of Section 4.1.
Each rc_spec link relates an AE to a structural specification of CEs for this AE in a given notation. Above, this notation is always RIF-PS.
The first above rc_spec relation defines the prefixed functional presentation that all RIF-M AEs may have in RIF-PS, one that most RIF AEs must have.
The second rc_spec relation defines the infix presentation that some kinds of AEs (rules, equalities, ...) should preferably have an in RIF-PS. This “preferably”
 is represented via the following convention in KRLO: inherited specifications are overridden by more specialized specifications.
The second parameter of fc_spec is a list of notation types since i) an AE may have identical types of CEs in different notations, and ii) fc_spec returns a
 type for CEs that are member of notations of such types.
The first parameter of fc_spec is an ordered list of CE specifications:syntactic sugar (delimiters or separators) or results of functions such as fc_OP_from and
 fc_ARGS_from. These last functions are similar to fc_spec but they i) respectively work on the operator and arguments of their AE parameter, and
 ii) permit to specify the role of each CE in the specified list: operator, argument or separator. The fc_ARGS and fc_ARGS_from functions have an optional
 second parameter to enable the specification of a non-space separator to use between the argument CEs generated by these functions.
To conclude, the first rc_spec relation specifies that any instance of AE in RIF-M has (at least, by default) RIF-PS CEs composed of the following sequence of
 elements, separated by at least one spacing character: i) the RIF-PS representation of the operator of the AE, ii) an opening parenthesis, iii) the representation
 of the argument CEs separated by at least one spacing character, and iv) a closing parenthesis. This specifies a notation form called “prefix functional form”
 in Section 4.1. Simply modifying the order of the elements in this list permits to generate the other notation forms.

4. METHODS SPECIFIED IN KRLO

4.1 For Importing Knowledge
A CE is the presentation of an AE in a given notation. Since the
structure of each AE is known, the presentation of CEs for a given
AE can be specified by composition of the presentation of CEs for
parts of this given AE. For textual notations, this composition is
often a simple ordering – e.g., in a prefix, infix or postfix way –
plus some syntactic sugar to delimit some parts. Thus, like the
structure of an AE, the structure of a CE can be represented like the
structure of a function. This led us to note that, like models,
notations can be represented in a uniform way using few primitives.
This also led us to note that a generic analyser could be built for all
KRLs that can have a deterministic context-free grammar, e.g., an
LL(1) or LALR(1) grammar. Furthermore, this analyser would be
efficient since these grammars that can be efficiently parsed. As an
example for the underlying idea, consider an AE composed of an
operator “o” with two arguments “x” and “y”. If single parenthesis
are mandatory delimiters and if single space characters are the only
usable separators, this AE has only the next five possible CEs in all
the notations we know: “o (x y)”, the prefix functional form, as in
RIF-PS; “(o x y)”, the prefix list-like form, as in KIF; “(x o y)”, the
infix form, as in Turtle and some RIF-PS formulas; “(x y o)”, the
postfix list-like form; “(x y) o”, the postfix functional form. Five
rules of an LL(1) or LALR(1) grammar can be used for specifying
these five forms and they can be generalized for any number of
arguments, not just two. Furthermore, if – as with the Lex&Yacc
parser generators – the grammar can be divided into a lexical
grammar and a non-lexical grammar, the separators can be made
generic via terminal symbols with names such as
Placeholder_for_begin-mark_of_arguments_of_a_prefix-function-
like_element. Based on these ideas and using Flex&Bison, variants of
Lex&Yacc, we created a generic analyser for any KRL that can have
an LALR(1) grammar. This grammar for this KRL does not have to
be found since it is generalized by the generic grammar that our
analyser uses. Given a CE and its KRL, based on the specifications
for the notation and model of this KRL in KRLO, this analyser
directly generates an abstract semantic graph. Its genericity
illustrates the usefulness of our fully ontology based approach.
However, this analyser is not in-line with our approach since it is not
declaratively specified. Only programmers can reuse it, via its API,
or adapt it by modifying its source code. This is why, we have begun
specifying two complementary knowledge import methods in KRLO.

The first method generates rules that directly parse a given KRL.
The manual creation of such rules is not uncommon in Prolog. E.g.,
[17] discusses the rules, uses and good performances of an “RDF
compiler on top of the sgml2pl package” in SWI-Prolog.

For the second method, we have begun i) representing models and
notations for grammars and their associated actions, and ii) extending
our knowledge translation and export methods for generating
procedural code for these actions. These generations will allow
KRLO based systems to reuse any parser generator.

Both methods exploit specifications. Both are being implemented
via RIF-BLD rules and via functions. These two implementations
maximize the possibilities of reuse by different inference engines.
Furthermore, we are making a Javascript module for these functions
to be executable by a browser. Thus, they will be usable in client-
side scripts and adaptable by Javascript aware end-users.

The top-level of the ontology of notations of KRLO does not
categorize all possible prefix/infix/postfix notation forms for an AE.
Instead, it contains primitive relations permitting to describe them

and, for usability purposes, functions to combine them. Their names
begin by "fc_". Table 1 illustrates and explains them. They permit to
specify i) the structure of CEs for a given type of AE in a given type
of notation, and ii) the order and roles of these CEs: operator,
argument or separator. Thanks to these roles, relevant grammar rules
can be selected to be executed, e.g., rules belonging to the grammar
of our generic analyser. For exporting into textual CEs, only the
order of the terms in this list is important. The spacing between
CEs, e.g., for indentation purposes, is similarly defined.

In KRLO, each AE has one and only one rc_spec relation for a
given type of notation, hence one CE specification. This relation may
be inherited or overriding an inherited one. The “only one” part is
ensured by our knowledge server which prevents the entering of
ambiguities when it detects them. The other “one” part comes from
the default presentation specifications of KRLO, e.g., for the spacing
between CEs. Thus, for a given AE and notation, all possible CEs are
unambiguously described. This is why the import and export methods
of KRLO can be represented not only as rules but also as functions,
or as functional relations for the KRLs that do not handle functions.

4.2 For Exporting into a KRL
Given an AE and specifications related to a target KRL, the default
export method specified in KRLO generates a CE for this AE by
i) recursively navigating the parts of that AE, ii) translating each of
these parts when the target model requires it and when, to do so, the
method can find relations, rules or functions that satisfy the
translation properties selected by the user (as noted in Section 2.2),
iii) for each translated or original part, applying the CE specification
associated to this part in the target KRL specification, and
iv) concatenating the resulting CEs. The translation and export
processes are complete with respect to what is expressed by these
relations, rules or functions since there is one rc_spec relation for
each AE in a given type of notation. Each user can control the
translation and export processes. Indeed, she can select not only the
translation properties but also the target notation and the target model
or the target AEs. She can also extend KRLO or adapt her copy of
KRLO, e.g., to adapt some translation rules as explained at the end
of Figure 2. In the general case, knowledge export and translation
are arbitrary in the sense that knowledge can be translated and
exported in various ways. However, this is not the case with KRLO
in the sense that particular ways can be represented and then
selected by the user. The default presentation choices represented in
KRLO permit the user not to do this work if she does not want to.
However, KRLO does not represent all information necessary for
any export or translation to be semantically complete with respect to
any application. E.g., KRLO does not yet represent any inference
strategy and hence the order of statements generated by translation
and export processes may not be adequate for a particular inference
strategy. As an example, rules may be generated in an order that
lead to infinite loops if they are used with a Prolog inference engine.

Ad-hoc forms can be used when the target KRL is not formally
expressive enough to represent an AE , e.g., when a statement such
as “in 2015, at least 78% of birds in UK were able to fly, according
to ...” has to be translated into RDF+OWL. If the specification of a
target KRL describes such forms, our default export method uses
them. Otherwise, the source forms are kept but within comments or
annotations to isolate them from formal translations.

4.3 For Translating Between KRLs
For KRL translation, in addition to equivalence or implication
relations between types of AE, KRLO currently proposes some
equivalences or implications via functions and rules. These rules

and functions are for translations between structures, e.g., between
i) non-binary relations and binary ones, ii) different structures for
meta-statements (formulas about formulas), and iii) some kinds of
definitions and some uses of universal quantification with
implication or equivalence relations. These structural translations
are simple: they can be expressed via RIF-BLD rules and do not
require the complex strategies of general term/graph rewriting
techniques. Backward chaining is sufficient to exploit them. Thus,
KRLO does not specify a default translation method for combining
these translation rules or functions.

For translations not yet supported by KRLO, the user has to import
complementary ontologies. E.g., a RIF-BLD enabled inference
engine that does not hard-code the special semantics of the types of
OWL2-RL can import the RIF-BLD definitions of these types [13].
KRLO does not define types which are not logic-related, e.g., types
for physical quantities or dimensions. Thus, if a KRL notation has
some syntactic sugar for such types, the notation specification has to
reuse types that are not defined in KRLO but in other ontologies.
Using them for translation may require special translation methods.

5. CONCLUSION
One contribution of this article was to present the interest of
exploiting an homogeneous ontology of KRL models and notations
when implementing tools importing, translating and exporting
knowledge in many KRLs. The beneficiaries of this exploitation are
the tool designers and the tool end-users. Homogeneous domain
ontologies are commonly used instead of rules or procedural code to
reduce coding effort and increase the possibilities of reuse or
parameterization. KRLO permits to do so for the handling of KRLs.
It can also be used to ease the definition and comparison of KRLs.

Another contribution was to show how we created such an
ontology, which main ideas we used, and which first tools we
designed to help its exploitation. A related underlying contribution
is the resulting ontology, KRLO, which i) represents and relates
several models and notations into a unified framework,
ii) declaratively specifies some import and export methods, and
iii) can be extended with additional specifications by Web users.

Our approach provides an ontology-based concise alternative to the
use of XML as a meta-language for creating KRLs. Thus, it is also a
complement to GRDDL, the W3C recommendation for specifying
where a software agent can find tools – e.g., XSLT ones – to convert
a given KRL to RDF/XML. This new avenue is important given the
frequent need for applications to i) integrate or import and export
from/to an ever growing number of models and notations, ii) exploit
ad hoc uses of them, and iii) let application end-users adapt them.

Our translation server and its inference engine have recently been
implemented by the second author of this article, employee of the
software company Logicells. This company will use this work in
some of its software products for them to i) collect and aggregate
knowledge from knowledge bases, and ii) enable end-users to adapt
the input and output formats to their needs. The goal behind these
two points is to make these products – and the other ones they
interconnect – more (re-)usable, flexible, robust and inter-operable.
By itself, our translation server is currently only a proof of concept,
not a claimed contribution. Our generic KRL analyser is a
contribution but, as noted, is not fully in-line with our approach. We
shall continue our work on KRLO to i) implement declarative
import methods, ii) integrate more abstract models and notations for
KRLs as well as query languages and programming languages, and
iii) complement our notation ontology by a presentation ontology
with concepts from style-sheets and, more generally, user interfaces.

6. REFERENCES
[1] Beek, W., Groth, P., Schlobach, S. and Hoekstra, R. 2014. A

web observatory for the machine processability of structured
data on the web. In Proceedings of the 2014 ACM conference
on Web science, 249-250.

[2] Borras, P., Clément, D., Despeyrouz, Th., Incerpi, J., Kahn, G.,
Lang, B. and Pascual, V. 1988. CENTAUR: the system. In
Proceedings of SIGSOFT'88, 3rd Annual Symposium on
Software Development Environments (Boston, USA), 14-24.

[3] Codescu, M., Horozal, F., Kohlhase, M. , Mossakowski, T. and
Rabe, F. 2011. Project Abstract: Logic Atlas and Integrator
(LATIN). In Intelligent Computer Mathematics 2011, LNCS
6824, 287-289. See also http://trac.omdoc.org/LATIN/

[4] Corby, O. and Dieng, R. 1996. Cokace: a Centaur-based
environment for CommonKADS Conceptual Modeling
Language. In Proceedings of ECAI 1996 (Hungary), 418-422.

[5] Corby, O. and Faron-Zucker, C. 2015. STTL: A SPARQL-
based Transformation Language for RDF. In Proceedings of
WEBIST 2015 (Lisbon, Portugal).

[6] Corcho, Ó. 2004. A Layered Declarative Approach To
Ontology Translation With Knowledge Preservation, PhD
Thesis (311 pages), Universidad Politécnica de Madrid.

[7] DOL 2016. The Distributed Ontology, Modeling, and
Specification Language (DOL). OMG document.
http://www.omg.org/spec/DOL/

[8] Euzenat, J. and Stuckenschmidt, H. 2003. The 'family of
languages' approach to semantic interoperability. Knowledge
transformation for the semantic web (eds: Borys Omelayenko,
Michel Klein), IOS press, 49-63.

[9] Hayes P.J. 2006. IKL guide.
http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html

[10] ODM 2014. ODM: Ontology Definition Metamodel, Version
1.1. OMG document formal/2014-09-02.
http://www.omg.org/spec/ODM/1.1/PDF/.

[11] OWL2profiles 2012. OWL 2 Web Ontology Language:
Profiles (Second Edition). W3C Recommendation.
http://www.w3.org/TR/owl2-profiles

[12] OWLinRDF 2012. OWL 2 Web Ontology Language: Mapping
to RDF Graphs (Second Edition). W3C Recommendation.
http://www.w3.org/TR/owl2-mapping-to-rdf

[13] OWLinRIF 2013. OWL 2 RL in RIF (Second Edition). W3C
Working Group Note, http://www.w3.org/TR/rif-owl-rl. See
also http://www.w3.org/TR/2013/REC-rif-rdf-owl-20130205/

[14] Martin, Ph. 2009. Towards a collaboratively-built knowledge
base of&for scalable knowledge sharing and retrieval. HDR
thesis (240 pages; “Habilitation to Direct Research”),
University of La Réunion, France.

[15] Martin, Ph. 2011. Collaborative knowledge sharing and
editing. International Journal on Computer Science and
Information Systems, Vol. 6, Issue 1, 14-29.

[16] RIF-BLD 2013. RIF Basic Logic Dialect (Second Edition).
W3C Recommendation. Editors: H. Boley, M. Kifer.
http://www.w3.org/TR/2013/REC-rif-bld-20130205/

[17] Wielemaker, J., Schreiber, G. and Wielinga, B., 2003. Prolog-
Based Infrastructure for RDF: Scalability and Performance. In
Proceedings of ISWC 2003, LNCS 2870, 644-658.

