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Abstract
Rift Valley fever (RVF) is a zoonotic vector-borne disease causing abortion storms in cattle

and human epidemics in Africa. Our aim was to evaluate RVF persistence in a seasonal

and isolated population and to apply it to Mayotte Island (Indian Ocean), where the virus

was still silently circulating four years after its last known introduction in 2007. We proposed

a stochastic model to estimate RVF persistence over several years and under four seasonal

patterns of vector abundance. Firstly, the model predicted a wide range of virus spread pat-

terns, from obligate persistence in a constant or tropical environment (without needing verti-

cal transmission or reintroduction) to frequent extinctions in a drier climate. We then

identified for each scenario of seasonality the parameters that most influenced prediction

variations. Persistence was sensitive to vector lifespan and biting rate in a tropical climate,

and to host viraemia duration and vector lifespan in a drier climate. The first epizootic peak

was primarily sensitive to viraemia duration and thus likely to be controlled by vaccination,

whereas subsequent peaks were sensitive to vector lifespan and biting rate in a tropical cli-

mate, and to host birth rate and viraemia duration in arid climates. Finally, we parameterized

the model according to Mayotte known environment. Mosquito captures estimated the

abundance of eight potential RVF vectors. Review of RVF competence studies on these

species allowed adjusting transmission probabilities per bite. Ruminant serological data

since 2004 and three new cross-sectional seroprevalence studies are presented. Transmis-

sion rates had to be divided by more than five to best fit observed data. Five years after

introduction, RVF persisted in more than 10% of the simulations, even under this scenario

of low transmission. Hence, active surveillance must be maintained to better understand

the risk related to RVF persistence and to prevent new introductions.
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Introduction
Rift Valley fever (RVF) is a zoonotic and vector-borne disease found in many countries of
Africa. It has caused “abortion storms” in livestock in numerous countries including Kenya,
Tanzania, South Africa and Mauritania, as well as a series of epidemics (200 000 human cases
in Egypt in 1977, 155 deaths in Kenya in 2006 and 19 deaths in Madagascar in 2008–2009) [1–
3]. Due to global changes (intensification of global trade and human mobility, climate change,
etc.), RVF, like other vector borne diseases, has become a genuine threat in other continents
[4]. For instance, RVF was reported in the Arabic peninsula in 2000 [5,6].

Persistence of RVF was unexpected in Mayotte, a 370 km² tropical island with 200 000
inhabitants in the Mozambique Channel. RVF antibodies in cattle were identified for the first
time in 2004 serum databank [7]. In 2008, human cases were genetically linked to the 2006–
2007 Kenya outbreak [8], and thus recent virus introduction through illegal animal import was
suspected. After the virus circulation was observed in Mayotte, a risk assessment procedure
evaluated the risk of persistence as “low” [9], given the limited number of ruminants and their
dispersal, which would slow down the virus spread, the low vector activity at the time of the
assessment and the absence of a wild reservoir,. However, between March 2010 and August
2011, RVF incidence remained high among cattle born in Mayotte (12.9% IC95% = [9.6; 16.2])
and the virus was suspected to have become endemic [10]. Recent field studies in Kenya,
Mozambique and Tanzania have shown inter-epidemic activity of RVF as well [11–14].
Reemergence of RVF in the Horn of Africa was attributed to abnormally high rainfall linked to
El Niño. This could allow, in particular, Aedes eggs infected by vertical transmission to finally
emerge [15–17]. However, interepidemic or endemic RVF activity has been poorly studied.

Mathematic modelling is a useful approach for investigating disease dynamics and address-
ing specific hypotheses in the absence of biological experiments or data [18,19]. A theoretical
mathematical model had already shown that RVF could persist at least 10 years in a closed cat-
tle population with two vector populations of constant size, Culex and Aedes, the latter being
able of vertical transmission [20]. Persistence was also possible in a second model including a
human compartment, and using low and high sets of RVF transmission parameters, but the
authors emphasised the need to test their model against real data. They also underlined that
the conclusions on endemic equilibrium and sensitivity analysis were obviously highly depen-
dent on model parameterisation and design [21]. No model was tested against persistence data
from a real situation so far. Serological studies conducted in Mayotte may now allow that
comparison.

More RVF compartmental models have been developed in the recent years. One of the main
differences between those models is the use of different vector population dynamics. Vector
population dynamics is complex but strongly influences vector-borne disease dynamics. For
instance, overwintering is a burning issue in order to understand Bluetongue or West Nile
Virus behaviour in temperate regions [22]. Concerning RVF, the first models were based on
vector populations of constant sizes [20,21]. More realistic seasonal vector population dynam-
ics were later introduced to study RVF behaviour in specific areas like California [23], Texas
[24], South Africa [25], the Netherlands [26] or Tanzania [27]. Vector population dynamics of
Aedes and Culex were obtained from local vector trapping [23,26] or from more general equa-
tions for birth and development rates using local precipitation and temperature data [28,29].
Nevertheless, there are places where RVF vector dynamics and abundance are not well estab-
lished, hence, theoretical curves have to be used. For instance, Chitnis et al. used two sets of
parameters alternately to describe a wet and a dry season [30]. They defined the minimum ver-
tical transmission level necessary for persistence over time in this setting. Finally, Chamchod
et al. compared the impact of a sinusoidal and a step function of vector abundance on RVF
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dynamics [31]. In this model, RVF introduction produced a first epidemic and could then per-
sist at a low sinusoidal level. New epidemics could be driven only by the introduction of new
susceptible animals or by a wet season very favourable to mosquito succeeding years of
drought. Still, the impact of various seasonal patterns on the drivers of epidemics and persis-
tence was not clearly addressed.

Before focusing on the specific situation of Mayotte, our aim was first to compare the proba-
bility of RVF persistence in different seasonal environments, in an isolated population. A theo-
retical framework was thus needed [32] combining all the exploitable information from
previous models and the knowledge we have on the biological system. We built a stochastic
compartmental model for the spread of RVF in a ruminant population. Four seasonal patterns
were tested, representing a baseline scenario of constant environment and 3 levels of sinusoidal
environment, to study the sensitivity of the virus spread and persistence to type and amplitude
of seasonal forcing [33]. For each scenario, we performed a sensitivity analysis on the variance
of different outputs describing short and long term dynamics. This will help designing specific
studies about significantly influential parameters or targeting those parameters for control in
each specific scenario. The model was secondly applied to Mayotte, where persistence has been
observed since 2004. In order to better fit the model to the observed situation in the island,
three serological surveys in Mayotte were conducted between 2012 and 2013 to complete the
existing knowledge on RVF serological status of cattle in Mayotte. New data on vector relative
abundance in Mayotte were also collected from 2010 to 2012. We reviewed the relevant litera-
ture on the competence of the vectors found in the field. These data allowed for adjusting trans-
mission rates to better reproduce the observed seroprevalence. We finally discussed the
relevance and the perspectives of our findings.

Materials and Methods

Model description
To study RVF persistence, we proposed a stochastic compartmental model (Fig 1) adapted
from Gaff et al. previous work [20]. Our aim was a better understanding of RVF persistence
and humans are unlikely to play a major role [4]. Therefore, we focused on domestic ruminants
and vectors but excluded humans. We considered three populations: ruminant hosts (NH),
adult vectors (NV) and vectors in the aquatic stage (NA).

Ruminant hosts were divided into four mutually exclusive health states: susceptible (SH),
latent (EH), infectious (IH), and recovered and immune (RH) animals. Ruminants could be
infected via two routes. First, susceptible ruminants (SH) could be infected by the bite of an
infected vector (IV). Infection occurrence depends on the probability of success of the transmis-
sion per bite from an infectious vector to a susceptible host (cVH), the biting rate (q) and the
probability of contact (IV/NH). Second, susceptible ruminants (SH) could be infected by con-
tacts with infectious ruminants (IH) either through direct contacts with biological fluids in case
of abortion and slaughter, or through aerosols. The direct transmission depends on the proba-
bility of contact (IH/NH) and the transmission rate (cHH). Since this route of transmission is
controversial and is assumed to be rare, this transmission rate was very low in our model [34].
After infection, incubating ruminants (EH) became infectious after a latent period of several
days (1/δH) [1]. They remained infectious (IH) for a short period (1/ρ), before becoming immu-
nized (RH) for the rest of their life. Birth rate (bH) was assumed to be constant and applied to
susceptible and recovered animals. Latent and infectious ruminants were assumed not to
give birth, taking into account the very high abortion and neonatal death rate in infected ani-
mals [1]. All new-borns were considered to be susceptible (SH). Mortality rate was constant
(mH = bH) and was applied to all health states.
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Vectors consisted of Aedes, Culex and Eretmapodites genera all together since data was not
available to predict their respective abundance in a general context. The vector population was
divided into aquatic (NA) and adult (NV) stages. The aquatic stage (representing eggs, larvae,
and pupae all together) was divided into two mutually exclusive health states: susceptible (SA)
and infected (IA) individuals. The renewal rate (bV), accounting for the egg laying rate and the
survival rate in the different aquatic stages until emergence, was constant and applied to all
adult vectors: susceptible (SV), exposed and latent (EV), and infectious (IV) individuals. Individ-
uals in the aquatic stage could be infected (IA) by vertical transmission of RVF which could
occur, with a probability α, for a proportion r of the infected adult vectors (IV) corresponding
to Aedes [15,34]. Other aquatic individuals were susceptible (SA). Two main processes control
the size of the aquatic population: (1) the competition of larvae for food, modelled here with a
density-dependent mortality rate with a constant constrain KA; (2) the competition for space at
emergence, modelled here with a seasonal function of the emergence rate (φ(t)) reflecting the
change over time of the carrying capacity for the aquatic stage. The density-dependent

Fig 1. Conceptual model of Rift Valley fever (RVF) transmission. Flow diagram describing the model used for RVF spread in populations of adult
mosquitoes (V), aquatic stage of mosquitoes (A) and ruminants hosts (H). Each square represents a health state X in population i (Xi,) with X = S standing for
susceptible, E for latent, I for infectious, and R for recovered and immune animals. The description, values and references for all parameters can be found in
Table 1.

doi:10.1371/journal.pone.0130838.g001
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mortality rate (bV.Nv/KA) did not apply to a proportion ε of the infected aquatic stages (IA) cor-
responding to eggs. We assumed that infected eggs belong only to the Aedes genus and there-
fore are able to resist to desiccation for long periods [2]. The emergence rate (φ(t)) allowed
vectors to move from the aquatic stage to the adult stage. This rate was assumed to be seasonal,
with no prerequisite on the function type, which depends on environmental conditions and the
vector species. Such a seasonal pattern has been evidenced recently as a crucial process in mos-
quito life cycle irrespective of the genus [35].

Adult vectors were divided into three mutually exclusive health states: susceptible (SV),
infected and latent (EV), and infectious (IV) individuals. Adult vectors could become infectious
via two routes: first, infectious adult vectors (IV) could directly emerge from infected eggs (IA)
depending on the emergence rate (φ(t)). Second, susceptible adult vectors (SV) could become
infected (EV) by biting an infectious host (IH). The force of infection depends on the probability
of contact (IH/NH), the probability of transmission per bite (cHV), and the biting rate of adult
vectors (q). Infected vectors (EV) became infectious (IV) after an extrinsic incubation period
(1/δV) [36]. Adult vectors remained infectious (IV) until they die. The mortality rate of adult
vectors (mV), corresponding to one over their lifespan, was independent of their health state.
Despite of the existence of studies showing a reduction in the lifespan of mosquitoes infected
by arboviruses, this phenomenon has been evidenced and quantified only for Cx pipiens in the
case of RVF infection [37] and therefore was neglected here.

The model is described by the following system of ordinary differential equations (ODE):

dSH
dt

¼ bHðSH þ RHÞ � cHH
IH
NH

þ cVHq
IV
NH

� �
SH �mHSH

dEH

dt
¼ cHH

IH
NH

þ cVHq
IV
NH

� �
SH � ðdH þmHÞEH

dIH
dt

¼ dHEH � ðrþmHÞIH
dRH

dt
¼ rIH �mHRH

dSA
dt

¼ bVðSV þ EV þ ð1� arÞIVÞ � φðtÞ þ bVNV

KA

� �
SA

dIA
dt

¼ bVarIV � φðtÞ þ ð1� εÞ bVNV

KA

� �
IA

dSV
dt

¼ φðtÞSA � cHVq
IH
NH

SV �mVSV

dEV

dt
¼ cHVq

IH
NH

SV � ðdV þmVÞEV

dIV
dt

¼ φðtÞIA þ dVEV �mVIV

ðEq1Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Next, a stochastic counterpart of this ODE system was run in discrete time (using a daily
time step) to allow us to estimate the probability of virus persistence. Health transition and
mortality rates (depicted by τij) were transformed into probabilities (pij) as follows: for each
transition from compartment i to compartment j, pij = 1 –exp(-Δt τij). The flow of individuals
between compartments i and j (ΔNij) was then ΔNij = Binomial(Ni, pij), with Ni the number of
individuals in compartment i. In case of multiple transitions from a given compartment, a mul-
tinomial distribution was used [38]. Renewal rate in vectors and births in hosts followed Pois-
son and binomial distributions, respectively.
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Model parameterization, initial conditions and seasonal emergence
scenarios
Parameters used in the model are described in Table 1. The numerical simulations were per-
formed using Scilab 5.3.3 [39] (See S1 Fig for the code). Transmission parameters were set to
the averaged low transmission set of Gaff et al. [20] for a single vector compartment, taking
into account the biting rate.

To launch the simulation, a single infectious host was introduced into the ruminant popula-
tion. Simulations were run over five years.

Vector abundance has been simulated elsewhere either as precipitation and temperature
function, available for only few species of RVF competent vectors [24,25,28,29], or parameter-
ized using data collected in the field [23,26]. To assess the importance of different model
parameters in the absence of longitudinal data pertaining to the mosquito populations, we sim-
ulated four possible scenarios for emergence rates (φi (t)). Each corresponds to a different rain-
fall pattern, with the view to study the sensitivity of the model to the type and size of seasonal
forcing of vector population abundance. Here is the description of the 4 scenarios that we
studied:

- scenario a: emergence rate was constant over the year representing a baseline scenario as used
in some previous models [20,21,40];

- scenario b: emergence rate followed a sinusoidal curve corresponding to a tropical environ-
ment where emergence is possible all year-round with a single rainy season. The average
value of the emergence rate was equal to the constant emergence rate in scenario a.

Table 1. Parameters of the Rift Valley fever (RVF) spreadmodel in mosquito and ruminant populations.

Host parameters Description Value Unit Source

bH Birth rate 1/(5x365) per day [49]

mH Mortality rate bH per day -

cHH Direct transmission rate 1/1000 per day [1,34,52]

cVH Transmission probability from vector to host 0.4 - [20]

1/δH Duration of incubation 2 day [1]

1/ρ Duration of viraemia 6 day [1]

NHint Host population size 30 000 animal [57]

Vector
parameters

Description Value Units Source

bV Renewal rate 4 per day [64]

mV Adult mortality rate 1/20 per day [20,65]

q Biting rate 1/4 per day [65]

cHV Transmission probability from host to vector 0.6 - [20]

1/δV Duration of extrinsic incubation period 6 day [20]

r Proportion of Aedes in the vector population 50% - To our best
knowledge

α Trans-ovarian transmission probability 1/279 x r - [15]

ε Proportion of eggs in the aquatic stages 44% - [64]

φ(t) Emergence rate Environment
dependent

per day See (Eq 2)

θ Minimum development time before emergence in optimum
conditions

5 day [66]

KA Carrying capacity 106 mosquito To our best
knowledge

doi:10.1371/journal.pone.0130838.t001
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Sinusoidal functions have been widely used to describe vector abundance in the absence of
more precise data [22,31,33,41];

- scenario c: emergence rate followed here a less favourable sinusoidal curve: same maximal
and minimal values as scenario b but with a lower mean;

- scenario d: the favourable season lasted for half a year during which emergence followed a
bell curve pattern with the same maximal values as in scenarios b and c. In the second half
of the year, emergence rate was nil. Adult vectors were forced to die 20 days after the start of
the unfavourable period. This scenario corresponds to a more arid environment as
described in models applied to East or South Africa [30,42].

Parameter θ is the minimal development duration of the aquatic stage. It drives the ampli-
tude of the emergence rate scenarios by setting the maximal value of the emergence rate. In the
simulation, the mean development duration was 1/10 days in scenarios a and b, and 1/16 and
1/15 days in scenarios c and d, respectively. This covers the observed range of development
duration for most mosquitoes which takes from a few days to weeks depending on environ-
mental conditions [20,43,44].

Equations and the resulting population abundance of these four scenarios are described in
Eq 2 and Fig 2:

φaðtÞ ¼
1

2y

φbðtÞ ¼ ðsinð 2p
365

tÞ þ 1Þ 1

2y

φcðtÞ ¼ ððsinð 2p
365

tÞ þ 1Þ 1
2
Þ3 1
y

φdðtÞ ¼
(
sinð 2p

365
tÞ 1
y
; t 2 ½365ðk� 1Þ þ 1 : 365ðk� 1Þ þ 182�; in year k

0; t 2 ½365ðk� 1Þ þ 183 : 365k�; in year k

ðEq2Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Model outputs
The model predicted the distribution of vectors and hosts in the different health states over
time. We also computed the probability of virus persistence over time (hereafter called ‘persis-
tence’), defined as the proportion of the stochastic repetitions in which there was at a given
time t at least one infected vector (adult or aquatic stage) or one infected host. The number of
repetitions was a compromise between steady output distribution and simulation time. Each
simulation comprised 1500 repetitions of the stochastic model.

The following aggregated outputs were also considered:

- persistence one and five years after the introduction of the virus into the population;

- mean number of infectious vectors in the aquatic stage (meanIA) in case of persistence, from
the second year after introduction until the end of the simulation (excluding the epizootic
peak during the first year);

- maximum proportion of infectious ruminants in year one, two, and three, in case of persis-
tence (maxIHk in year k);

- mean proportion of recovered animals (i.e. seroprevalence) in case of persistence (meanRH)
from the second year until the end of the simulation;

- mean proportion of ruminants infected via direct transmission in case of persistence.

Modelling RVF Persistence, Application to Mayotte Island
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Sensitivity analysis
First, we explored the model predictions assuming no vertical transmission in vectors for each
of the four seasonal scenarios. Second, to evaluate the effect of variations in the different
parameters (including vertical transmission) and their first order interactions on the

Fig 2. Aquatic stage emergence rate (A) and adult vector population patterns (B). The 4 lines represent the value taken by the emergence rate φ(t) and
the adult vector population (NV) over time for each seasonality scenario. In the simulations, the one-year pattern is repeated for as many years as needed.

doi:10.1371/journal.pone.0130838.g002
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aggregated outputs presented above, we carried out a sensitivity analysis using a Fractional Fac-
torial Design sampling method [45] (using the FACTEX procedure in SAS software. Copyright,
SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.) for each of the four scenarios
with a variation of 10% below and above the nominal value of each parameter. Following this
method, 2187 sets of parameters were computed for each scenario made up of 1500 repetitions.
For each output in each scenario, a linear regression model was fitted with all of the principal
effects of the parameters and their first-order interactions. The global contribution of parame-
ter i (including the principal effect plus interactions in which parameter i is involved) to the
variation in output y was:

Cy
i ¼

SSyi þ 1
2

P
jSS

y
i:j

SSytot
;

with the total sum of squares of the model for output y, the sum of squares related to the princi-
pal effect for parameter i for output y (nil if parameter i is not retained in the model), the sum
of squares related to the interaction between parameter i and parameter j for output y (nil if
this interaction is not retained in the model). The sum of the contributions for output y equals
the coefficient of determination of the regression model R2. Statistical analyses were performed
with R 2.15.0 [46].

Case study: the island of Mayotte, France
The model was applied to the island of Mayotte, with vector transmission probability per bite
adjusted to what is known about RVF vectors in Mayotte. First, relative abundance of RVF
competent vectors was estimated based on recent entomological captures [47]. Reviewing the
literature on competence of these species allowed us to gather information on RVF transmis-
sion probability per bite for each species. Since transmission is expected to be affected by
numerous parameters in Mayotte environment (blood meal in dead-end hosts, lower contact
rates due to vegetation and animal handling), an adjusted contact rate coefficient (k) was esti-
mated, in this context, by comparing observed seroprevalence found in the literature until our
latest seroprevalence survey, in 2012–2013, with the recovered hosts percentage predicted by
the model using a range of different set for transmission rates cVH x k and cHV x k. The detailed
steps to estimate cVH, cHV and k are described thereafter.

Observed vector abundance and known transmission probability. We considered vector
species found in a field study in Mayotte between 2010 and 2012 by the ARS (Agence Régionale
de Santé, the regional health services) (see [47] for details on the protocol).

Vectors were repeatedly trapped in five farms representing five different ecological sites
throughout the island. Dissemination (DR) and transmission (TR) probabilities for each spe-
cies were looked for in the literature excluding studies with intrathoracic inoculation of RVF
because it could overestimate the dissemination. We averaged the relative abundance for the
vector species with an available DR (respectively TR) over the whole trapping period and over
the five sites. Then, the host-to-vector (cHV) (respectively vector-to-host cVH) transmission
probability was estimated as the mean of all DR values (respectively TR values) weighted by the
relative abundance of the respective species. Parameter α was calculated taking into account
the proportion of competent vectors belonging to the Aedes genus found in the field study.
Mayotte has a tropical climate homogeneous for the whole territory (S2 Fig) with temperature
favorable to mosquitoes all year round. The dry and rainy seasons last on average six months
each, with rainfall under and above 100 mm per month, respectively (S2 Fig for precipitation
and temperature in Mayotte). Natural or anthropogenic sites are available all year round but
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their abundance depends on the season. Especially in rural areas, Aedes aegypti was shown to
fluctuate between dry and rainy season [48]. Hence, a sinusoidal seasonality (scenario b) was
used because it is thought to better fit the entomological dynamics as observed in Mayotte
(Thomas Balenghien, personal communication). No difference was made in this model
between small ruminants and cattle. Viraemia is indeed about the same for these species [1]. In
the absence of precise data on the extensive small ruminant production system in Mayotte (12
619 animals, mainly goats) we used the same value for birth rate as in cattle [49]. Based on our
knowledge, there is no significant seasonal variation in ruminant (cattle and small ruminants)
birth rate in Mayotte [49]. The day/night cycle is more or less constant and most farmers are
not yet willingly trying to control births to adapt them to economic constraints. Hence, we
used a constant birth rate.

Observed seroprevalence in Mayotte. Seroprevalence data was collected between 2004
and 2011 in the bibliography and three times in the field between 2012 and 2013 in order to
compare the model outcome with observations in Mayotte.

Search engines were used to find publications on PubMed (http://www.ncbi.nlm.nih.gov/)
and ScienceDirect (http://www.sciencedirect.com/) using key words “Rift Valley fever” AND
“Mayotte” in English and French. Thirty-two publications were found. Local veterinary ser-
vices and research institutions were interviewed to find seroprevalence data in unpublished
documents, reports or databases. Original datasets were obtained upon request to the authors
in order to specify temporal frames and to calculate confidence intervals when necessary.From
May 2012 to April 2013, ruminants were selected to obtain a representative sample of the rumi-
nant population of Mayotte. We divided Mayotte into five zones to cover each agro-ecosystem
(Fig 3). The 30 farms included in the study were randomly selected from the most comprehen-
sive database available in Mayotte from the Chambre de l’Agriculture, de la Pêche et de l’Aqua-
culture de Mayotte (CAPAM, a local public agricultural institution). All ruminants older than
six months of age for cattle and three months of age for small ruminants (beyond colostral
immunity) belonging to the same owner were eligible for inclusion in the study.

Three rounds of blood sampling were conducted. The first round was collected between
May and July 2012, the second between September and December 2012, and the third between
February and April 2013. Blood samples were taken from all animals each time, regardless of
the results of previous samples. Sera were analyzed in LVAD (Departmental Laboratory of Vet-
erinary Analysis in Mayotte) with ID Screen RVF competition multi-species (IdVet, France), a
competitive ELISA kit for the detection of anti-RVF antibodies in ruminant sera or plasma.
Seroprevalence and 95% confidence interval taking into account clusterisation of sampling
were computed using the “survey” package in R [46,50].

Ethics statements for the 2012–2013 serological survey. The study protocol was imple-
mented with the approval of the Direction of Agriculture, Food and Forestry (DAAF) of
Mayotte (Project Number NIP42). Animal sampling in this study was not subjected to the
approval of ethics committee neither to specific national of international regulations at the
time of sample collection. Consent for blood sampling on a herd was obtained from its owner
verbally after information in French or Shimaore. The animals were bled without suffering. No
endangered or protected species were involved in the survey.

Comparison of observed and predicted seroprevalence to estimate the likely contact rate
coefficient k. The SIR model was finally run with seasonal scenario b, adjusted α, cVH and
cHV parameters as explained above. A new parameter was introduced “k” to take into account a
more realistic contact rate. Transmission rates were then set to “cVH x k” and “cHV x k”. We
used the least square approach to estimate k. Our aim was to find the value of k that minimized
the distance between the observed and the predicted seroprevalence. We defined the predicted
seroprevalence as the proportion of animals in the recovered status. To compare observed and
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Fig 3. RVF dynamics for different vector emergence scenarios. The 1st column shows the distribution of
hosts for each health state: susceptible (SH) in green, infectious (IH) in red and recovered (RH) in blue, for
1500 model repetitions. The 2nd column shows the infectious vectors. The 3rd column shows the probability of
virus persistence. Each line corresponds to a scenario (Fig 2).

doi:10.1371/journal.pone.0130838.g003
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predicted data, the time of virus introduction in the model was assumed to be the 1st November
2007 when the rainy season started and when approximately the first RVF IgM positive cow
was found in Mayotte, in November 2007 [7]. Proportion of hosts already in the recovered sta-
tus at that date was estimated according to the literature review. Repetitions were kept only if
virus persisted more than three years and 7.5 months which was, to date, the minimum known
duration for RVF activity persistence in Mayotte [7,10]. For each period of seroprevalence
study, the same number of cattle as sampled in the field was sampled in the animal population
simulated by the model. For different values of k (between zero and one) and for each run, we
calculated the sum of square of the differences between the observed and the predicted
seroprevalence.

Results

Dynamics and persistence for each vector emergence scenario
The RVF dynamics observed in the simulations are represented in Fig 4. After the introduction
of an infectious animal, epizootics could occur in repetitions for all scenarios with a peak of
around 40% of the ruminant population being infectious (maxIH1). At the end of the 1

st year,

Fig 4. Sampled farms and zones in Mayotte.

doi:10.1371/journal.pone.0130838.g004
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in repetitions in which the virus persisted, almost 100% of the host population had become
infectious and had recovered. From the second year on, behaviours differed according to vector
emergence scenarios. In scenario a, new infections occurred constantly with the renewal of the
host population so that the infectious hosts remained steady at 0.4% of the population. In the
three other scenarios, when the virus persisted, small epizootics occurred early in the favour-
able season and reached about the same level every year. The maximal proportion of infectious
hosts in the 2nd year (maxIH2) attained 1.4, 3.4, and 4% for scenarios b, c, and d, respectively.
Peaks always occurred several days (5–15 days on average) before the maximal vector abun-
dance was reached. Yearly maximal proportion of infectious hosts was roughly stable from the
2nd year onwards (maxIH2 andmaxIH3). In one repetition (over 1500), in scenario c, we
observed an increase in year 4 of infectious hosts above the value of previous years, reaching
8% of the host population (Fig 4 section cI). Meanwhile, the mean proportion of recovered ani-
mals in case of persistence (meanRH) from the 2nd year until the end of the simulation was of
98, 98, 95, and 94% for scenarios a, b, c, and d, respectively; the mean number of infected vec-
tors in aquatic stage in case of persistence was very low (1.10−3, 2.10−3, 5,1.10−3, and 8,0.10−3%
of the vectors in the aquatic stage for scenarios a, b, c, and d, respectively). Direct transmission
was responsible for very few new cases (5.4 x 10−2%, 5.2 x 10−2%, 6.1 x 10−2%, and 5.7 x 10−2%
of the total cases for scenario a, b, c, and d, respectively).

Without reintroduction, it was possible for RVF virus to persist year after year in the 4 sce-
narios but with different probabilities. In scenarios a and b, the virus persisted in 100% of the
repetitions over 5 years (Fig 4 sections aIII and bIII). In scenarios c and d, the virus persisted
respectively in 80% and 20%,of the repetitions after the first year epidemics (Fig 4 sections cIII
and dIII). Extinctions related to a lack of secondary cases occurred during the favourable sea-
son and persistence remained stable during the less favourable season. At the end of the 5th

year, persistence reached 64% (scenario c) and 12% (scenario d). When assuming no vertical
transmission in vectors, persistence did not change at all for scenarios a and b. It decreased a
little bit faster in scenario c, reaching 55% five years after the introduction of the virus. In sce-
nario d, RVF virus went extinct without vertical transmission after the beginning of the first
unfavourable season, as expected.

Sensitivity analysis
In the sensitivity analysis, in scenario a, persistence reached 100% in most simulations. Hence,
the contribution of different parameters to the variation of this output could not be analysed.
For the other scenarios, eight parameters contributed to more than 2% of the variance of the
persistence one year after the introduction of the virus (Fig 5 and S3 Fig) and explained more
than 70% of the variance. Parameters common to the three scenarios were host population size
(NHint), biting rate (q), mortality rate of adult vectors (mV), carrying capacity of vectors in
aquatic stage (KA) and transmission probability from hosts to vectors (cHV). They had a similar
contribution except biting rate (q), which contributed twice more in scenarios b and c than in
scenario d. Conversely, viraemia duration (1/ρ) contributed to almost half of the persistence
variance (43%) in scenario d, much less (7%) in scenario c, and was negligible in scenario b.
Parameter θ, controlling maximal emergence rate, was influential only in scenarios b and c.
Renewal rate of vectors was influential only in scenario d and at a low level (4% of the vari-
ance). Persistence five years after the introduction of the virus depended, in scenario b, on
exactly the same parameters as in the first year. It was impossible to conclude for scenario c as
the output distribution was bimodal (near 0 or 100%) instead of normal, which is obligatory
for analysis of variance. In scenario d, biting rate (q) and host viraemia duration (1/ρ) were the
most influential parameters on persistence variance until year five (17% and 24% respectively).
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The contribution of parameter variations to the variance of other outputs is shown in Fig 6
and S3 Fig. In all scenarios, adult vector mortality (mV) was the main contributor to variance of
the mean number of infected vectors in the aquatic stage (meanIA), which varied from 50 (sce-
nario a) to 500 (scenario d). For this output only vertical transmission rate (α) was shown to be
an influential parameter (>2%).

More than half of the variance of the maximal proportion of infectious hosts in the first year
(maxIH1) was explained in the four scenarios by viraemia duration (1/ρ) and biting rate (q). In
subsequent years (maxIH2 andmaxIH3), the situation differed between scenarios: viraemia
duration (1/ρ) remained important only in scenarios c and d, host birth rate (bH) had growing
influence in scenarios b, c and d, and adult vector mortality (mV) was influential in scenarios b
and c only.

The variance of the mean proportion of recovered animals in case of virus persistence from
year two to the end of the simulation (meanRH) was explained mainly by the adult vector mor-
tality (mV) and the biting rate (q) in the scenarios a, b and c and by the host birth rate (bH) and
the biting rate (q) in scenario d.

Case study: Mayotte
The entomological study conducted by ARS [47] found at least eight mosquito species in
Mayotte known to be competent for RVF in the literature (Table 2). 7.84% of the mosquitoes
from competent species belonged to Aedes genus (r). Cx quinquevittatus accounted for 45% of
the overall diversity but transmission data were lacking for this species. The averaged dissemi-
nation and transmission rates were 11.04 and 9.47% respectively.

In the serological survey of 2012–2013, we found 30, 33, and 29 positive animals out of 131,
157, and 161, respectively. Using all available knowledge (literature [7,10], an internal report of
2009 and the 2012–2013 serological survey), the seroprevalence observed between 2004 and
2013 ranged from 3% to 35%. At virus introduction, remaining seroprevalence was set to
16.2% as found in the raw data of the study from Cêtre [7] (Fig 7C and Table 3).

Fig 5. Parameter contributions to the variance of virus persistence one year after introduction. A
fractional factorial design was used. Persistence in scenario a did not vary and is not shown here. Parameters
contributing to more than 2% of the variance have been retained (no interaction contributed to more than 2%
of the variance). See Table 1 for parameters, Fig 2 for scenario descriptions and S3 Fig for detailed
parameter contributions.

doi:10.1371/journal.pone.0130838.g005

Modelling RVF Persistence, Application to Mayotte Island

PLOS ONE | DOI:10.1371/journal.pone.0130838 July 6, 2015 14 / 26



Fig 6. Parameter contributions to the variance of other model outputs. A fractional factorial design was used. To facilitate the interpretation, parameters
contributing to more than 10% of the variance are shown. Model outputs are: the mean number of infected vectors in the aquatic stage in case of persistence
(meanIA); the maximum proportion of infectious ruminants during the 1st and 2nd years in case of persistence (maxIH1 vs.maxIH2); the mean proportion of
recovered animals in case of persistence (meanRH) from the 2nd year until the end of the simulation. See Table 1 for parameters and Fig 2 for scenario
descriptions and S3 Fig for detailed parameter contributions.

doi:10.1371/journal.pone.0130838.g006

Table 2. Relative abundance and competence studies review of potential RVF vectors found in Mayotte. Diversity was estimated frommosquito col-
lections carried out over two years (2010–2012) in farms in Mayotte, see [47] for protocol details. “NA(>0)”means that evidences were found in the bibliogra-
phy that the species could disseminate or transmit RVF but no quantified data was available.

Vector species present in Mayotte Relative abundance (%) Dissemination rate DR (%) Transmission rate TR (%) Sources

Ae aegypti* 2.38 49.75 3.50 [67–69]

Ae albopictus* 2.43 22.26 5.33 [69,70]

Ae circumluteolus* 0.30 28.00 19.43 [68,71–73]

Ae fowleri* 0.06 40.29 52.00 [74–76]

An gambiae* 1.75 0.75 NA [69]

Cx antennatus* 2.60 16.50 38.17 [68,77,78]

Cx quinquefasciatus* 45.06 8.33 NA (>0) [36,67–69,79,80]

Er quinquevittatus* 11.38 NA (>0) 4.55 [67,71]

Others (not known as RVF competent) 34.04 - -

Total = 100 cHV = 11.04 cVH = 9.47

*RVF competent species

doi:10.1371/journal.pone.0130838.t002
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Given the model settings, the value of kminimizing the distance between observed and pre-
dicted data was to be found around 0.6 (Fig 8).

Model predictions with values for α, cVH and cHV estimated using the entomological study
and k = 0.6 are found in Fig 8. The virus persisted in 25.5%, 9.5% and 2.1% of the repetitions

Fig 7. Predicted persistence and host infection dynamics with low transmission rates and observed
seroprevalence in Mayotte. (A) Persistence predicted by the model with parameters found in Table 2 and a
lower set of transmission rates (cHV = 0.09, cVH = 0.04, k = 0.6). (B) Host infection dynamics predicted by the
model with parameters found in Table 2 and a lower set of transmission rates (cHV = 0.09, cVH = 0.04, k = 0.6).
Susceptible hosts (SH) are in green, infectious (IH) in red and recovered (RH) in blue. (C) Observed
seroprevalence in ruminants in Mayotte from 2004 to 2013 is in purple. Seroprevalence predicted by the
model, from 2007 on, is in blue. Blue dots represent the median and arrows the 5 and 95% percentiles of the
1500 repetitions.

doi:10.1371/journal.pone.0130838.g007

Modelling RVF Persistence, Application to Mayotte Island

PLOS ONE | DOI:10.1371/journal.pone.0130838 July 6, 2015 16 / 26



after one, five and nine years respectively (Fig 7A). Unlike the above four scenarios, the epizo-
otic maximum could be reached in year one, two or three and the maximum proportion of
infectious ruminants (maxIHk) could vary from year to year and reincrease even after few years
(Fig 7B). When the virus persisted, the proportion of recovered animals oscillated between 6.2
and 43.3% and the proportion of infectious animals increased at the middle of each year. The
predicted seroprevalence varied within the range of observed seroprevalence (Fig 7C). The
mean predicted incidence reached 1500, 3000 and 100 new cases per year in the first, second
and ninth year after virus introduction, respectively.

Table 3. RVF serology studies in ruminants in Mayotte from 2004 to 2013. Data from 2004 to 2011 were obtained from a literature review. Original data
sets could be obtained when source is marked with an asterisk (*). Data from 2012 to 2013 were obtained through new serological surveys. Design effect
refers to the clustering effect of the sampling design [81].

Study beginning-
end

Number of animals
tested

Number of
farms

Number or % of positive
IgG tests

Species Design
effect

Source

Oct 2004 - Feb
2005

243 67 33 Cattle 1.41 [7] *

June 2006—Sept
2006

130 39 16 Cattle 0.84 [7] *

June 2007-March
2008

419 124 68 Cattle 2.39 [7] *

June 2008-Aug
2008

267 12 42 Goat 5.43 [7] *

May 2009-Aug
2009

382 36 135 Cattle 3.46 Dr Sébastien Girard
unpublished*

July 2011—Aug
2011

452 33 25.3% Cattle, goat,
sheep

- [10]

May 2012-July
2012

131 29 30 Cattle 1.21 - *

Sept 2012—Dec
2012

157 28 33 Cattle, goat 1.68 - *

Feb 2013-April
2013

161 29 29 Cattle, goat 1.52 - *

doi:10.1371/journal.pone.0130838.t003

Fig 8. Distance between observed and predicted RVF seroprevalence in Mayotte used to determine the most likely value for transmission rate.
Sum of square of differences between observed and predicted seroprevalence were computed for each of the 1500 repetitions for different values of the
possible transmission rate occurring in Mayotte (k).

doi:10.1371/journal.pone.0130838.g008
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Discussion
This stochastic model is the first one to be used to study RVF persistence probability and its
driving parameters over several years under different seasonal patterns of vector abundance. It
was able to mimic a large range of virus spread patterns, from obligate persistence in a constant
or tropical environment (without needing vertical transmission or reintroduction) to frequent
extinctions in an arid climate. In each seasonality scenario, key parameters influencing the
model predictions were identified. In addition, the model was applied to a real geographical
area (Mayotte) for which we have shown that lower transmission rates than assumed may
explain the observed seroprevalence for the last decade. RVF persistence was possible under
such a scenario of low transmission for more than 10 years.

Accounting for vector abundance seasonality in RVF modelling
Accounting for seasonality in vector abundance is a fundamental concern in vector- borne dis-
eases since vector and pathogen biology and development depend on temperature or precipita-
tion. A recent literature review of mathematical models of mosquito-borne pathogens [51]
noted that only 14 per cent of them included a variation of vector abundance, either sinusoi-
dally or based on a pattern derived from data. But applying it to Mayotte, with no longitudinal
data allowing deriving such equations, is a real challenge. Moreover, while in the Netherlands
and California, models could focus on two competent species only, 40 species of mosquitoes
are known to transmit RVF virus. In Mayotte, we have found eight species able to transmit
RVF virus. The preliminary use of equations from Gong et al. [28] onWest Nile virus vectors
in New Jersey lead to almost constant development and egg laying rates and did not capture
the expert knowledge and the tropical seasonality observed in Mayotte [48]. We decided to
focus on precipitation pattern influencing vector population dynamics by regulating larval hab-
itats availability [44] in an intertropical geographical area. Average temperatures oscillate
between 25 and 28°C all year round in Mayotte and thus cannot impact transmission nor
development time significantly as it would do in California or the Netherlands [23,26]. Our
conceptual framework allowed us to compare 4 qualitative scenarios.

RVF dynamics and persistence depending on vector abundance
scenarios
In all the four scenarios, RVF persistence five years after virus introduction was possible with-
out the need for neither reintroduction of the virus nor for a wild reservoir. But the probability
of persistence varied between scenarios: it decreased as seasonality became less favorable to
vectors. This confirms the low level persistence observed in one previous model with constant
abundance [20]. In Gaff et al. model, epizootic cycles were observed linked with the longevity
of the hosts. In our case, despite the low transmission rates (equivalent to Gaff et al. low sce-
nario), infection was facilitated by a higher vector/host ratio linked to our tropical environ-
ment-oriented model. Our average vector/host ratio is 30 times higher than in Gaff et al.
model, but only three times higher than in rainy season of Chitnis et al. [30] and three times
lower than the sparsely populated area of Fischer et al. work [26]. In the constant scenario, as
soon as new susceptible hosts were born, they were exposed almost immediately to the virus,
independently of host population renewal rate. This difference is also noticeable in the size of
the first year epidemic peak: around 40% in our model against 0.12% to 12% in Gaff et al. work
[20]. The important impact of vector/host ratio on epidemic size was also underlined in the
recent study of Chamchod et al. [31]
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The two first scenarios a and b with same mean emergence rate behaved identically in terms
of persistence. Unexpectedly, the two intermediate sinusoidal scenarios b and c produced very
different persistence probabilities confirming the complex influence of type and amplitude of
seasonal forcing [33]. A variation in the dry season length, as between scenario b and c, can be
misleading about the assessment of the potential of persistence of RVF. Here we showed that,
in a tropical humid environment, persistence after one year was at least five times more likely
than in the drier environment proposed in scenario d.

Subsequent epidemics seem extremely rare (only one run on 1500 in scenario c) and would
indeed probably require inter-annual precipitation variations, recruitment of susceptible ani-
mals or an asynchronous metapopulation system [30,32,52].

Key parameters controlling RVF dynamics and persistence: use in
control measures design
According to this model, persistence control should not rely on the same strategies as epizootic
control. To prevent or reduce the impact of the first epizootic, a very quick and efficient vacci-
nation could be beneficial for all scenarios to reduce the duration of viraemia, responsible of
50% of the variation of this output. This supports the strategy suggested by Chamchod et al. in
a constant environment [31]. For greater efficiency, Gaff et al. added the culling to the vaccina-
tion [40].

Sensitivity analysis of variance of persistence showed a more complex interplay of parame-
ters than the analysis of first year epidemic peak, but still no interaction was significant. Persis-
tence depended on different parameters for each scenario: it was mainly influenced by the
biological traits of vectors in the tropical wet scenarios b and c and by host related parameters
(mainly viraemia) in scenario d when a dry season occurred with no vector activity. While per-
sistence behaved the same, at first sight, in the constant and sinusoidal scenarios, their sensitiv-
ity analysis diverged. A 10% variation had indeed almost no impact on scenario a persistence.
In scenario d, viraemia controlled the proportion of infected eggs in overwintering eggs; hence
influenced the size of the emerging infectious vector population during the next rainy season,
and consequently likelihood of RVF persistence. This mechanism of persistence was also sug-
gested for overwintering by previous work [22]. Moreover, for persistence on a longer term,
host birth rate became influential by allowing a larger susceptible population to be exposed to
minor new epizootics when the favourable season resumes.

It suggests that vaccination would be also useful to prevent persistence in arid climates (sce-
nario d). In the other cases, potential targets for control measures include vector mortality rate
and biting rate. However, mosquito control is hard to implement in tropical islands such as
Mayotte, where animals are spread over large areas of forest in low concentrations. To limit the
risk for humans, mosquito control could be employed around houses, although the cost would
be high to be truly efficient since part of the population lives in poor construction suburbs or in
slums surrounded by dense vegetation and are not accessible to vehicles. Still, transmission
mainly via animal slaughtering and maybe via consumption of raw milk (a common traditional
practices in Mayotte [53]) would remain possible [1,2,34]. In the future, our model could be
used to develop and evaluate control strategies using adapted indicators for seasonal environ-
ments, as proposed in Charron et al. [54].

Transmission rates barely influenced persistence in this sensitivity analysis design, in accor-
dance to Chitnis et al. and Fischer et al. conclusions [26,30]. Therefore, uncertainty of their val-
ues, in the 10% proposed range above and under nominal values, would barely impact model
predictions. Transmission rates were influential only in Gaff et al.’s model [20,26,30] which
had a much lower vector/host ratio and a wide range of uncertainty. Direct transmission was
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not a remarkable influential parameter either. Moreover it was unsufficient to allow for persis-
tence in scenario d.

Limited information is available on vertical transmission [15]. With a parameter value
lower than in earlier models [20,30], and within the range found in other models [26,23], we
still observed persistence in our model. The sensitivity analysis showed that infected eggs
played a role only in scenario d (5% and 13% of variance for α and ε), confirming previous
findings [30]. Vertical transmission in vectors was required in scenario d only for overwinter-
ing to occur. In the three other scenarios, even without vertical transmission, persistence could
occur.

Faran et al. [37] found an impact of RVF infection on the survival of Culex pipiens, which is
absent in Mayotte. As no further information was available on vectors found in Mayotte, we
did not take into account this possible reduction of vector lifespan due to infection. However,
this parameter was found as critical in the sensitivity analysis. Therefore, further lab work
should be conducted to better estimate this phenomenon. Birth rate is influential in epidemics
size and seroprevalence rate, thus further investigations on ruminant life traits in Mayotte (cat-
tle and small ruminant birth rate and pulse) and their evolution with modernization of farming
practices are recommended.

Persistence and transmission in Mayotte
Our work supports the hypothesis, developed in a previous study [10], that RVF has become
endemic in Mayotte. It circulated actively on the island with susceptible animals and a favor-
able environment for mosquito vectors to maintain virus transmission locally [10]. Firstly, field
data showed a stability of seroprevalence over the last decade and, secondly, our model could
reproduce an endemic situation without an epizootic peak.

We found eight RVF potential competent vector species in Mayotte. Culex quinquefasciatus
abundance was remarkably high in our trapping compared to a recent study [55], showing the
sensitivity of trapping method to their environment (in our case five ruminant farms).

In order to reproduce observed data, transmission rates were divided by more than five
compared to other models [20,24,25]. Owing to stochasticity, seroprevalence appeared to be
much more variable in this very low transmission situation than in the general framework
developed at first. There are several possible explanations for these low transmission rates in
Mayotte (1) transmission rates measured in vitro cannot be easily extrapolated to field condi-
tions, (2) vector competence of Mayotte vectors has not been measured and can be poor, (3) a
recent study [56] suggested that the RVF virus strain circulating in the Comoros in 2011 was
hard to detect maybe because of a specific deleted virus strain or a low virus load in animals,
(4) the presence of dead-end hosts could lower the biting rate, (5) vector/host ratio might be
reduced due to dense vegetation and the relative isolation of herds (mean size of herd: five
bovines [57]). The use of low transmission rates may converge with Xue et al. model [24]
which found that when only few infectious mosquitoes were present at the beginning of the
simulation, and thus a low contact rate, with infected ones, the epizootic was longer and the
daily incidence was lower. This slower transmission could explain the absence of impact
noticeable in the ruminants of Mayotte because no abortion storm in a short period of time
would happen.

Interannual climatic variation in vector abundance could have been also added to eventually
better explain the seroprevalence peak observed, which the model tends to underestimate.
Indeed, above normal rainfall (1996–2010 data obtained fromMeteoFrance) observed in 2007-
2008-2009 rainy seasons in Mayotte and 2007–2008 climate anomalies underlined by FAO
[58] could have facilitated the virus circulation.
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A wildlife reservoir, namely buffaloes, seemed to explain persistence in Kruger National
Park [42]. It was not considered in Mayotte, since there are no wild ruminants and since other
wild mammals (rats and lemurs) have been tested negative for RVF, so far.

Livestock movements may play an important role in the spread of RVF. In Mayotte, there is
neither market to gather animals nor transhumance as observed in Eastern Africa. This
hypothesis should be further investigated by evaluating more closely movement practices, par-
ticularly when the French national identification database (BDNI) will be functional in
Mayotte. Nevertheless, mechanisms such as asynchrony of climate between different zones
connected by animal movements, as described in Favier et al. [32], were not necessary to allow
for persistence here. The maintenance through illegal animal introduction only, exclusively
from Anjouan, 70km distant-island of the Union of the Comoros is unlikely. Firstly, RVF cir-
culation level is also very low there (RVF was unnoticeable from July 2010 to august 2011)
[59]. Secondly, the illegal transport of ruminants, which was quite common until 2006–2007,
seems to have dropped drastically since then, according to veterinary services and local reports.
Since 2011 and the official attachment of Mayotte to France, illegal transport by boat between
Anjouan and Mayotte became also more controlled and thus more dangerous and expensive
making it less interesting to transport cattle, though not impossible (couple of live ruminants
are still seized every year). This aspect should still be carefully monitored to assess reemergence
potential.

The impact of RVF in Mayotte (abortion or loss of production in cattle and human cases) is
still unknown. Seroprevalence data showed the presence of IgG against RVF virus back to 2004
[7]. The circulation of RVF virus between 2004 and 2007 in Mayotte is unclear since only IgG
but no IgM were found in cattle [7]. An increase in seroprevalence was observed between 2007
and 2009 with records of seroconversions in ruminants until 2011 [10]. Human cases were
reported sporadically between 2007 and 2012 in the Comoros Archipelago [53,60]. Only one
RVF related abortion in ruminant was identified in Mayotte during this period [61]. Only
active surveillance would help assessing RVF real impact and whether the circulation has now
faded out, like in 90% of our simulations five years after introduction, or has remained silent.

Conclusion and modelling perspectives
Seasonality in vector abundance has been shown to play a key role in shaping RVF persistence
through a complex interplay between biological characteristics of vectors and virus and host
characteristics which importance varies from scenario to scenario. We have shown that RVF
persistence may occur in a single tropical population with a low transmission scenario without
the need for virus reintroduction and even with no or very low vertical transmission. Hence,
active surveillance must be maintained to better understand the risk related to RVF persistence
and to prevent any new introductions.

“This model can be easily adapted to other climatic conditions by rendering the emergence
function relevant for other vector species and areas, or by using longitudinal relative vector
abundance as observed in the field. In addition, parameters considered as constant in tropical
areas (e.g. incubation rate) can be replaced by temperature functions, more relevant for tem-
perate areas.”

As the heterogeneity in the spatial distribution of vectors and hosts may impact arbovirus
spread to a large extent [62], an extension of our model to account for this heterogeneity
(urban slums, forest, agricultural zones and the archipelago metapopulation situation) would
enable us to better study RVF spread in a low transmission scenario and to link it with neigh-
bouring territories dynamics. Human activities could also be included, through many aspects:
(1) slaughter seasonality or farming practices may influence the persistence of RVF; (2) In
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urban areas, human behaviour might even be more influential than climate seasonality on vec-
tor dynamics [48,63]. Finally, building dynamic models for vector abundance adaptable to dif-
ferent localisations and environments have to be encouraged by extending our knowledge on
vector biology from field and laboratory works.
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