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Abstract. Concolic testing is a popular dynamic validation technique
that can be used for both model checking and automatic test case gen-
eration. We have recently introduced concolic testing in the context of
logic programming. In contrast to previous approaches, the key ingredi-
ent in this setting is a technique to generate appropriate run-time goals
by considering all possible ways an atom can unify with the heads of
some program clauses. This is called “selective” unification. In this pa-
per, we show that the existing algorithm is not complete and explore
different alternatives in order to have a sound and complete algorithm
for selective unification.

1 Introduction

A popular approach to software validation is based on so called concolic execution
[4, 11], which combines both concolic and symbolic execution [6, 3, 1]. Concolic
testing [4] is a technique based on concolic execution for finding run time errors
and automatically generating test cases. In this approach, both concrete and
symbolic executions are performed in parallel, so that concrete executions may
help to spot (run time) errors—thus avoiding false positives—and symbolic ex-
ecutions are used to generate alternative input data—new test cases—so that a
good coverage is obtained.

In concolic testing of imperative programs, one should augment the states
with a so called path condition that stores the constraints on the variables of
the symbolic execution. Then, after a (possibly incomplete) concolic execution,
these constraints are used for producing alternative input data (e.g., by negating
one of the constraints). Furthermore, and this is one of the main advantages of
concolic testing over the original approach based solely on symbolic execution, if
the constraints in the path condition become too complex, one can still take some
values from the concrete execution to simplify them. This is sound (but typically
incomplete) and often allows one to explore a larger execution space than just
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giving up (as in the original approach based only on symbolic execution). Some
successful tools that are based on concolic execution are, e.g., CUTE [11], SAGE
[5], and Java Pathfinder [10].

We have recently introduced concolic testing in the context of logic program-
ming [7]. There, a concolic state has the form 〈S ][ S′〉, where S and S′ are
sequences of concrete and symbolic goals,3 respectively. In logic programming,
the notion of symbolic execution is very natural. Indeed, the structure of both
S and S′ is the same—the sequences of atoms have the same predicates and
in the same order—and the only difference is that some atoms might be less
instantiated in S′ than in S.

A key ingredient of concolic testing in logic programming is the search for
new concrete goals so that alternative paths can be explored, thus improving
the coverage achieved so far. Let us illustrate it with an example. Consider the
following (labelled) logic program:

(ℓ1) p(s(a)). (ℓ4) q(a). (ℓ6) r(a).
(ℓ2) p(s(W ))← q(W ). (ℓ5) q(b). (ℓ7) r(c).
(ℓ3) p(f(X))← r(X).

Given the initial goal p(f(a)), a concolic execution would combine a concrete
execution of the form

p(f(a))→id r(a)→id true

where id denotes the empty substitution, with another one for the more general
goal p(N):

p(N)→{N/f(Y )} r(Y )→{Y/a} true

that only mimicks the steps of the former derivation despite being more general.
The technique in [7] would basically produce the following concolic execution:

〈p(f(a))id ][ p(N)id 〉❀c({ℓ3},{ℓ1,ℓ2,ℓ3})〈r(a)id ][ r(Y ){N/f(Y )}〉
❀c({ℓ6},{ℓ6,ℓ7}) 〈trueid ][ true{N/f(a)}〉

where the goals are annotated with the answer computed so far. Roughly speak-
ing, the above concolic execution is comprising the two standard SLD derivations
for p(f(a)) and p(N) above. Moreover, it also includes some further information:
the labels of the clauses that unified with each concrete and symbolic goals.

For instance, the first step in the concolic execution above is labelled with
c({ℓ3}, {ℓ1, ℓ2, ℓ3}). This means that the concrete goal only unified with clause
ℓ3, but the symbolic goal unified with clauses ℓ1, ℓ2 and ℓ3. Therefore, when
looking for new run time goals that explore alternative paths, one should look
for goals that unify with ℓ1 but not with ℓ2 and ℓ3, that unify with ℓ1 and ℓ2 but
not with ℓ3, and so forth. In general, we should look for atoms that unify with

3 Following the linear semantics of [12], we consider sequences of goals to represent
the leaves of the SLD tree built so far.
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all (and only) the feasible—i.e., those for which a solution exists—sets of clauses
in {{}, {ℓ1}, {ℓ1, ℓ2}, {ℓ1, ℓ2, ℓ3}, {ℓ2}, {ℓ2, ℓ3}}. Also, some additional constraints
on the groundness of some arguments are often required (e.g., to ensure that
the generated goals are valid run time goals and, thus, will be terminating). A
prototype implementation of the concolic testing scheme for pure Prolog, called
contest, is publicly available from http://kaz.dsic.upv.es/contest.html.

In this paper, we focus on the so called selective unification problem that
must be solved in order to produce the alternative goals during concolic testing.
To be more precise, a selective unification problem is determined by a tuple
〈A,H+,H−, G〉 where

– A is the selected atom in a symbolic goal, e.g., p(N),
– H+ are the atoms in the heads of the clauses we want A to unify with, e.g.,

for {ℓ1, ℓ2} in the example above, we have H+ = {p(s(a)), p(s(W ))},
– H− are the atoms in the heads of the clauses we do not want A to unify

with, e.g., for {ℓ1, ℓ2} in the example above, we have H− = {p(f(X))},
– G is a set with the variables we want to be ground, e.g., {N}.

In this case, the problem is satisfiable and a solution is {N/s(a)} since then
p(s(a)) will unify with both atoms, p(s(a)) and p(s(W )), but it will not unify
with p(f(X)) and, moreover, the variable N is ground.

In contrast, the case {ℓ1} is not feasible, since there is no ground instance of
p(N) such that it unifies with p(s(a)) but not with p(s(W )).

In [7], we introduced a first algorithm for selective unification. Unfortunately,
this algorithm was incomplete. In this paper, we further analyze this problem,
identifying the potential sources of incompleteness, proving a number of prop-
erties, and introducing refined algorithms which are sound and complete under
some circumstances.

This paper is organized as follows. After some preliminaries in Section 2, Sec-
tion 3 recalls and then extends some of the developments in [7]. Then, Section 4
introduces refined versions of the algorithm for which we can obtain stronger re-
sults. Finally, Section 5 concludes and points out several possibilities for future
work.

2 Preliminaries

We assume some familiarity with the standard definitions and notations for logic
programs as introduced in [2]. Nevertheless, in order to make the paper as self-
contained as possible, we present in this section the main concepts which are
needed to understand our development.

We denote by |S| the cardinality of the set S. In this work, we consider
a first-order language with a fixed vocabulary of predicate symbols, function
symbols, and variables denoted by Π , Σ and V , respectively. We let T (Σ,V)
denote the set of terms constructed using symbols from Σ and variables from V .
Positions are used to address the nodes of a term viewed as a tree. A position p
in a term t, in symbols p ∈ Pos(t), is represented by a finite sequence of natural
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numbers, where ǫ denotes the root position. We let t|p denote the subterm of
t at position p and t[s]p the result of replacing the subterm t|p by the term s.
The depth depth(t) of a term t is defined as: depth(t) = 0 if t is a variable and
depth(f(t1, . . . , tn)) = 1+max(depth(t1), . . . , depth(tn)), otherwise. We say that
t|p is a subterm of t at depth k if there are k nested function symbols from the
root of t to the root of t|p. An atom has the form p(t1, . . . , tn) with p/n ∈ Π and
ti ∈ T (Σ,V) for i = 1, . . . , n. The notion of position is extended to atoms in the
natural way. A goal is a finite sequence of atoms A1, . . . , An, where the empty
goal is denoted by true. A clause has the form H ← B where H is an atom and
B is a goal (note that we only consider definite programs). A logic program is
a finite sequence of clauses. Var(s) denotes the set of variables in the syntactic
object s (i.e., s can be a term, an atom, a query, or a clause). A syntactic object
s is ground if Var(s) = ∅. In this work, we only consider finite ground terms.

Substitutions and their operations are defined as usual. In particular, the
set Dom(σ) = {x ∈ V | σ(x) 6= x} is called the domain of a substitution σ.
We let id denote the empty substitution. The application of a substitution θ
to a syntactic object s is usually denoted by juxtaposition, i.e., we write sθ
rather than θ(s). The restriction θ |̀V of a substitution θ to a set of variables
V is defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise. We say
that θ = σ [V ] if θ |̀V = σ |̀V . A syntactic object s1 is more general than a
syntactic object s2, denoted s1 6 s2, if there exists a substitution θ such that
s2 = s1θ. A variable renaming is a substitution that is a bijection on V . Two
syntactic objects t1 and t2 are variants (or equal up to variable renaming),
denoted t1 ∼ t2, if t1 = t2ρ for some variable renaming ρ. A substitution θ is a
unifier of two syntactic objects t1 and t2 iff t1θ = t2θ; furthermore, θ is the most
general unifier of t1 and t2, denoted by mgu(t1, t2) if, for every other unifier σ
of t1 and t2, we have that θ 6 σ. We write t1 ≈ t2 to denote that t1 and t2 unify
for some substitution, which is not relevant here. By abuse of notation, we also
use mgu to denote the most general unifier of a conjunction of equations of the
form s1 = t1 ∧ . . .∧ sn = tn, i.e., mgu(s1 = t1 ∧ . . .∧ sn = tn) = θ if siθ = tiθ for
all i = 1, . . . , n and for every other unifier σ of si and ti, i = 1, . . . , n, we have
that θ 6 σ.

We say that a syntactic object o is linear if it does not contain multiple
occurrences of the same variable. A substitution {X1/t1, . . . , Xn/tn} is linear if
t1, . . . , tn are linear and, moreover, they do not share variables.

3 The Selective Unification Problem

In this section, we first recall the unification problem from [7]. There, an al-
gorithm for “selective unification” was proposed, and it was conjectured to be
complete. Here, we prove that it is indeed incomplete and we identify two sources
of incompleteness.

Definition 1 (selective unification problem). Let A be an atom with G ⊆
Var(A) a set of variables, and let H+ and H− be finite sets of atoms such that all
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atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪H−. Then, the
selective unification problem for A w.r.t. H+, H− and G is defined as follows:

P(A,H+,H−, G) =



σ|̀Var(A)

∀H ∈ H+ : Aσ ≈ H
∧ ∀H ∈ H− : ¬(Aσ ≈ H)
∧ Gσ is ground





When the considered signature is finite, the following algorithm is sound and
complete for solving the selective unification problem: first, bind the variables of
A with terms of depth 0. If the condition above does not hold, then we try with
terms of depth 1, and check it again. We keep increasing the considered term
depth until a solution is found. Moreover, there exists a finite number n such
that, if a solution has not been found when considering terms of depth n, then
the problem is not satisfiable.

Theorem 1. Let A be a linear atom with G ⊆ Var(A), H+ be a finite set
of linear atoms and H− be a finite set of atoms such that all atoms are pair-
wise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. Then, checking that
P(A,H+,H−, G) 6= ∅ is decidable.

Proof. Here, we assume the naive algorithm sketched above. Let us first consider
that all atoms in {A}∪H+ ∪H− are linear. Let k be the maximum depth of the
atoms in {A} ∪H+ ∪H−. Consider the set

Θ′ = {θ | Dom(θ) ⊆ Var(A), depth(Aθ) 6 k + 1}

On Θ′, we define the binary relation θ1 ≃ θ2 iff Aθ1 ∼ Aθ2. The relation ≃ is an
equivalence relation. Let Θ = Θ′/≃. The set Θ is usually large but finite. Now,
we proceed by contradiction and assume that the problem is satisfiable but there
is no solution in Θ.

Let σ ∈ P(A,H+,H−, G) be one of such solutions with σ 6∈ Θ. Let k′ 6 k be
the maximum depth of the atoms inH+. Let s1, . . . , sn be the non-variable terms
at depth k′+1 or higher in Aσ, which occur at positions p1, . . . , pn. Trivially, all
atoms in H+ should have a variable at depth k′ or lesser in order to still unify
with Aσ. Therefore, replacing these terms by any term would not change the
fact that it unifies with all atoms in H+. Formally, (. . . (Aσ[t1]p1

) . . .)[tn]pn
≈ H

for all H ∈ H+ and for all terms t1, . . . , tn.
Now, let us consider the negative atoms H−. Let us focus in the worst case,

where the maximum depth of the atoms in H− is k ≥ k′. Since ¬(Aσ ≈ H) for
all H ∈ H− and (. . . (Aσ[t1]p1

) . . .)[tn]pn
≈ H for all H ∈ H+ and for all terms

t1, . . . , tn, let us choose terms t′1, . . . , t
′
n such that ¬((. . . (Aσ[t′1]p1

) . . .)[t′n]pn
≈

H) for all H ∈ H− and (. . . (Aσ[t′1]p1
) . . .)[t′n]pn

has depth k + 1. Note that
this is always possible since, in the worst case, for each term in the atoms of
H− at depth k, we might need a term at depth k + 1 (when the term in the
atom of H− is the only constant of the signature, so we need to introduce a
function symbol and another constant if the argument should be ground). Let
σ′ ⊆ Dom(A) be a subtitution such that Aσ′ = (. . . (Aσ[t′1]p1

) . . .)[t′n]pn
. Then,

σ′ ∈ P(A,H+,H−, G) with σ′ ∈ Θ and, thus, we get a contradiction.
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Extending the proof to non-linear atoms is not difficult but it is tedious since
we have to consider a higher depth that may depend on the multiple occurrences
of the same variables. ⊓⊔

We conjecture that the above naive algorithm would also be complete for in-
finite signatures (e.g., integers) since the number of symbols in the considered
atoms is finite. Nonetheless, such algorithms may be so inefficient that they are
impractical in the context of concolic testing.

We note that the set P(A,H+,H−, G) is usually infinite. Moreover, even
when considering only the most general solutions in this set, there may still
exist more than one:

Example 1. Consider A = p(X,Y ), H+ = {p(Z,Z), p(a, b)}, H− = {p(c, c)} and
G = ∅. Then, both substitutions {X/a, Y/U} and {X/U, Y/b} are most general
solutions in P(A,H+,H−, G). In principle, any of them is equally good in our
context.

In [7], we have introduced a stepwise method that, intuitively speaking, proceeds
as follows:

– First, we produce some “maximal” substitutions θ for A such that Aθ still
unifies with the atoms in H+. Here, we use a special set U of fresh variables
with Var({A} ∪ H+ ∪ H−) ∩ U = ∅. The elements of U are denoted by U ,
U ′, U1. . . Then, in θ, the variables from U (if any) denote positions where
further binding might prevent Aθ from unifying with some atom in H+.

– In a second stage, we look for another substitution η such that θη is a solution
of the selective unification problem, i.e., θη ∈ P(A,H+,H−, G). Here, we
basically follow a generate and test algorithm (as in the naive algorithm
above), but it is now more restricted thanks to the bindings in θ and the
fact that binding variables from U is not allowed.

In the first stage, we use the variables from the special set U to replace disagree-
ment pairs (see [2] p. 27). Roughly speaking, given terms s and t, a subterm s′

of s and a subterm t′ of t form a disagreement pair if the root symbols of s′ and
t′ are different, but the symbols from s′ up to the root of s and from t′ up to
the root of t are the same. For instance, X, g(a) and b, h(Y ) are disagreement
pairs of the terms f(X, g(b)) and f(g(a), g(h(Y ))). A disagreement pair t, t′ is
called simple if one of the terms is a variable that does not occur in the other
term and no variable of U occurs in t, t′. We say that the substitution {X/s} is
determined by t, t′ if {X, s} = {t, t′}.

Definition 2 (algorithm for positive unification).

Input: an atom A and a set of atoms H+ such that all atoms are pairwise
variable disjoint and A ≈ B for all B ∈ H+.

Output: a substitution θ.

1. Let B := {A} ∪ H+.
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2. While simple disagreement pairs occur in B do

(a) nondeterministically choose a simple disagreement pair X, t (respectively,
t,X) in B;

(b) set B to Bη where η = {X/t}.

3. While |B| 6= 1 do

(a) nondeterministically choose a disagreement pair t, t′ in B;
(b) replace t, t′ with a fresh variable from U .

4. Return θγ, where B = {B}, Aθ = B, Dom(θ) ⊆ Var(A), and γ is a variable
renaming for the variables of Var(Aθ)\U with fresh variables from V\U .

We denote by SU+(A,H+) the set of non-deterministic substitutions computed
by the above algorithm.

Observe that the step (2a) involves two types of non-determinism:

– Don’t care nondeterminism, when there are several disagreement pairs X, t
(or t,X) for different variables. In this case, we can select any of them and
continue with the next step. The final solution would be the same no matter
the selection. This is also true for step (3a), since the order in which the
non-simple disagreement pairs are selected will not affect the final result.

– Don’t know nondeterminism, when there are several disagreement pairs X, t
(or t,X) for the same variable X . In this case, we should consider all possi-
bilities since they may give rise to different solutions.

Example 2. Let A = p(X,Y ) and H+ = {p(a, b), p(Z,Z)}. Therefore, we start
with B := {p(X,Y ), p(a, b), p(Z,Z)}. The algorithm then considers the simple
disagreement pairs in B. From X, a, we get η1 := {X/a} and the action (2b)
sets B to Bη1 = {p(a, Y ), p(a, b), p(Z,Z)}. The substitution η2 := {Y/b} is de-
termined by Y, b and the action (2b) sets B to Bη2 = {p(a, b), p(Z,Z)}. Now, we
have two don’t know nondeterministic possibilities:

– If we consider the disagreement pair a, Z, we have a substitution η3 := {Z/a}
and action (2b) then sets B to Bη3 = {p(a, b), p(a, a)}. Now, no simple
disagreement pair occurs in B, hence the algorithm jumps to the loop at
line 3. Action (3b) replaces the disagreement pair b, a with a fresh variable
U ∈ U , hence B is set to {p(a, U)}. As |B| = 1 the loop at line 3 stops and
the algorithm returns the substitution {X/a, Y/U}.

– If we consider the disagreement pair b, Z instead, we have a substitution
η′3 := {Z/b}, and action (2b) sets B to Bη′3 = {p(a, b), p(b, b)}. Now, by
proceeding as in the previous case, the algorithm returns {X/U ′, Y/b}.

Therefore, SU+(A,H+) = {{X/a, Y/U}, {X/U ′, Y/b}}.

The soundness of the algorithm in Definition 2 can then be proved as follows
(termination is straightforward, see [8]). Note that this result was incomplete in
[7] since the condition on Ran(η) was missing.
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Theorem 2. Let A be an atom and H+ be a set of atoms such that all atoms
are pairwise variable disjoint and A ≈ B for all B ∈ H+. Then, for all θ ∈
SU+(A,H+), we have that Aθη ≈ H for all H ∈ H+ and for any idempotent
substitution η with Dom(η) ⊆ Var(Aθ)\U and Ran(η)∩(Var(H+∪{A})∪U) = ∅.

In order to prove this theorem, we first need the following results, which can be
found in [8, Appendix B.2]:

Lemma 1. Suppose that Aθ = Bθ for some atoms A and B and some sub-
stitution θ. Then we have Aθη = Bηθη for any substitution η with [Dom(η) ∩
Var(B)] ∩Dom(θ) = ∅ and Ran(η) ∩Dom(θη) = ∅.

Proposition 1. The loop at line 3 always terminates and the following state-
ment is an invariant of this loop.

(inv′) For each A′ ∈ {A}∪H+ there exists B ∈ B and a substitution θ such that
A′θ = Bθ, Dom(θ) ⊆ (Var(H+ ∪ {A}) ∪ U) and Var(B) ∩ Dom(θ) ⊆ U .

The proof of Theorem 2 can now proceed as follows:

Proof. Upon termination of the loop at line 3 we have |B| = 1. Let B be the
element of B with Aθ = B, and let θ′ ∈ SU+(A,H+) be a renaming of θ for the
variables of Aθ\U . By Proposition 1, we have that, for all H ∈ H+, there exists
a substitution µ such that Aθµ = Hµ and the following conditions hold:

– Dom(µ) ⊆ (Var(H+ ∪ {A}) ∪ U) and
– Var(Aθ) ∩ Dom(µ) ⊆ U .

Trivially, there exists a unifier µ′ for Aθ′ and H too, and the same conditions
hold: Dom(µ′) ⊆ (Var(H+ ∪ {A}) ∪ U) and Var(Aθ′) ∩ Dom(µ′) ⊆ U .

Now, in order to apply Lemma 1, we need to prove the following conditions:

– [Dom(η) ∩ Var(Aθ′)] ∩ Dom(µ′) = ∅. This is trivially implied by the fact
that Dom(η) ⊆ Var(Aθ′)\U and Var(Aθ′) ∩ Dom(µ′) ⊆ U .

– Ran(η) ∩ Dom(µ′η) = ∅. First, since Dom(µ′η) ⊆ Dom(µ′) ∪ Dom(η), we
prove the stronger claim: Ran(η)∩Dom(µ′) = ∅ and Ran(η)∩Dom(η) = ∅.
The second condition is triviallly implied by the idempotency of η. Regarding
the first condition, it is implied by Ran(η)∩ (Var(H+ ∪{A})∪U) = ∅ since
Dom(µ′) ⊆ (Var(H+ ∪ {A}) ∪ U), which is true.

Therefore, by Lemma 1, we have that Aθ′ηµ′η = Hµ′η and, thus, Aθ′η unifies
with H . Hence, we have proved that Aθ′η unifies with every atom in H+. ⊓⊔

Now we deal with the negative atoms and the groundness constraints by means
of the following algorithm:

Definition 3 (algorithm for selective unification).

Input: an atom A with G ⊆ Var(A) a set of variables, and two finite sets H+

and H− such that all atoms are pairwise variable disjoint and A ≈ B for all
B ∈ H+ ∪H−.
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Output: fail or a substitution θη (restricted to the variables of A).

1. Generate—using a fair algorithm—pairs (θ, η) with θ ∈ SU+(A,H+) and η
an idempotent substitution such that Gθη is ground, Dom(η) ⊆ Var(Aθ)\U
and Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅, otherwise return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−), otherwise return fail.
3. Return θηγ (restricted to the variables of A), where γ is a variable renaming

for Aθη with fresh variables from V\U .

We denote by SU(A,H+,H−, G) the set of non-deterministic (non-failing) sub-
stitutions computed by the above algorithm.

Note that step (1) above is don’t know nondeterministic and, thus, all substi-
tutions in SU+(A,H+) should in principle be considered. On the other hand,
computing the first solution of the above algorithm is enough for concolic testing.

The soundness of the selective unification algorithm is a straightforward con-
sequence of Theorem 2 and the fact that the algorithm in Definition 3 is basically
a fair generate-and-test procedure.

Unfortunately, the selective unification algorithm is not complete in general,
as Examples 3 and 4 below illustrate. Example 3 shows that the algorithm cannot
always compute all the solutions while Example 4 shows that it may even find
no solution at all for a satisfiable instance of the problem.

Example 3. Consider the atom A = p(X1, X2) with G = {X1}, and the sets
H+ = {p(X, g(X)), p(Z,Z)} and H− = {p(g(b),W )}. Here, we have

SU+(A,H+) = {{X1/X
′, X2/U}︸ ︷︷ ︸
θ1

, {X1/U,X2/g(X
′)}︸ ︷︷ ︸

θ2

}

The algorithm is able to compute the solution {X1/g(a), X2/U} from θ1, η =
{X ′/g(a)} and γ = id . However, it cannot compute {X1/g(a), X2/g(X

′)} ∈
P(A,H+,H−, G).

The algorithm fails here because the instantiation of variables from U is not
allowed. In [7], it was incorrectly assumed that any binding of a variable from
U will result in a substitution θ′ such that Aθ′ does not unify will all the atoms
in H+ anymore. However, the universal quantification was not right. For each
variable from U , we can only ensure that there exists some term t such that
binding this variable to t will result in a substitution that prevents A from
unifying with some atom in H+. Therefore, since the algorithm of Definition 3
forbids the bindings of the variables in U , completeness is lost. We will propose
a solution to this problem in the next section

Example 4. Consider A = p(X1, X2), H+ = {p(X, a), p(b, Y )}, H− = {p(b, a)},
and G = ∅. Here, we have SU+(A,H+) = {{X1/b,X2/a}} and, thus, the algo-
rithm in Definition 3 fails. However, the following substitution {X1/Z,X2/Z} is
a solution, i.e., {X1/Z,X2/Z} ∈ P(A,H+,H−, G).
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Unfortunately, we do not know how to generate such non-linear solutions except
with the naive semi-algorithm mentioned at the beginning of this section, which
is not generally useful in practice. Therefore, in the next section we will rule out
these solutions.

4 Recovering Completeness for Linear Selective

Unification

In this section, we introduce different alternatives to recover the completeness
of the selective unification algorithm.

In the following, we only consider a subset of the solutions to the selective
unification problem, namely those which are linear :

Plin(A,H
+,H−, G) = {σ ∈ P(A,H+,H−, G) | σ is linear}

i.e., we rule out solutions like those in Example 4 since we do not know how
such solutions can be produced using a constructive algorithm. We refer to
Plin(A,H+,H−, G) as the linear selective unification problem.

4.1 A Naive Extension

One of the sources of incompleteness of the algorithm in Definition 3 comes from
the fact that the variables from U cannot be bound. Therefore, one can consider
a naive extension of this algorithm as follows:

Definition 4 (extended algorithm for selective unification).

Input: an atom A with G ⊆ Var(A) a set of variables, and two finite sets H+

and H− such that all atoms are pairwise variable disjoint and A ≈ B for all
B ∈ H+ ∪H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Generate—using a fair algorithm—pairs (θ, η) with θ ∈ SU+(A,H+) and η
an idempotent substitution such that Gθη is ground, Dom(η) ⊆ Var(Aθ) and
Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅, otherwise return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−), otherwise return fail.
3. Return θηγ (restricted to the variables of A), where γ is a variable renaming

for Aθη with fresh variables from V\U .

We denote by SU∗(A,H+,H−, G) the set of non-deterministic (non-failing) sub-
stitutions computed by the above algorithm.

In general, though, the above algorithm can be very inefficient since all variables
in Aθ can now be bound, even those in U . Nevertheless, one can easily define a
fair procedure for generating pairs (θ, η) in step (1) above which gives priority
to binding the variables in Var(Aθ)\U , so that the variables from U are only
bound when no solution can be found otherwise.

10



4.2 The Positive Unification Problem

Now, we introduce a more efficient instance of the algorithm for linear selective
unification which is sound and complete when the atoms in A and H+ are linear.
Formally, we are concerned with the following unification problem:

Definition 5 (positive linear unification problem). Let A be a linear atom
and let H+ be a finite set of linear atoms such that all atoms are pairwise variable
disjoint and A ≈ B for all B ∈ H+. Then, the positive linear unification problem
for A w.r.t. H+ is defined as follows:

P+
lin
(A,H+) = {σ|̀Var(A)| (∀H ∈ H

+ : Aσ ≈ H) and σ is linear}

Note that we do not want to find a unifier betweenA and all the atoms inH+, but
a substitution θ such that Aθ still unifies with each atom in H+ independently.
So this problem is different from the usual unification problems found in the
literature.

Clearly, |P+
lin
(A,H+)| ≥ 1 since the identity substitution is always a solution

to the positive linear unification problem. In general, though, the set P+
lin
(A,H+)

is infinite.

Example 5. Let us consider A = p(X) and H+ = {p(f(Y )), p(f(g(Z)))}. Then,
we have {id , {X/f(X ′)}, {X/f(g(X ′))}, {X/f(g(a))}, {X/f(g(f(X ′)))}, . . .}} ⊆
P+
lin
(A,H+), which is clearly infinite.

Therefore, in the following, we restrict our interest to so calledmaximal solutions:

Definition 6 (maximal solution). Let A be a linear atom and H+ be a finite
set of linear atoms such that all atoms are pairwise variable disjoint and A ≈ B
for all B ∈ H+. We say that a substitution θ ∈ P+

lin
(A,H+) is maximal when

the following conditions hold:

1. for any idempotent substitution γ with Dom(γ) ⊆ Var(Aθ)\U and Ran(γ)∩
(Var(H+ ∪ {A}) ∪ U) = ∅, (θγ)|̀Var(A) is still an element of P+

lin
(A,H+),

2. for any variable U ∈ Var(Aθ) ∩ U , we have that (θ{U/t})|̀Var(A) is not an

element of P+
lin
(A,H+) anymore for all non-variable term t, and

3. for any X/t ∈ θ and for all non-variable term t|p, replacing it by a non-
variable term rooted by a different symbol will result in a substitution which
is not an element of P+

lin
(A,H+) anymore.

We let max(A,H+) denote the set of maximal solutions in P+
lin
(A,H+).

Intuitively speaking, given a maximal solution θ, the first condition implies that
(θγ) |̀Var(A) is still a solution of the positive linear unification problem as long as
no variables from U are bound. The second and third conditions mean that the
rest of the symbols in θ cannot be changed, i.e., binding a variable from U with
a non-variable term or changing any constant or function symbol by a different
one, will always result in a substitution which is not a solution of the positive
linear unification problem anymore.

11



Example 6. Consider, e.g.,A = p(X1, X2) andH+ = {p(f(Y ), a), p(f(g(Z)), b)}.
Here, we have {X1/X

′, X2/X
′′} ∈ P+

lin
(A,H+) but it is not a maximal solution,

i.e., {X1/X
′, X2/X

′′} 6∈ max (A,H+) since binding X ′′ to, e.g., a, will result in
a substitution which is not in P+

lin
(A,H+). In contrast, {X1/f(g(Z

′)), X2/U} is
a maximal solution. However, any substitution of the form {X1/f(g(t)), X2/U}
for any non-variable term t is not a maximal solution since the third condition
will not hold anymore (one can change the symbols introduced by t and still get
a solution in P+

lin
(A,H+)). The substitution {X1/f(Y

′), X2/U} is not a maximal
solution as well since binding Y ′ to, e.g., a, will result in a substitution which is
not in P+

lin
(A,H+), hence the first condition does not hold. And the same applies

to {X1/f(U
′), X2/U}, which is not a maximal solution either since we can bind

U ′ to g(X ′) and still get a substitution in P+
lin
(A,H+).

In contrast to P+
lin
(A,H+), the set max(A,H+) is finite, since it is bounded by

the depth of the terms in H+. Actually, for linear atoms in {A} ∪ H+, there is
only one maximal solution.

Proposition 2. Let A be a linear atom and H+ be a finite set of linear atoms
such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+.
Then, the set max (A,H+) is a singleton (up to variable renaming).

Proof. We proceed by contradiction. Let us assume that there are two maximal
solutions σ, θ ∈ max (A,H+), where X/s ∈ σ and X/t ∈ θ for some variable
X ∈ Var(A). Let us consider that s and t differ at position p such that s|p and
t|p are rooted by a different symbol. Now, we distinguish the following cases:

– If s|p and t|p are rooted by different constant or function symbols, we get a
contradiction by condition (3) of maximal solution.

– If s|p is rooted by a constant or function symbol, while t|p is rooted by a
variable from U (or viceversa), we get a contradiction by condition (2) of
maximal solution.

– If s|p is rooted by a constant or function symbol, while t|p is rooted by a
variable from V\U (or viceversa), we get a contradiction either by condition
(1) or (3) of maximal solution.

– Finally, if s|p is rooted by a variable from U , while t|p is rooted by a variable
from V\U (or viceversa), we get a contradiction either by condition (1) or
(2) of maximal solution.

Therefore, the set max (A,H+) is necessarily a singleton. ⊓⊔

Moreover, the following key property holds: a maximal solution can always be
completed in order to get a solution to the linear unification problem when it
is satisfiable. In order to prove this result, we need to recall the definition of
parallel composition of substitutions, denoted by ⇑ in [9].

Definition 7 (parallel composition [9]). Let θ1 and θ2 be two idempotent
substitutions. Then, we define ⇑ as follows:

θ1 ⇑ θ2 =

{
mgu(θ̂1 ∧ θ̂2) if θ̂1 ∧ θ̂2 has a solution (a unifier)
fail otherwise
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where θ̂ denotes the equational representation of a substitution θ, i.e., if θ =
{X1/t1, . . . , Xn/tn} then θ̂ = (X1 = t1 ∧ · · · ∧Xn = tn).

Proposition 3. Let A be a linear atom and H+ be a finite set of linear atoms
such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈
H+. Let θ ∈ max (A,H+) be the maximal solution for A and H+. Then, if
Plin(A,H+,H−, G) is satisfiable (the set contains at least one substitution), then
there exists some substitution γ such that θγ ∈ Plin(A,H+,H−, G).

Proof. For simplicity, we consider that A = p(X), H+ = {p(t1), . . . , p(tn)} and
H− = {p(s1), . . . , p(sm)}. Since the atoms are linear, the claim would follow by a
similar argument. Let θ = {X/t} ∈ max(A,H+) be the maximal solution. Hence,
we have t ≈ ti for all i = 1, . . . , n. Let σ ∈ Plin(A,H+,H−, G) be a solution to
the selective unification problem. By definition of maximal solution, there may
be other solutions to the positive unification problem, but every introduced
symbol cannot be different if we want to still unify with all terms t1, . . . , tn by
condition (3) in the definition of maximal solution. Therefore, both substitutions
must be compatible, i.e., we have θ ⇑ σ = δ 6= fail. Furthermore, taking into
account the negative atoms in H− as well as the groundness constraints w.r.t.
G, δ can only introduce further bindings, but would never require to generalize
any term introduced by θ and, thus, δ can be decomposed as θγ, with θγ ∈
Plin(A,H+,H−, G). ⊓⊔

Therefore, computing the maximal solution suffices to check for satisfiability.
Here, we use again the algorithm in Definition 2 for computing the maximal
solution, with the following differences:

– First, both A and the atoms in H+ are now linear.
– Moreover, step (2a) is now don’t care nondeterministic, so the algorithm will

return a single solution, which we denote by SU+
lin
(A,H+).

Proposition 4. Let A be a linear atom and H+ be a finite set of linear atoms
such that all atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+.
Then, SU+

lin
(A,H+) = max(A,H+).

Proof. (sketch) The fact that SU+
lin
(A,H+) returns a singleton is trivial by defini-

tion, since the algorithm has no don’t know nondeterminism and no step admits
a failure.

Regarding the fact that θ is a maximal solution, let us prove that all three
conditions in Definition 6 hold. The first condition of maximal solution follows
by Theorem 2, which is proved for the more general case of arbitrary (possibly
non-linear) atoms. The third condition holds from the fact that in step (2) of
SU+

lin
only symbols from the atoms A and H+ are introduced following a mgu-

like algorithm; therefore they are possibly not necessary, but cannot be replaced
by different symbols and still unify with all the atoms in H+. Finally, the second
condition derives from step (3) of SU+

lin
where non-simple disagreement pairs are

replaced by fresh variables from U and, thus, any binding to a non-variable term
would result in Aθ not unifying with some atom of H+. ⊓⊔
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4.3 Dealing with the Negative Atoms

The algorithm SU in Definition 3 is now redefined as follows:

Definition 8 (algorithm for linear selective unification).

Input: a linear atom A with G ⊆ Var(A) a set of variables, and two finite sets
H+ and H− such that the atoms in H+ are linear and all atoms are pairwise
variable disjoint and A ≈ B for all B ∈ H+ ∪H−.

Output: fail or a substitution θη (restricted to the variables of A).

1. Let {θ} = SU+
lin
(A,H+). Then, generate—using a fair algorithm—linear

idempotent substitutions η such that Gθη is ground, Dom(η) ⊆ Var(Aθ)\U
and Ran(η) ∩ (Var(H+ ∪ {A}) ∪ U) = ∅, otherwise return fail.

2. Check that for each H− ∈ H−, ¬(Aθη ≈ H−), otherwise return fail.
3. Return θηγ (restricted to the variables of A), where γ is a variable renaming

for Aθη with fresh variables from V\U .

We denote by SU lin(A,H+,H−, G) the set of non-deterministic (non-failing)
substitutions computed by the above algorithm.

Example 7. Consider againA = p(X1, X2) andH+ = {p(f(Y ), a), p(f(g(Z)), b)},
together withH− = {p(f(g(a)), c)} and G = {X1}. The algorithm for linear pos-
itive unification returns the maximal substitution {X1/f(g(Z

′)), X2/U}. There-
fore, the algorithm for linear selective unification would eventually produce a
solution of the form θ = {X1/f(g(b)), X2/X

′} since Aθ = p(f(g(b), X ′) unifies
with p(f(Y ), a) and p(f(g(Z)), b) but not with p(f(g(a)), c) and, moreover, X1

is not ground. However, if we consider a non-maximal solution, the algorithm
in Definition 3 may fail, even if there exists some solution to the linear selec-
tive unification problem. This is the case, e.g., if we consider the non-maximal
solution {X1/f(g(a)), X2/U}.

Theorem 3 (soundness). Let A be a linear atom with G ⊆ Var(A), H+ be
a finite set of linear atoms and H− be a finite set of atoms such that all atoms
are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪ H−. Then, we have
SU lin(A,H+,H−, G) ⊆ Plin(A,H+,H−, G).

Proof. The claim follows from Proposition 4 by assuming that the don’t know
nondeterministic substitutions considered in step (1) of the algorithm of Defini-
tion 8 are obtained by a fair generate-and-test algorithm which produces substi-
tutions systematically starting with terms of depth 0, then depth 1, etc., as in
the naive algorithm described at the beginning of Section 3.

The following result states the completeness of our algorithm. In principle, we
do not guarantee that all solutions are computed using our algorithms, even for
the linear case. However, we can ensure that if the linear selective unification
problem is satisfiable, our algorithm will find at least one solution.
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Theorem 4 (completeness). Let A be a linear atom with G ⊆ Var(A), H+

be a finite set of linear atoms and H− be a finite set of atoms such that all
atoms are pairwise variable disjoint and A ≈ B for all B ∈ H+ ∪H−. Then, if
Plin(A,H+,H−, G) 6= ∅ (i.e., it is satisfiable), then SU lin(A,H+,H−, G) 6= ∅.

Proof. By Proposition 3, if Plin(A,H+,H−, G) 6= ∅ and θ is the computed
maximal solution, then there exists a substitution γ such that (θγ) |̀Var(A)∈

Plin(A,H+,H−, G). Moreover, such a substitution γ can be obtained by a fair
generate-and-test algorithm such as that considered in Definition 8. Finally, the
claim follows by Proposition 4 which ensures that the algorithm in Definition 2
will always produce the maximal solution for A and H+.

In general, though, we cannot ensure that all solutions are computed (which
is not a drawback of the algorithm since we are only interested in finding one
solution if it exists):

Example 8. Consider againA = p(X1, X2) andH+ = {p(f(Y ), a), p(f(g(Z)), b)},
together with H− = {p(g(W ), c)} and G = ∅. The algorithm for linear positive
unification returns the maximal substitution {X1/f(g(Z

′)), X2/U}. Therefore,
it is impossible that the algorithm in Definition 3 could produce a solution like
{X1/f(X

′), X2/X
′′} ∈ Plin(A,H+,H−, G).

5 Discussion

In this paper, we have studied the soundness and completeness of selective unifi-
cation, a relevant operation in the context of concolic testing of logic programs.
In contrast to [7], we have provided a refined correctness result (one condition
was missing in [7]), and we have also identified the main sources of incomplete-
ness for the algorithm in [7]. Then, we have introduced several refinements so
that the procedure is now sound and complete w.r.t. linear solutions. We are not
aware of any other work that deals with the kind of unification problems that
we consider in this paper.

Clearly, the fact that we only consider linear solutions (i.e., the relation Plin)
means that our procedure can be incomplete in general. For instance, we consider
the problem shown in Example 4 unsatisfiable, though a nonlinear solution exists.
Nevertheless, we do not expect this restriction to have a significant impact in
practice and, moreover, concolic testing algorithms are usually incomplete in
order to avoid a state explosion. On the other hand, the refined algorithm in
Sections 4.2 and 4.3 only considers linear atoms. This restriction may have a
more significant impact since many programs have nonlinear atoms in the heads
of the clauses and/or equalities in the bodies. In such cases, we can still resort
to using the algorithm of Section 4.1, though it may be less efficient.

As for future work, we are considering to introduce a technique to “linearize”
the atoms in A∪H+ by introducing some constraints which could be solved later
in the algorithm (e.g., replacing p(X,X) by p(X,Y ) and the constraint X = Y ).
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Another interesting line of research involves improving the efficiency of the
selective unification algorithm. For this purpose, we plan to investigate the con-
ditions ensuring the following property:

if Plin(A,H
+,H−, G) = ∅, then Plin(Aθ,H

+,H−, G) = ∅ for all substitution θ

If this property indeed holds, then one could check statically the satisfiability
of all possible selective unification problems in a program, e.g., for atoms of the
form p(X1, . . . , Xn). We can then use this information during concolic testing to
rule out those problems which we know are unfeasible no matter the run time
values (denoted by θ). From our preliminary experience with the tool contest
(http://kaz.dsic.upv.es/contest.html), this might result in significant effi-
ciency improvements.

Finally, we are also considering the definition of a possibly approximate for-
mulation of selective unification which could be solved using an SMT solver. This
might imply a loss of completeness, but will surely improve the efficiency of the
process. Moreover, it will also allow a smoother integration with the constraint
solving process which is required when extending our concolic testing technique
to full Prolog programs.
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