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ABSTRACT
Program termination is a hot research topic in program anal-
ysis. The last few years have witnessed the development of
termination analyzers for programming languages such as C
and Java with remarkable precision and performance. These
systems are largely based on techniques and tools coming
from the field of declarative constraint programming. In this
paper, we first recall an algorithm based on Farkas’ Lemma
for discovering linear ranking functions proving termination
of a certain class of loops. Then we propose an extension
of this method for showing the existence of eventual linear
ranking functions, i.e., linear functions that become rank-
ing functions after a finite unrolling of the loop. We show
correctness and completeness of this algorithm.

Keywords
termination analysis, ranking function, eventual linear rank-
ing function.

1. INTRODUCTION
Program termination is a hot research topic in program

analysis. The last few years have witnessed the development
of termination analyzers for mainstream programming lan-
guages such as C [16] and Java [1, 21, 24] with remarkable
precision and performance. These systems are largely based
on techniques and tools coming from the field of declarative
constraint programming.

Beyond the specificities of the targeted programming lan-
guages and after several abstractions (see, e.g., [24]), termi-
nation analysis of entire programs boils down to termination
analysis of individual loops. Various categories of loops have
been identified: for the purposes of this paper we focus on
single-path linear constraint (SLC) loops [9].

We first recall some notions and notations. For n ∈ N, we
denote by Qn the n-dimensional vector space on the field of
rational numbers Q.
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A vector v ∈ Qn can be also interpreted as a matrix in
Qn×1 and manipulated accordingly using the usual defini-
tions for addition, multiplication (both by a scalar and by
another matrix), and transposition, denoted by vT. For
each i = 1, . . . n, vi denotes the i-th component of the (col-
umn) vector v = (v1, . . . , vn)T ∈ Qn. The scalar product of
v,w ∈ Qn, denoted 〈v,w〉, is the rational number

vTw =

nX
i=1

viwi.

Now, an SLC loop over n variables x1, . . . , xn has the
form

while (B x ≤ b) do A

„
x
x′

«
≤ c

where x = (x1, . . . , xn)T and x′ = (x′1, . . . , x
′
n)T are column

vectors of variables, B ∈ Zp×n is an integer matrix, b ∈ Zp,
A ∈ Zq×2n and c ∈ Zq. Such a loop can be conveniently
written as a constraint logic programming rule:

p(x)← Bx ≤ b, A

„
x
x′

«
≤ c, p(x′).

When variables take their values in Z (resp., Q), we call
such loops integer (resp., rational) loops. They model a
computation that starts from a point x; if B x ≤ b is false,
the loop terminates; otherwise, a new point x′ is chosen that
satisfies

A

„
x
x′

«
≤ c

and iteration continues replacing the values of x by the cor-
responding ones of x′.

Loop termination can always be ensured by a ranking
function ρ, a function from Zn or Qn to a well-founded
set. As the range of ρ is well-founded, the computation
terminates. To the best of our knowledge, decidability of
universal termination of SLC loops (i.e., from any starting
point and for any choice of the next point at each iteration)
is an open question. Some sub-classes have been shown to
be decidable [12, 15, 25]. For instance, Braverman proves
that termination of loops where the body is a deterministic
assignment x′ := Ax is decidable when the variables range
over Q. The problem is open for the non-deterministic case,
as stated in his paper. On the other hand, various general-
izations have been shown to be undecidable [11].

A way to investigate loop termination is to restrict the
class of the considered ranking functions. In the following
section, we recall a well-known technique for computing lin-
ear ranking functions for rational SLC loops.



In Section 3 we present the main contribution of the paper,
namely the definition of eventual linear ranking functions:
these are linear functions that become ranking functions af-
ter a finite unrolling of the loop.1 We shall see that the
number of unrolling is not pre-defined, but depends on the
data processed by the loop. Section 3 presents complete de-
cision procedures for the existence of eventual linear rank-
ing functions of SLC loops. The presentation is gradual and
illustrates the algorithms by means of constraint logic pro-
gramming (CLP) technology and dialogues with real CLP
tools. Section 4 discusses related work and a preliminary
experimentation conducted on the benchmarks proposed in
two very recent papers. Section 5 concludes the paper.

2. LINEAR RANKING FUNCTIONS
We first define the notion of linear (resp., affine) ranking

function for an SLC loop.

Definition 2.1. Let C be the SLC loop

p(x)← c(x,x′), p(x′)

where p is an n-ary relation symbol. A linear (resp., affine)
ranking function ρ for C is a linear (resp., affine) map from
Qn to Q such that

∀x,x′ : c(x,x′) =⇒ ρ(x) ≥ 1 + ρ(x′) ∧ ρ(x) ≥ 0.

In words, the continuation of the iteration, i.e., c(x,x′),
entails that ρ stays positive and strictly decreases by at least
1 for each iteration. We point out that if c(x,x′) is not sat-
isfiable, the loop ends immediately and any linear function
is a ranking function. In the paper, we assume that c(x,x′)
is satisfiable.

Remark 2.2. Definition 2.1 might seem too restrictive
when working with rational numbers as one might prefer to
replace the decrease by 1 by a decrease by ε, a fixed posi-
tive quantity. Actually, by multiplying such an ε-decrease
ranking function by 1/ε, we see that the two definitions are
equivalent with respect to the existence of a ranking function.

Remark 2.3. Although the class of affine ranking func-
tions subsumes the class of linear ranking functions, any de-
cision procedure for the existence of linear ranking functions
can be extended to a decision procedure for the existence of
affine ranking functions. To see this, note that an affine
ranking function for

p(x)← c(x,x′), p(x′)

is a linear ranking function for

p(x, y)← c(x,x′), y = 1, y′ = 1, p(x′, y′),

where y is distinct from the variables in x.

In this section, we focus on linear ranking functions for
SLC loops. After the presentation of a formulation of Farkas’
Lemma we consider the problem of verifying linear ranking
functions, and then the detection of such ranking functions.

1A preliminary version of this work, in French, was pre-
sented in [2].

2.1 Farkas’ Lemma
A linear inequation I over rational numbers is a logical

consequence of a finite satisfiable conjunction S of linear
inequations when I is a linear positive combination of the
inequations of S. More formally, let S be8<: a1,1x1 + · · · + a1,nxn + b1 ≥ 0

· · · + · · · + · · · + · · · ≥ 0
am,1x1 + · · · + am,nxn + bm ≥ 0.

and suppose that S has at least one solution. Farkas’ Lemma
states the equivalence of

∀x1, . . . , xn : S =⇒ (c1x1 + · · ·+ cnxn + d ≥ 0)

and

∃λ1 ≥ 0, . . . , λm ≥ 0 .“
d ≥

Xm

i=1
λibi

”
∧

n̂

j=1

“
cj =

Xm

i=1
λiai,j

”
.

2.2 Verification
Given an SLC loop C and a linear function ρ, we can

easily check whether ρ is a ranking function for C by testing
the unsatisfiability of

c(x,x′) ∧ ρ(x) < 1 + ρ(x′)

or

c(x,x′) ∧ ρ(x) < 0.

This test has polynomial complexity and can be done with
a complete rational solver such as , e.g., CLP(Q) [20].

Example 2.4. For the SLC loop C:

p(x, y)← x ≥ 0, y′ ≤ y − 1, x′ ≤ x+ y, y ≤ −1, p(x′, y′)

the linear function ρ(x, y) = x is a ranking function, as
proved by the following SICStus Prolog session.

?- use_module(library(clpq)).

% library(clpq) compiled

true.

?- {X >= 0, Y1 =< Y - 1, X1 =< X + Y, Y =< -1,

X < 1 + X1}.

false.

?- {X >= 0, Y1 =< Y - 1, X1 =< X + Y, Y =< -1,

X < 0}.

false.

?-

2.3 Detection
Given an SLC loop, we would like to know whether it ad-

mits a linear ranking function ρ. This problem, which has
been studied in depth [5, 6, 22, 23], is decidable in polyno-
mial time.

Let us consider Example 2.4 and formally ask whether
there exists a ranking function of the form ρ(x, y) = ax+by:

∃a, b . ∀x, y, x′, y′ :

(
x ≥ 0, x′ ≤ x+ y,

y ≤ −1, y′ ≤ y − 1

)

=⇒

(
ax+ by ≥ 1 + ax′ + by′,

ax+ by ≥ 0.
(1)



This formulation of the problem is executable by quanti-
fier elimination on a symbolic computation system like Re-
duce [19]:

1: load_package redlog;

2: rlset r;

3: F:=ex({a,b},all({x,y,x1,y1},

(x>=0 and y1<=y-1 and x1<=x+y and y<= -1)

impl

(a*x+b*y>=1+a*x1+b*y1 and a*x+b*y>=0)));

4: rlqe F;

Statement 1 loads the quantifier elimination module. State-
ment 2 defines R as the domain of discourse. Statement 3

initializes formula F . Statement 4 runs quantifier elimina-
tion over F and returns an equivalent formula, true in this
case. Hence, formula F is true and there exists at least one
linear ranking function. We can now determine the coeffi-
cients of function ρ as follows:

5: G:=all({x,y,x1,y1},

(x>=0 and y1<=y-1 and x1<=x+y and y<= -1)

impl

(a*x+b*y>=1+a*x1+b*y1 and a*x+b*y>=0));

6: rlqe G;

We obtain

a2 − ab ≥ 0 ∧ a− b 6= 0 ∧ a > 0 ∧ b = 0

∧ (a2b− ab2 ≤ 0 ∨ a2 − ab = 0 ∨ a2 − 2ab− a+ b2 + b ≥ 0)

∧ (a2 − ab = 0 ∨ a2 − 2ab− a+ b2b ≥ 0),

and all values for a and b satisfying the above formula, such
as a = 1 and b = 0, are equally good. Unfortunately,
the complexity of the algorithms involved will prevent us
from systematically obtaining such a result within accept-
able time and memory bounds.

We now recall the most famous algorithm for this prob-
lem [22].2 Considering a and b as parameters of the problem,
we can apply Farkas’ Lemma. For the strict decrease of the
ranking function we have

∀x, y, x′, y′ :

(
x ≥ 0, x′ ≤ x+ y,

y ≤ −1, y′ ≤ y − 1

)
=⇒ ax+ by ≥ 1 + ax′ + by′. (2)

Application of Farkas’ Lemma to this problem can be de-
picted as follows:

λ1 : 1x + 0y + 0x′ + 0y′ + 0 ≥ 0
λ2 : 1x + 1y − 1x′ + 0y′ + 0 ≥ 0
λ3 : 0x + 1y + 0x′ − 1y′ − 1 ≥ 0
λ4 : 0x − 1y + 0x′ + 0y′ − 1 ≥ 0
=⇒

ax + by − ax′ − by′ − 1 ≥ 0

We know that formula (2) is equivalent to the existence of
four non-negative rational numbers λ1, . . . , λ4 such that:(

a = λ1 + λ2, −a = −λ2,

b = λ2 + λ3 − λ4, −b = −λ3, −1 ≥ −λ3 − λ4.

(3)

2See also [5, 6].

The positivity of the ranking function, that is,

∀x, y, x′, y′ :

(
x ≥ 0 x′ ≤ x+ y

y ≤ −1 y′ ≤ y − 1

)
=⇒ ax+ by ≥ 0 (4)

can be written as

λ′1 : 1x + 0y + 0x′ + 0y′ + 0 ≥ 0
λ′2 : 1x + 1y − 1x′ + 0y′ + 0 ≥ 0
λ′3 : 0x + 1y + 0x′ − 1y′ − 1 ≥ 0
λ′4 : 0x − 1y + 0x′ + 0y′ − 1 ≥ 0
=⇒

ax + by + 0x′ + 0y′ + 0 ≥ 0.

By Farkas’ Lemma, formula (4) is equivalent to the existence
of four other non-negative rational numbers λ′1, . . . , λ′4 such
that: 8><>:

a = λ′1 + λ′2, 0 = −λ′2,
b = λ′2 + λ′3 − λ′4, 0 = −λ′3,

0 ≥ −λ′3 − λ′4.
(5)

Summarizing, by Farkas Lemma, formula (1) is equivalent
to the conjunction of formulas (3) and (5):

∃a, b . ∃λ1, . . . , λ4, λ
′
1, . . . , λ

′
4 ≥ 0 .8>>>>>><>>>>>>:

a = λ1 + λ2, −a = −λ2,

b = λ2 + λ3 − λ4, −b = −λ3,

a = λ′1 + λ′2, 0 = −λ′2,
b = λ′2 + λ′3 − λ′4, 0 = −λ′3,
−1 ≥ −λ3 − λ4, 0 ≥ −λ′3 − λ′4.

(6)

In theory, the problem of the existence of a linear ranking
function is polynomial. Since computing one solution (that
is, values for a and b) is not harder than determining its
existence, a “witness” function, which would constitute a
termination certificate, can also be computed in polynomial
time.

The space of all linear ranking functions as defined in Defi-
nition 2.1, described by parameters a and b, can be obtained
by elimination of λi and λ′i from (6) using, e.g., the algo-
rithm of Fourier-Motzkin. For example the SICStus Prolog
program

fm(A, B) :-

{L1 >= 0, L2 >= 0, L3 >= 0, L4 >= 0,

LP1 >= 0, LP2 >= 0, LP3 >= 0, LP4 >= 0,

A = L1 + L2, B = L2 + L3 - L4,

A = L2, B = L3, 1 =< L3 + L4,

A = LP1 + LP2, B = LP2 + LP3 - LP4,

0 = LP2, 0 = LP3, 0 =< LP3 + LP4}.

can be queried as follows:

| ?- fm(A, B).

B = 0, {A >= 1}.

| ?-

It can be shown that the computed answer is equivalent
to the (significantly more involved) condition generated by
Reduce.



3. EVENTUAL LINEAR RANKING FUNC-
TIONS

In the previous section we have illustrated a method to
decide the existence of a linear ranking function for a ra-
tional SLC loop, something that implies termination of the
loop. Of course, the method cannot decide termination in
all cases.

Example 3.1. The loop

p(x, y)← x ≥ 0, y′ ≤ y − 1, x′ ≤ x+ y, p(x′, y′)

does not admit a linear ranking function.

Can we conclude that such loop does not always termi-
nate? No, because it may admit a non-linear ranking func-
tion.

In this section we will extend the previous method so as to
detect eventual linear ranking functions, that is, linear func-
tions that behave as ranking functions after a finite number
of executions of the loop body. Suppose that the considered
SLC loop is always given with a linear function f(x, y) that
increases at each iteration of the loop in the following sense:

Definition 3.2. Let C be the SLC loop

p(x)← c(x,x′), p(x′).

A function f(x) is increasing for C if it is linear and satis-
fies: ∀x,x′ : c(x,x′) =⇒ f(x′) ≥ 1 + f(x).

Example 3.3. Since y decreases by at least 1 at each it-
eration, the function f(x, y) = −y is increasing for the loop
of Example 3.1.

Remark 3.4. The generalization to affine functions is use-
less. Moreover, as we are merely interested in the existence
of an increasing function, the value of the increase (1 or
ε > 0) is irrelevant.

We can now give the definition which is central to our
paper.

Definition 3.5. Let C be the rational SLC loop in clausal
form

p(x)← c(x,x′), p(x′),

where p is an n-ary relation; let also f(x) be a linear increas-
ing function for C. An eventual linear ranking function ρ
for (C, f) is a linear map of Qn to Q such that

∃k . ∀x,x′ :
`
c(x,x′) ∧ f(x) ≥ k

´
=⇒

`
ρ(x) ≥ 1 + ρ(x′) ∧ ρ(x) ≥ 0

´
.

For comparison with Definition 2.1, remark that the thresh-
old k is existentially quantified and that f(x) ≥ k is imposed
in the implication antecedent. It should also be noted that,
if such a rational k exists, then each k′ ≥ k satisfies the
condition of Definition 3.5. On the other hand, since, by
hypothesis, f strictly increases at each iteration, there are
two cases: either f is bounded from above by a constant,
and thus the loop will terminate; or, after a finite number of
iterations, f will cross the threshold k and ρ becomes a lin-
ear ranking function in the sense of Section 2 so that, again,
the loop terminates.

Eventual linear ranking functions are a generalization of
linear ranking functions.

Proposition 3.6. Let C be an SLC loop. If ρ is a lin-
ear ranking function for C, then there exists an increasing
function f such that (C, f) has an eventual linear ranking
function.

Proof. By hypothesis, there exists a linear ranking func-

tion ρ(x) for C. The linear function f(x)
def
= −ρ(x) is non-

positive and strictly increasing for C. Considering k = 1 it

can be seen that the function ρ′(x)
def
= 0 is an eventual linear

ranking function for (C, f).

The generalization is strict as the loop of Example 3.1 has
no linear ranking function, but does have an eventual linear
ranking function, as will be shown in the next section.

3.1 Detection given a Linear Increasing Func-
tion

As a first step towards full automation of the synthesis of
eventual linear ranking functions, we assume that an SLC
loop is given with a particular linear increasing function.
Let us consider, e.g., the SLC loop of Example 3.1 and the
increasing function of Example 3.3. Defining ρ(x, y) = ax+
by, ρ is an eventual linear ranking function when

∃a, b, k . ∀x, y, x′, y′ :

(
x ≥ 0, x′ ≤ x+ y,

−y ≥ k, y′ ≤ y − 1

)

=⇒

(
ax+ by ≥ 1 + ax′ + by′,

ax+ by ≥ 0.

This definition of the problem, that we will denote for brevity
with ∃a, b, k . φ(a, b, k), is also solvable via quantifier elimi-
nation, hence the problem is decidable. Considering a, b and
k as parameters, we can apply Farkas’ Lemma as follows:

λ1 : 1x + 0y + 0x′ + 0y′ + 0 ≥ 0
λ2 : 1x + 1y − 1x′ + 0y′ + 0 ≥ 0
λ3 : 0x + 1y + 0x′ − 1y′ − 1 ≥ 0
λ4 : 0x − 1y + 0x′ + 0y′ − k ≥ 0
=⇒

ax + by − ax′ − by′ − 1 ≥ 0
ax + by ≥ 0.

Hence, formula φ(a, b, k) is equivalent to the conjunction of
formulas DEC(a, b, k), i.e.,

∃λ1 ≥ 0, . . . , λ4 ≥ 0 .(
a = λ1 + λ2, −a = −λ2,

b = λ2 + λ3 − λ4, −b = −λ3, −1 ≥ −λ3 − kλ4,

ensuring the decreasing of the ranking function, and the for-
mula POS(a, b, k), that is,

∃λ′1 ≥ 0, . . . , λ′4 ≥ 0 .(
a = λ′1 + λ′2, 0 = −λ′2
b = λ′2 + λ′3 − λ′4, 0 = −λ′3 0 ≥ −λ′3 − kλ′4,

ensuring the positivity of the ranking function.
Let us focus on DEC(a, b, k). We observe that the product

kλ4 leads to a non-linearity that we can circumvent by not-
ing that, as λ4 ≥ 0, either λ4 = 0 (hence kλ4 = 0) or λ4 > 0.
In the latter case, we introduce a new variable P = kλ4. We
have the property:



Lemma 3.7. Formula ∃k . DEC(a, b, k) is equivalent to
the disjunction DEC1(a, b) ∨DEC2(a, b).

In our case, DEC1(a, b) is equivalent to

∃λ1, λ2, λ3 ≥ 0 .(
a = λ1 + λ2, −a = −λ2,

b = λ2 + λ3, −b = −λ3, −1 ≥ −λ3,

and DEC2(a, b) is equivalent to

∃λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, λ4 > 0, P .(
a = λ1 + λ2, −a = −λ2,

b = λ2 + λ3 − λ4, −b = −λ3, −1 ≥ −λ3 − P.

Proof. (=⇒) Let k be a rational number and λi’s for
1 ≤ i ≤ 4 four non-negative rational numbers such that
DEC(a, b, k) holds. If λ4 = 0 then DEC(a, b, k) simplifies to
DEC1(a, b) which is true. If λ4 > 0, we take P = kλ4 and
we can see that DEC2(a, b) is true.
(⇐=) Assume first that DEC1(a, b) is true. Then, taking
λ4 = 0 and k = 0 (any rational number would be fine for
k), we see that ∃k . DEC(a, b, k) is true. Assume then that
DEC2(a, b) is true. Taking k = P/λ4 (this is always pos-
sible as λ4 > 0), we observe that there exists k such that
DEC(a, b, k) is true.

For the positivity condition, we can prove in a similar way

Lemma 3.8. Formula ∃k . POS(a, b, k) is equivalent to
the disjunction POS1(a, b) ∨ POS2(a, b).

In our case, POS1(a, b) is equivalent to

∃λ′1, λ′2, λ′3 ≥ 0 .(
a = λ′1 + λ′2, 0 = −λ′2,
b = λ′2 + λ′3, 0 = −λ′3, 0 ≥ −λ′3,

and POS2(a, b) to

∃λ′1, λ′2, λ′3 ≥ 0, λ′4 > 0, P ′ .(
a = λ′1 + λ′2, 0 = −λ′2,
b = λ′2 + λ′3 − λ′4, 0 = −λ′3, 0 ≥ −λ′3 − P ′.

Combining the previous results gives

Proposition 3.9. Formula ∃k.φ(a, b, k) is equivalent to
[DEC1(a, b) ∨DEC2(a, b)] ∧ [POS1(a, b) ∨ POS2(a, b)].

Proof. Thanks to the previous lemmata, it only remains
to justify the equivalence between the formulas ∃k . φ(a, b, k)
and ∃k . DEC(a, b, k) ∧ ∃k . POS(a, b, k).

(=⇒) Let k0 be a rational such that φ(a, b, k0). We have
DEC(a, b, k0) and POS(a, b, k0) because

φ(a, b, k) ⇐⇒ DEC(a, b, k) ∧ POS(a, b, k).

(⇐=) Assume the existence of kd such that DEC(a, b, kd)
and the existence of kp such that POS(a, b, kp). Then the ra-
tional k0 = max(kd, kp) verifies DEC(a, b, k0)∧POS(a, b, k0)
and shows that ∃k . φ(a, b, k).

Back to our initial problem, the existence of an eventual
linear ranking function is equivalent to the satisfiability of

at least one of the following four linear systems:

DEC1(a, b) ∧ POS1(a, b),

DEC1(a, b) ∧ POS2(a, b),

DEC2(a, b) ∧ POS1(a, b),

DEC2(a, b) ∧ POS2(a, b),

which we can decide in polynomial time. For our running
example, DEC2(a, b)∧POS1(a, b) is satisfiable as proved by
the following SICStus Prolog query:

?- dec2pos1.

true.

?-

after compilation of the program:

dec2pos1 :-

{L1 >= 0, L2 >= 0, L3 >= 0, L4 > 0,

A = L1 + L2, B = L2 + L3 - L4,

A = L2, B = L3, 1 =< L3 + P,

LP1 >= 0, LP2 >= 0, LP3 >= 0,

A = LP1 + LP2, B = LP2 + LP3,

0 = LP2, 0 = LP3, 0 =< LP3}.

The procedure we have informally outlined by means of
examples is actually completely general. It is embodied in
Algorithm 1, which is a (correct and complete) decision pro-
cedure for the existence of an eventual linear ranking func-
tion given a linear increasing function.

Algorithm 1 Existence of an eventual linear ranking func-
tion, given a linear increasing function

Require: C, an SLC loop p(x) ← c(x,x′), p(x′), and f , a
linear increasing function for C

Ensure: Returns true if and only if, for some vector a,
ρ(x) = 〈a,x〉 is an eventual linear ranking function for
(C, f).

1: DEC(a, k) := Farkas for the decreasing of ρ
2: DEC1(a),DEC2(a) := linearization of DEC(a, k)
3: POS(a, k) := Farkas for the positivity of ρ
4: POS1(a),POS2(a) := linearization of POS(a, k)
5: if

W
1≤i,j≤2 DECi(a) ∧ POSj(a) is satisfiable then

6: return true
7: else
8: return false
9: end if

Theorem 3.10. Let C be an SLC loop and f an increas-
ing function for C. Algorithm 1 decides in polynomial time
the existence of an eventual linear ranking function for (C, f).

Computing an eventual linear ranking function ρ and its
associated threshold k can be done as follows:

• if DEC1(a) ∧ POS1(a) is satisfiable, we compute a so-
lution a, ρ(x) = 〈a,x〉 is a standard linear ranking
function and Proposition 3.6 applies;

• if DEC1(a) ∧ POS2(a) is satisfiable, we compute a so-
lution a, λ′, P ′ and we take k = P ′/λ′n;

• if DEC2(a) ∧ POS1(a) is satisfiable, we compute a so-
lution a, λ, P and we take k = P/λn;



• if DEC2(a)∧POS2(a) is satisfiable, we compute a solu-
tion a, λ, P , λ′, P ′ and we take k = max(P/λn, P

′/λ′n).

Example 3.11. Continuing with Example 3.1, here is the
most general solution of DEC2(a, b) ∧ POS1(a, b):

?- {L1 >= 0, L2>= 0, L3 >= 0, L4 > 0,

A = L1 + L2, B = L2 + L3 - L4,

A = L2, B = L3, 1 =< L3 + P,

LP1 >= 0, LP2 >= 0, LP3 >= 0,

A = LP1 + LP2, B = LP2 + LP3,

0 = LP2, 0 = LP3, 0 =< LP3}.

B = 0, L1 = 0, L3 = 0, LP2 = 0, LP3 = 0,

{LP1 = L4, L2 = L4, A = L4, L4 > 0, P >= 1}.

?-

One particular solution is b = 0 = λ1 = λ3 = λ′2 = λ′3, a =
1 = λ′1 = λ2 = λ4, P = 1. Hence ρ(x, y) = x is an eventual
linear ranking function from the threshold k = P/λ4 = 1.

We also provide a decision procedure for the existence of
an eventual affine ranking function.

Corollary 3.12. The existence of an eventual affine rank-
ing function for an SLC loop and associated increasing func-
tion, (C, f), can be decided in polynomial time.

Proof. From C, p(x)← c(x,x′), p(x′), we construct Ca,
p(x, y) ← c(x,x′), y = 1, y′ = 1, p(x′, y′), where y does
not occur in x. Note that Ca is an SLC loop and that
fa(x, y) = f(x) is an increasing function for Ca. Algorithm 1
applied to (Ca, fa) gives an answer in polynomial time.

If Algorithm 1 returns true then, by correctness, there ex-
ists a threshold k and an eventual linear function ρa(x, y) =
〈a,x〉+by for (Ca, fa). We readily check that ρ(x) = 〈a,x〉+
b is an eventual affine ranking function for (C, f) from k.

If Algorithm 1 returns false then, by completeness, there
is no eventual linear ranking function for (Ca, fa). Assum-
ing there exists an eventual affine ranking function ρ(x) =
〈a,x〉+b from k for (C, f), then ρa(x, y) = 〈a,x〉+by should
be an eventual linear ranking function from k for (Ca, fa),
which is a contradiction. Hence there is no eventual affine
ranking function for (C, f).

Example 3.13. The SLC loop

p(x, y)← x ≥ −1, y′ ≤ y − 1, x′ ≤ x+ y, p(x′, y′)

associated to the linear increasing function f(x, y) = −y
does not admit an eventual linear ranking function, but does
admit ρ(x, y) = x+ 1 as an eventual affine ranking function
from k = 1.

3.2 Fully Automated Detection
We now consider the problem in its full generality: given

an SLC loop C, does there exist an increasing function for
C such that C admits an eventual linear ranking function?

Note that the space of increasing functions can be ob-
tained as a convex set over their coefficients via the Farkas’
Lemma and existentially quantified variables elimination.3

Definition 3.14. Let C =
`
p(x)← c(x,x′), p(x′)

´
be an

SLC loop. We denote by INC the set of vectors b such that
f(x) = 〈b,x〉 is increasing for C.

3See also [6, Section 4.4].

Example 3.15. A linear ranking function does not exist
for the SLC loop C

p(x, y)← x ≥ 0, x′ ≤ x+ y, y′ ≤ −y − 1, p(x′, y′).

INC =
˘

(b1, b2) ∈ Q × Q
˛̨
b1 ≤ −2, b1 − 2b2 = 0

¯
induces

the space of functions of the form f(x, y) = b1x+ b2y, which
are increasing for C.

Let us consider the SLC loop of Example 3.15 associated
to an increasing function f(x, y) = b1x + b2y induced by
INC. Defining ρ(x, y) = a1x + a2y and considering b1 and
b2 as parameters, ρ is an eventual linear ranking function
when

∃a1, a2, k . ∀x, y, x′, y′ :

(
x ≥ 0, x′ ≤ x+ y,

b1x+ b2y ≥ k, y′ ≤ −y − 1

)

=⇒

(
a1x+ a2y ≥ 1 + a1x

′ + a2y
′,

a1x+ a2y ≥ 0.

This definition of the problem is denoted ∃a, k . φ(a, k). We
can apply Farkas’ Lemma as follows:

λ1 : 1x + 0y + 0x′ + 0y′ + 0 ≥ 0
λ2 : 1x + 1y − 1x′ + 0y′ + 0 ≥ 0
λ3 : 0x − 1y + 0x′ − 1y′ − 1 ≥ 0
λ : b1x + b2y + 0x′ + 0y′ − k ≥ 0
=⇒

a1x + a2y − a1x
′ − a2y

′ − 1 ≥ 0
a1x + a2y ≥ 0.

Formula φ(a, k) is equivalent to the conjunction of formulas
DEC(a, k), i.e.,

∃λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, λ ≥ 0 .(
a1 = λ1 + λ2 + b1λ −a1 = −λ2,

a2 = λ2 − λ3 + b2λ, −a2 = −λ3, −1 ≥ −λ3 − kλ,

ensuring the decreasing of the ranking function and POS(a, k),
that is,

∃λ′1 ≥ 0, λ′2 ≥ 0, λ′3 ≥ 0, λ′ ≥ 0 .(
a1 = λ′1 + λ′2 + b1λ

′ 0 = −λ′2
a2 = λ′2 − λ′3 + b2λ

′, 0 = −λ′3 0 ≥ −λ′3 − kλ′,

ensuring the positivity of the ranking function.
Let us focus on DEC(a, k). We observe that the products

with λ lead to a non-linearity that we can circumvent by
noting that, as λ ≥ 0, either λ = 0 or λ > 0. In the latter
case, we introduce a vector p = (p1, p2) of two new variables
where p1 = b1λ and p2 = b2λ together with, as previously,
the new variable P = kλ. Formula ∃k . DEC(a, k) is equiva-
lent to the disjunction DEC1(a)∨∃λ,p.DEC2(a, λ,p) where
in our case, DEC1(a) is equivalent to

∃λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 .(
a1 = λ1 + λ2, −a1 = −λ2,

a2 = λ2 − λ3, −a2 = −λ3, −1 ≥ −λ3,



and DEC2(a, λ,p) is equivalent to

∃λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, P .(
a1 = λ1 + λ2 + p1, −a1 = −λ2, λ > 0,

a2 = λ2 − λ3 + p2, −a2 = −λ3, −1 ≥ −λ3 − P.

For the positivity condition, formula ∃k . POS(a, k) is
equivalent to the disjunction POS1(a) ∨ ∃λ′,p′.POS2(a,p′)
where we introduce a vector p′ = (p′1, p

′
2) of two new vari-

ables where p′1 = b1λ
′, p′2 = b2λ

′ together with, as previ-
ously, the new variable P ′ = kλ′. In our case, POS1(a) is
equivalent to

∃λ′1 ≥ 0, λ′2 ≥ 0, λ′3 ≥ 0 .(
a1 = λ′1 + λ′2, 0 = −λ′2,
a2 = λ′2 − λ′3, 0 = −λ′3, 0 ≥ −λ′3,

and POS2(a, λ′,p′) to

∃λ′1 ≥ 0, λ′2 ≥ 0, λ′3 ≥ 0, P ′ .(
a1 = λ′1 + λ′2 + p′1, 0 = −λ′2, λ′ > 0,

a2 = λ′2 − λ′3 + p′2, 0 = −λ′3, 0 ≥ −λ′3 − P ′.

Back to our initial problem, the existence of an eventual
linear ranking function is equivalent to the satisfiability of
at least one of the following four systems:

1. DEC1(a)∧POS1(a): this case means that the increas-
ing function and k are irrelevant. In other words, for
each solution a, ρ(x) = 〈a,x〉 is a standard linear rank-
ing function and Proposition 3.6 applies.

2. DEC1(a) ∧ POS2(a, λ′,p′) ∧ p′/λ′ ∈ INC: note that
satisfiability of DEC1(a) ∧ POS2(a, λ′,p′) is not suf-
ficient, as its solution might lead to the coefficients
b1 = p′1/λ

′ and b2 = p′2/λ
′ (λ′ is strictly positive by

definition), which could correspond to a non-increasing
linear function. The third conjunct, p′/λ′ ∈ INC, en-
sures that we stay within the space of increasing func-
tions.

3. DEC2(a, λ,p) ∧ p/λ ∈ INC ∧ POS1(a): this case is
symmetric to previous one.

4. DEC2(a, λ,p) ∧ p/λ ∈ INC ∧ POS2(a, λ′,p′) ∧ p/λ =
p′/λ′: this case combines the two previous ones. Note
that the condition ensures that we consider the same
linear ranking function and the same increasing func-
tion both in DEC2 and in POS2.

For our running example, the following SICStus Prolog
query proves that DEC2(a, λ,p) ∧ p/λ ∈ INC ∧ POS1(a) is
satisfiable

?- dec2incpos1.

true.

?-

after compilation of the program

dec2incpos1 :-

{% DEC2:

L1 >= 0, L2 >= 0, L3 >= 0,

A1 = L1 + L2 + P1, A1 = L2, L > 0,

A2 = L2 - L3 + P2, A2 = L3, -1 >= -L3 - P,

% INC: B1 =< -2, B1 - 2*B2 = 0

P1 =< -2*L, P1 - 2*P2 = 0,

% POS1:

LP1 >= 0, LP2 >= 0, LP3 >= 0,

A1 = LP1 + LP2, 0 = LP2,

A2 = LP2 - LP3, 0 = LP3, 0 >= -LP3}.

The procedure we have informally outlined by means of
examples is actually completely general and is embodied in
Algorithm 2.

Algorithm 2 Existence of an eventual linear ranking func-
tion

Require: C, an SLC loop p(x)← c(x,x′), p(x′)
Ensure: Returns true if and only if there exists an increas-

ing function f for C and ρ(x) = 〈a,x〉 such that ρ is an
eventual linear ranking function for (C, f).

1: INC := the space of increasing functions for C
2: DEC(a, k) := Farkas for the decreasing of ρ
3: DEC1(a),DEC2(a, λ,p) := linearization of DEC(a, k)
4: POS(a, k) := Farkas for the positivity of ρ
5: POS1(a),POS2(a, λ′,p′) := linearization of POS(a, k)
6: φ1,1 := DEC1(a) ∧ POS1(a)
7: φ1,2 := DEC1(a) ∧ POS2(a, λ′,p′) ∧ p′/λ′ ∈ INC
8: φ2,1 := DEC2(a, λ,p) ∧ p/λ ∈ INC ∧ POS1(a)
9: φ2,2 := DEC2(a, λ,p) ∧ p/λ ∈ INC ∧ POS2(a, λ′,p′) ∧

p/λ = p′/λ′

10: if
W

1≤i,j≤2 φi,j is satisfiable then
11: return true
12: else
13: return false
14: end if

Theorem 3.16. Let C be an SLC loop. Algorithm 2 de-
cides the existence of an increasing function f and a linear
function ρ such that ρ is an eventual linear ranking function
for (C, f).

Exactly as in the previous section, if Algorithm 2 returns
true then we can extract an increasing function f , a thresh-
old k, and a linear function ρ. We can also generalize the
approach to the fully automated detection of eventual affine
ranking functions.

With respect to complexity, Algorithm 2 is not polyno-
mial for two reasons. In step 1, computing the set INC of
linear increasing functions for C requires elimination of ex-
istentially quantified variables. In step 2, formula φ2,2 leads
to a non-linear system and we may have to check its satisfi-
ability in step 10. Although decidable, we are not aware of
the existence of polynomial algorithms for these problems.

3.3 Verification
Given C an SLC loop, an associated increasing function

f , and a linear function ρ, we want to know whether ρ is a
ranking function. We can run Algorithm 1, with the coef-
ficients a fully instantiated. If needed, we can compute the
threshold k as explained in Section 3.1. It follows that the
verification problem is polynomial.

3.4 Implementation
We have implemented both algorithms in SICStus Prolog.

However, as φ2,2 of Algorithm 2 leads to a non-linear system,



we relaxed this formula to

DEC2(a, λ,p)∧p/λ ∈ INC∧POS2(a, λ′,p′)∧p′/λ′ ∈ INC,

which is now linear. As shown in the following proposi-
tion, the existence of an eventual linear ranking function
(hence termination) is preserved, but the associated increas-
ing function is not linear.

Proposition 3.17. Let C be an SLC loop and assume the
truth of

DEC2(a, λ,p)∧p/λ ∈ INC∧POS2(a, λ′,p′)∧p′/λ′ ∈ INC.

Then there exists a non-linear increasing function f such
that ρ(x) = 〈a,x〉 is an eventual linear ranking function for
(C,f).

Proof. As DEC2(a, λ,p) ∧ p/λ ∈ INC is true, there ex-
ists an increasing function fd and a rational kd such that
when the value of fd is beyond kd, ρ decreases. Similarly, as
POS2(a, λ′,p′)∧p′/λ′ ∈ INC is true, there exists an increas-
ing function fp and a rational kp such that when the value
of fp is beyond kp, ρ is non-negative. Let k = max(kp, kd)
and f(x) = min

`
fp(x), fd(x)

´
. One readily checks that f is

a non-linear increasing function for C and ρ is an eventual
linear ranking function for (C, f).

4. RELATED WORK AND EXPERIMENTS
As eventual linear ranking functions generalize linear rank-

ing functions, we focus on related work that goes beyond lin-
ear ranking functions for SLC loops. In order to appreciate
the relative power of the different methods, we report on the
results obtained with our algorithms on the loops discussed
in the papers where the other approaches were introduced.

The method proposed in [27] repeatedly divides the state
space to find a linear ranking function on each subspace, and
then checks that the transitive closure of the transition rela-
tion is included in the union of the ranking relations. As the
process may not terminate, one needs to bound the search.
[27] also proposes a test suite, upon which we tested our
approach. Our implementation analyzes the complete test
suite in less than 2 seconds on a standard desktop computer.
As expected, every loop [27, Table 1] which terminates with
a linear ranking also has an eventual linear ranking. More-
over, loops 6, 12, 13, 18, 21, 23, 24, 26, 27, 28, 31, 32, 35,
and 36 admit an eventual linear ranking function (which
is discovered without using neither φ2,2 nor its relaxation).
These are all shown terminating with the tool of [27]. On
the other hand, loops 14, 34, and 38 do have a disjunctive
ranking function (following the terminology of [27]), but do
not admit an eventual linear ranking function.

[17] shows how to partition the loop relation into behav-
iors that terminate and behaviors to be analyzed in a sub-
sequent termination proof after refinement. This work ad-
dresses both termination and conditional termination prob-
lems in the same framework. Concerning the benchmarks
proposed in [17, Table 1], loops 6–41 all have an eventu-
ally linear ranking function except for loops 11, 14, 30, 34,
and 38.

A method based on abstract interpretation for synthe-
sizing ranking functions is described in [26]. Although the
work contains no completeness result, the approach is able
to discover piecewise-defined ranking functions.

Finally, let us point out that the concept of eventual ter-
mination appeared first in [13, 14]. The class loops studied

in these works is wider but, as the technique of [14] relies on
finite differences, this approach is incomplete. On the other
hand, while [13] is also based on Farkas’ Lemma, it seems
[A. R. Bradley, Personal communication, May 2013] that the
polyranking approach cannot prove, e.g., termination of the
SLC loop p(x, y)← x ≥ 1, x′ = y, y′ = y− 1, p(x′, y′), which
admits an eventual linear ranking function.

5. CONCLUSION AND FUTURE WORK
We have proposed a definition of eventual linear rank-

ing function for SLC loops that strictly generalizes the con-
cept of linear ranking function. We also defined two correct
and complete algorithms for detecting such ranking func-
tions under different hypotheses. The first algorithm shows
that the mere knowledge of the right increasing function al-
lows checking the existence or even synthesizing an eventual
linear ranking function in polynomial time. The second al-
gorithm decides the existence of an eventual linear ranking
function in its full generality but is not polynomial. We
have also explained how to extend the algorithms for decid-
ing eventual affine ranking functions. The algorithms admit
a simple formulation as a constraint logic program and have
been fully implemented in SICStus Prolog inside the Bin-
Term termination prover [24].

We plan to incorporate the algorithms in the Parma Poly-
hedra Library [4] and then in the ECLAIR static analyzer
for C, C++ and Java programs.4 This will enable us to
conduct an extensive experimental evaluation on real pro-
grams. Moreover, as ECLAIR already includes linearization
of floating-point constraints [8] as well as other sophisticated
reasoning techniques over floating-point numbers (such as,
e.g., [3]), the way is paved to explore a very interesting di-
rection for future work: synthesis of eventual linear ranking
functions for loops controlled by floating-point quantities.

It has to be noted that a nice property of the notion of
eventual (not necessarily linear) ranking function is its sim-
plicity. This is important when functions that witness termi-
nation have to be provided (and/or understood) by humans.
This is the case when annotating a C/ACSL program with
loop variants [7]: for the cases when a ranking function to be
specified in a loop variant clause is not obvious, one could
extend ACSL with a loop prevariant clause that allows
the annotator to indicate a candidate increasing function.
In the linear case, our first algorithm can efficiently decide
whether the two clauses constitute a termination witness.

On the other hand, there obviously are, as indicated in
Section 4, more complex classes of ranking functions and
algorithms that allow to establish the termination of SLC
loops that do not admit an eventual linear ranking func-
tions. A proper assessment of the relative merits of these
approaches, all extremely recent, requires an extensive ex-
perimental evaluation that, as mentioned already, is one of
the main objectives for future work.

The verification of linear ranking functions for integer SLC
loops, that is to say, checking the satisfiability of

c(x,x′) ∧ ρ(x) < 1 + ρ(x′)

and

c(x,x′) ∧ ρ(x) < 0,

4http://bugseng.com/products/eclair



is an NP-complete problem. Concerning the existence of
linear ranking functions, as the Farkas’ Lemma is not true for
the integers, the method presented in Section 2 is not valid.
The problem, which has been solved very recently in [10], is
coNP-complete, and the paper proposes an exponential-time
algorithm. Extending the present approach to integer SLC
loops is another interesting idea to consider for future work.
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