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Abstract
We define an operational semantics for a large part of the Android 
platform, encompassing the Dalvik bytecode but also, and more 
importantly, the inter-component communication mechanism used 
inside Android applications. This semantics is intended to provide 
a formal basis for the development of static analyses that consider 
the complex flow of information exposed by the cooperating com-
ponents of Android applications.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about 
Programs—Mechanical Verification; F.3.2 [Logics and Meanings 
of Programs]: Semantics of Programming Languages—Operational 
semantics, Program analysis

General Terms Languages, Theory, Verification

Keywords Operational Semantics, Android, Dalvik, Static Anal-
ysis

1. Introduction
Android is an operating system for mobile and embedded devices. 
It is currently the most widespread system for smartphones. Appli-
cations are written in Java and compiled to Dalvik bytecode [6]; 
they can use a large part of the standard Java library; they can be 
downloaded from anywhere, for instance from the official Google 
Play store, or developed by the user on a computer; moreover, they 
do not necessarily have to be digitally signed before installation, as 
it is the case, for instance, with iOS. As a consequence, reliability is 
a major concern for Android users and developers, since buggy ap-
plications can hang the device and malicious applications can steal 
private data and send them through the Internet.

Therefore, the analysis of Android applications is an impor-
tant topic as it allows the developer to discover bugs in a pro-
gram under development, and the user to be aware of bugs/mali-
cious code in a downloaded program. Several different static anal-
yses of Android programs have been presented so far; most of 
them have been developed to find s ecurity o r p rivacy vulnerabil-
ities [3, 5, 9, 10, 12, 16, 23]; others to find bugs [17, 19]. On the 
other hand, several dynamic analysis tools [4, 7, 8, 11] have been 
developed to identify security vulnerabilities. We are also aware of

SymDroid [14], a symbolic executor for Dalvik, that can be used
for analyzing Android programs.

It has to be noticed that Android is an event-driven system with
very specific functionalities. Each application runs in its own in-
stance of the Dalvik virtual machine, which executes the bytecode.
Applications may have several entry points that are selected by
the system. They are made of components, each with a specific
lifecycle. Callback methods are automatically invoked by the sys-
tem when components switch from state to state, or in reaction to
events. As a consequence, Android programs do not usually call
such methods explicitly. A specificity of Android is the use of XML
to code parts of the applications, as is notably the case for user in-
terfaces. XML files are dynamically inflated by the system into the
objects that they describe. This inflation process makes heavy use
of Java reflection. One final specificity of Android is the possibility
for a component to launch another component, also belonging to
a distinct program, and wait for a result. The launched component
can be explicitly named by the invoker, but can also be selected dy-
namically at run-time on the basis of the intent of the invoker and
of the list of applications installed in the device. Component invo-
cation must not be confused with method invocation, which works
differently.

The execution of Android programs is hence very complex to
model, much more than Dalvik itself, whose way of working is
relatively straightforward. Several operational semantics have re-
cently been presented for Dalvik, as well as several manual im-
plementations of some specific features of Android. In [16], the
intermediate language Dalvik Core, together with a corresponding
formal semantics, is introduced. It consists of 15 instructions that
represent the whole Dalvik. It is used inside SCANDAL [20], an
analyzer that also includes manual implementations of the seman-
tics and calling conventions of many Android API methods, such
as methods that add listeners, initialize threads or launch special
kinds of components. SCANDAL handles simple cases of reflec-
tion by analyzing string values. In [14], the authors introduce µ-
Dalvik, a language consisting of 16 instructions into which Dalvik
can be easily translated. An operational semantics for µ-Dalvik is
presented and it is used in the core of SymDroid, a symbolic execu-
tor for Dalvik written in OCaml. SymDroid includes manual imple-
mentations of several parts of important system classes. But it is up
to the user of this tool to model behaviors of the Android system,
by using client-oriented specifications [13], in order to drive the ap-
plication under test as desired. In [23], an operational semantics is
specified for the whole Dalvik, except instructions related to con-
currency. An operational semantics for central parts of the Java re-
flection API is also presented. In [19], the Julia static analyzer [15]
for Java bytecode is extended to perform formally correct analy-
ses of Android programs, provided as .jar files. Several Android
key specific features are considered, such as the potential existence
of many entry points to a program and the inflation, through reflec-
tion, of XML graphical views. These features are simulated through
synthetic code that mimics the behavior of Android.

1



As far as we know, there is currently no formal definition of an
operational semantics for Android, not just Dalvik. Hence, in this
article, we consider a substantial part of the platform, that goes well
beyond the simple Dalvik bytecode, and formally present an oper-
ational semantics for it. In particular, we formalize the intercompo-
nent communication mechanism of Android, which is essential in
order to analyze applications made up of more cooperating compo-
nents, for instance, of many activity screens; each screen represents
a unit of interaction with the user and screen swapping is imple-
mented through a stack of activities, that are allowed to commu-
nicate and exchange data. It is very important to take into account
this feature of Android and model it with an operational semantics.
For instance, this allows one to consider information flows where
data travels from activity to activity, which is essential for the as-
sessment of confidentiality. More generally, it allows one to link
the input received from an activity to the data passed by another
activity and prove that the expected input is passed correctly.

The rest of this paper is organized as follows. Section 2 dis-
cusses concrete situations when a semantics like ours is needed as
the basis for static analysis. Section 3 introduces some key Android
features, highlights the scope of this work, and provides notations.
Section 4 defines the syntax of a small but non-trivial subset of the
Dalvik bytecode that we use in our definitions. Section 5 presents
an operational semantics for Android. Section 6 concludes the pa-
per.

2. Motivation
We discuss why a new semantics, modeling the activity lifecycle
and their interprocess communication mechanism, is needed for
static analysis and which kind of analyses would benefit from it.

The key observation is that, without an explicit modeling of
the lifecycle and communication mechanism of activities, the only
sound assumption for a static analysis is to assume that the entry
points of activities are called non-deterministically, with parame-
ters bound to any value compatible with their declared types. This
might be acceptable for some static analyses, such as class analy-
sis, where the concrete class of the parameters of the entry points
would end up being approximated with all possible instances of
their declared types, an imprecise but still sound and acceptable
compromise, that corresponds to rapid type analysis [22].

The same approach might be acceptable, although more prob-
lematic, for other static analyses such as nullness analysis, that de-
termines which variables or fields might hold null at run-time. In
this case, the extra complexity is due to the kind of worst-case as-
sumption that must be made for the parameters of the entry points
to the activities. Namely, they must always be assumed to be nul-
lable, a correct but imprecise assumption that results in many false
alarms. For this reason, not relying on a semantics such as that of
this article, the nullness analysis for Android implemented in the
Julia static analyzer [15] currently relies on manual annotations of
the entry points, provided once and for all with the analyzer, that
specify which parameters are really nullable. In other words, those
annotations strengthen the worst-case assumption but must be pro-
vided by hand, a tedious and error-prone task.

A traditional static analysis, not based on our semantics, shows
all its weakness when it comes to properties somehow related to
the flow of data inside the program. For instance, information flow
analysis determines if tainted (or secret) information can ever be
accessed from a given variable. Without a semantics such as that
of this article, the only sound assumption would be to consider
all parameters of the entry points to the activities as potentially
tainted. This imprecision would rapidly propagate to conclude that
all variables are potentially tainted. That is, the static analysis
would be so imprecise to be of no practical interest. In this specific
case, one needs a semantics that models, explicitly, the lifecyle of

the activities and their intercommunication, so that information is
tracked while it flows through the code, in a much more precise
way as the worst-case scenario.

Another situation, when a static analysis should be based on
our semantics, is when the analysis must use precise information
on how data is exchanged between activities. Namely, in Android
data is passed from activity to activity through bundles, that are
objects mapping string keys to tokens of information. When an
activity starts, it assumes that data is passed in a way defined by
the programmer: he specifies which string keys are used and which
is the type of the tokens bound to the keys. If this convention is
violated, activities stop at run-time with an exception. A static,
compile-time verification of how information is stored inside the
bundles would help the programmer and give him evidence that the
program will not go wrong at run-time. This can only be achieved
with a static analysis that models the communication mechanism
between activities and is able to match caller activities with callee
activities. Such a static analysis can then verify that the caller
activities provide the expected bundles to the callee activities.

3. Preliminaries
3.1 The Android Platform
We assume the reader familiar with the Android platform (see [2]
for a detailed description). Below, we recall some basic elements
that will be used in this article.

Android programs are written in Java and compiled to the
Google’s Dalvik Virtual Machine (DVM) bytecode format before
installation on a device. They can contain four types of compo-
nents: activities (single screens with a visual user interface), ser-
vices (background operations with no interaction with the user),
content providers (data containers such as databases) and broad-
cast receivers (objects reacting to broadcast messages). The com-
ponents of a program can interact with each other and with compo-
nents of other programs installed on the device. They are distinct
entry points of the system into the program. During its lifetime,
a component can have different successive states; the lifecycle of
a component is the set of all its possible states together with the
paths between the states. The interactions between components
and between the system and the components lead to very complex
situations whose semantics is hard to model. For simplicity, the
scope of this paper is restricted to programs that only consist of
activities.

The lifecycle of an activity [2] is depicted in Fig. 1, where the
square rectangles represent the callback methods called by the sys-
tem when the activity moves between states. The Android system
manages activities in an activity stack. When a new activity starts,
it is placed on top of the stack and comes to the foreground i.e.,
it is visible to the user and has focus. The new activity is then
said to be running. When the new activity completes (because it
gets destroyed by the system that needs memory or because its
finish method is called), it gets removed from the stack. The
class android.app.Activity is provided by the Android API to
implement the activities by subclassing. It contains several meth-
ods for modelling interactions e.g., startActivityForResult
launches a new activity and waits for a result, setResult sets the
result that an activity will return to its caller and finish finishes an
activity i.e., indicates that it has completed and should be closed.

A hierarchy of views (visual objects) is associated to each activ-
ity. It provides the visual interface of the activity and is usually set
up by inflating XML layout files via the method setContentView.
The inflated views can be accessed from their identifier using the
method findViewById.

As an example, consider the activity in Fig. 2. The onCreate
event handler gets called when the activity is first created, after
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Figure 1. The lifecycle of an activity.

its constructor has been implicitly invoked by the Android system.
The setContentView method calls the layout inflator; its integer
parameter uniquely identifies the XML layout file shown in Fig. 3.
From line 3 of the file in Fig. 3, it is clear that the view identi-
fied as message at line 10 of Fig. 2 belongs to the library view
class TextView. The cast at line 10 in Fig. 2 is hence correct.
Constants R.layout.caller and R.id.message are automati-
cally generated at compile-time from the XML layout file names
and from the view identifiers that they contain, respectively. The
developer can call setContentView many times and everywhere
in the code; he can pass the value of any integer expression to it
and to findViewById, although the usual approach is to pass the
compiler-generated constants.

Lines 5–6 of Fig. 3 describe a button that, when clicked, in-
vokes a method with name launchActivity. When installed in
the view hierarchy of an instance of Caller, the button invokes the
method defined at lines 13–16 of Fig. 2. This method uses an intent
for starting a new activity which is an instance of the class defined
in Fig. 4. When the launched activity completes, the system in-
vokes the method onActivityResult of the caller. This method
uses its requestCode parameter to identify the kind of activity
that sent a result. The integer constants R.string.ok_clicked,
R.string.cancel_clicked and R.string.unknown used in-
side onActivityResult are generated at compile-time and they
uniquely identify strings defined in the resource file string.xml
of the application.

The layout of the activity in Fig. 4 is defined in the file shown
in Fig. 5. It consists of two buttons, with labels OK and Cancel,
that invoke methods resultOk and resultCancel at lines 9–12
and 14–19 of Fig. 4, respectively. These set the result of the activity
and finish it.

In Fig. 2 and Fig. 4, we use startActivityForResult and
finish for launching and finishing an activity, respectively. It is
important to notice that these methods do not necessarily take effect

immediately, at the point where they are invoked, since the method
that calls them is allowed to reach its end before starting or finishing
the activity. So, launchActivity in Fig. 2 outputs Hello! before
launching the new activity and resultCancel in Fig. 4 outputs
Goodbye! before stopping the activity. Another important point is
the call to setResult at line 17 of Fig. 4: it does not modify the
result set at line 15 above as it occurs after a call to finish.

Figure 6 shows the Dalvik bytecode of the onActivityResult
method defined in Fig. 2. This method uses 6 registers (line 2)
denoted by v0, v1, . . . , v5 (the number of registers used by a
method is statically known [6]). It has 4 parameters (including
this) whose values at the beginning of an execution are stored
in the last 4 registers: v2 stores the value of this, v3 that of
requestCode, v4 that of resultCode and v5 that of data.

3.2 Scope of this Article
We consider Android programs compiled into the DVM bytecode
format. We assume that programs consist of activities only (no ser-
vices, nor broadcast receivers, nor content providers). The activities
can interact via methods startActivityForResult, setResult
and finish, but we suppose that an activity can invoke one of
these methods only when it is running (see the oval in the mid-
dle of Fig. 1); therefore, the calls to these methods cannot happen
in the square rectangles of Fig. 1 (onCreate, onStart, . . . ) More-
over, the programs that we consider do not launch activities defined
in other programs and name the called activities explicitly; that is,
they explicitly specify the class of the activity to be started, as in
line 14 of Fig. 2. We do not model the concurrency aspects of the
Android platform. Note that sound static analyses for concurrent
Java (and hence Android) are a complex topic of active research
and solving this problem is well outside the scope of this article.

3.3 Notations
Throughout the paper, we use the underscore character ’ ’ to de-
note any, non-significant, value. For any binary relation →, we
let→∗ denote its reflexive and transitive closure. The domain and
codomain of a function f are dom(f) and rng(f), respectively.
We denote by [v1 7→ t1, . . . , vn 7→ tn] the function f where
dom(f) = {v1, . . . , vn} and f(vi) = ti for i = 1, . . . , n. Its
update is f [w1 7→ d1, . . . , wm 7→ dm], where the domain may
be enlarged (it is never reduced). An array r is a function whose
domain is a finite subset of N. An index is an element of dom(r).
For any index k, we write rk instead of r(k) and we say that rk

is the kth element, or the element at index k, of r. We let rmin de-
note the element of r at the least index. We write a stack in the form
x :: y :: z :: smeaning that x is the topmost value on the stack, y is
the underlying element and z the element still below it; s is the re-
maining portion of the stack and might be empty. The empty stack
is written ε. When s is empty, we may omit it and write x :: y :: z
instead of x :: y :: z :: ε.

4. Our Simplified Dalvik Virtual Machine
We start from the notion of activity i.e., a user interface screen
including interaction logic with the user.

DEFINITION 1. A subclass of android.app.Activity is called
an activity class. An activity is an instance of an activity class. Any
activity has a field root , that contains the view hierarchy of the
activity; a field finished , that states whether the activity is finished
or not; a field result , that contains the result that the activity will
return to its caller. An activity of an Android program P is an
instance of an activity class defined in P . Any view object has a
field id that stores the view identifier.
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1 public class Caller extends android.app.Activity {
2

3 private final static int CALLEE = 0;
4 private TextView mMessageView;
5

6 @Override
7 protected void onCreate(Bundle savedInstanceState) {
8 super.onCreate(savedInstanceState );
9 setContentView(R.layout.caller ); // tell system to use the layout defined in our XML file

10 mMessageView = (TextView) findViewById(R.id.message ); // get handles to the TextView from XML
11 }
12

13 public void launchActivity(View v) {
14 startActivityForResult(new Intent(this , Callee.class), CALLEE );
15 System.out.println("Hello!");
16 }
17

18 @Override
19 protected void onActivityResult(int requestCode , int resultCode , Intent data) {
20 if (requestCode == CALLEE)
21 if (resultCode == RESULT_OK) mMessageView.setText(R.string.ok_clicked );
22 else if (resultCode == RESULT_CANCELED) mMessageView.setText(R.string.cancel_clicked );
23 else mMessageView.setText(R.string.unknown );
24 else mMessageView.setText(R.string.unknown );
25 }
26 }

Figure 2. A portion of the source code Android file Caller.java.

1 <LinearLayout xmlns:android="http :// schemas.android.com/apk/res/android"
2 android:orientation="vertical" android:layout_width="match_parent" android:layout_height="match_parent" >
3 <TextView android:id="@+id/message" android:text="@string/empty"
4 android:layout_width="match_parent" android:layout_height="wrap_content" />
5 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
6 android:text="@string/launch" android:onClick="launchActivity" />
7 </LinearLayout >

Figure 3. The XML layout file caller.xml.

1 public class Callee extends android.app.Activity {
2

3 @Override
4 protected void onCreate(Bundle savedInstanceState) {
5 super.onCreate(savedInstanceState );
6 setContentView(R.layout.callee );
7 }
8

9 public void returnOk(View v) {
10 setResult(RESULT_OK );
11 finish ();
12 }
13

14 public void returnCancel(View v) {
15 setResult(RESULT_CANCELED );
16 finish ();
17 setResult(RESULT_OK );
18 System.out.println("Goodbye!");
19 }
20 }

Figure 4. A portion of the source code Android file Callee.java.

1 <LinearLayout xmlns:android="http :// schemas.android.com/apk/res/android"
2 android:layout_width="match_parent" android:layout_height="match_parent" >
3 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
4 android:text="@string/ok" android:onClick="returnOk" />
5 <Button android:layout_width="wrap_content" android:layout_height="wrap_content"
6 android:text="@string/cancel" android:onClick="returnCancel" />
7 </LinearLayout >

Figure 5. The XML layout file callee.xml.
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1 protected onActivityResult(int , int , Intent ):void
2 .registers 6
3

4 const v1 , R.string.unknown
5

6 if-nez v3, :end
7 const/4 v0, 1
8 add -int v0, v4, v0
9

10 if-nez v0, :cancel
11 const v1 , R.string.ok_clicked
12 goto :end
13

14 :cancel
15 if-nez v4, :end
16 const v1 , R.string.cancel_clicked
17

18 :end
19 iget -object v0 , v2 , mMessageView
20 invoke -virtual {v0 ,v1},TextView.setText(int):void
21 return -void

Figure 6. The Dalvik bytecode of the onActivityResult
method defined in Fig. 2.

Figure 7. Our simplified Dalvik bytecode for the method
onActivityResult in Fig. 6. On the right of each instruction, we
report the number of registers at that program point, just before ex-
ecuting the instruction.

The state of the computation contains the registers in scope at a
particular program point and the memory of the system. Inside the
memory, there are objects, connected through pointers. To simplify
the notation, we do not consider arrays nor interfaces and only
allow integers as values of basic type.

DEFINITION 2. The set of values is Z ∪ L, where L is the set of
memory locations. A state of the DVM is a triple 〈r ||π ||µ〉 where
r is an array of values, called registers, π is a stack of activity
classes, called pending activities, and µ is a memory, or heap, that
maps locations into objects. An object is a function that maps its
fields (identifiers) into values and that embeds a class tag κ; we
say that it belongs to class κ or that it is an instance of class κ
or has class κ. We require that there are no dangling pointers i.e.,
rng(r) ∩ L ⊆ dom(µ) and rng(µ(`)) ∩ L ⊆ dom(µ) for every
` ∈ dom(µ). We write o(f) for the value of the field f of an object
o; we write o(κ) for the class of an object o. The set of all classes is

denoted by K. The set of all DVM states is denoted by Σ. When we
want to fix the exact number #r ∈ N of registers, we write Σ#r .

EXAMPLE 1. Let K = {A,B,C}. Consider a memory µ = [`1 7→
o1, `2 7→ o2, `3 7→ o3] where o1 = [f 7→ `2], o2 = [f 7→ `1] and
o3 = [g 7→ 0, h 7→ 3]. Then a state is

σ = 〈[0 7→ 5, 1 7→ `2, 2 7→ `3] ||C :: A ||µ〉 .
We have σ ∈ Σ3 since σ has 3 registers.

The Dalvik bytecode is strongly typed. Each value has a type
and registers are statically typed.

DEFINITION 3. The set of types of our simplified DVM is T =
K∪{int, void}. The void type can only be used as the return type
of methods. A method signature is denoted by κ.m(t1, . . . , tp) : t
standing for a method named m, defined in class κ, expecting p
explicit parameters of type, respectively, t1, . . . , tp and returning a
value of type t, or returning no value when t = void.

In object-oriented languages, a non-static method κ.m(t1, . . . , tp) :
t also has an implicit parameter of type κ called this inside the
code of the method. Hence the actual number of parameters is p+1.
We do not distinguish between methods and constructors. A con-
structor is just a method named <init> and returning void. We
do not consider static fields and methods, but the extension of our
definitions to them is not difficult.

Dalvik bytecode instructions work over states. Their execution
affects the registers or the memory in the states. There are more
than 200 Dalvik bytecode instructions [6]. Many are similar or only
differ in the type or size of their operands. Hence we concentrate
here on a restricted set of 12 instructions, which exemplify the oper-
ations that the DVM performs: register manipulation, arithmetics,
object creation and access and method call. Below, when we say
that the computation stops, we mean that an exception would be
raised at run-time. Exception handling could be accomodated in
our framework exactly as done for Java bytecode, by distinguishing
normal from exceptional states (see for instance [21]). However,
this would only complicate our semantics without adding anything
to the semantics of activities that we want to provide in this article.

DEFINITION 4. The set of instructions of our simplified Dalvik
bytecode is the following (a formalisation of their semantics will
be given later).

const d, c Move constant c, which can be an integer or a location,
into the dth register.

move d, s Move the content of the sth register into the dth register.
new-instance d, κ Move a reference to a new object of class κ

(which is properly initialised) into the dth register.
add d, s1, s2 Store the sum of the content of the s1th register and

of the s2th register into the dth register.
iget d, i, f The content ri of the ith register must be 0 (the equiv-

alent of null in Java) or a reference to an object o. If ri is 0,
the computation stops. Otherwise, o(f) is stored into the dth
register.

iput s, i, f The content ri of the ith register must be 0 or a refer-
ence to an object o. If ri is 0, the computation stops. Otherwise,
the content of the sth register is stored into o(f).

if-eqz i Check if the content of the ith register is 0. If this is not the
case, the computation stops.

if-nez i Check if the content of the ith register is 0. If this is the
case, the computation stops.

call S,m1, . . . ,mn where S = s0, s1, . . . , sp is a sequence of
register indexes and, for each 1 ≤ i ≤ n, mi has the form
κi.m(t1, . . . , tp) : t. The content rs0 of the s0th register, . . . ,
rsp of the spth register are the actual parameters of the call.
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Value rs0 is called receiver of the call and must be 0 or a
reference to an object o. In the former case, the computation
stops. Otherwise, a lookup procedure is started from the class
of o upwards along the superclass chain, looking for a method
called m, expecting p formal parameters of type t1, . . . , tp,
respectively, and returning a value of type t. It is guaranteed
that such a method is found in a class belonging to the set
{κ1, . . . , κn}. That method is run from a state having an array
of registers bound to rs0 , rs1 , . . . , rsp .

move-result d Move the result of the most recent called method
into the dth register. This instruction must immediately follow a
call instruction.

return-void Return from a void method.
return s Return from a non-void method with the content of the sth

register as result.

We suppose that each move-result instruction immediately follows
a call. We let ret denote an instruction in {return-void, return}. As
Definition 4 states, the call instruction is decorated with an overap-
proximation of the set of its run-time targets. This is because Dalvik
is an object-oriented language and the target of a method call is de-
termined at run-time from the run-time class of the receiver. This
overapproximation is not available in the original bytecode and
must be computed through any kind of class analysis [18]. The sit-
uation here is not different from that of the static analysis of any
object-oriented language, where late binding must be overapproxi-
mated by a class analysis before any interprocedural static analysis
of the code can be performed. In particular, we have already used
and implemented the same technique for Java bytecode [19]. Note
that the exact algorithm used to lookup for the method implemen-
tation called at a call site is not relevant to this article. The class
analysis that computes this overapproximation will know and use
the detail of the lookup procedure of the language.

DEFINITION 5. We also consider the following set of macro in-
structions which correspond to library methods typically used in
Android applications.

setContentView xml Remove all the views from the view hierar-
chy of the current activity and replace them with new views cre-
ated from the description contained in file xml .

findViewById d, i Search a view with identifier i in the view hier-
archy of the current activity. If such a view exists, then move
a reference to it into the dth register. Otherwise, move value 0
into the dth register.

startActivityForResult A Start a new activity of class A.
setResult i Set the result code of the current activity to i.
finish Set the finished field of the current activity to true .

In the sequel of this article, we consider Android programs
written with the instructions of Definitions 4–5. In order to reason
about the control flow in the code, we assume that flat code, like
that in Fig. 6, is given a structure in terms of blocks of code linked
by arrows expressing how the flow of control passes from block to
block. These might be for instance the basic blocks of [1], but we
also require that a call instruction can only occur at the beginning
of a block, a ret instruction can only occur as the last instruction of
a block with no successor and blocks with no successor end with a
ret instruction. For instance, Fig. 7 shows the blocks derived from
the code of the method onActivityResult in Fig. 6.

From now on, an Android program will be a graph of blocks;
inside each block there is one or more instructions among those
described above. This graph typically contains many disjoint sub-
graphs, each corresponding to a different method. The ends of a
method, where the control flow returns to the caller, are the end
of the blocks with no successor. A conditional branch results in

a block followed by two blocks, each starting with a conditional
bytecode that selects the right branch of execution on the basis of
the state of the DVM.

DEFINITION 6. We write a block containing w bytecode instruc-
tions and having x immediate successor blocks b1, . . . , bx, with
w > 0 and x ≥ 0, as

ins1
ins2
···

insw

⇒
b1
···
bx

or just as
ins1
ins2
···

insw

when x = 0.

An Android program P is a graph of such blocks.

DEFINITION 7. We let bκ.m(t1,...,tp):t denote the block of code
where the method κ.m(t1, . . . , tp) : t starts.

We assume that Dalvik bytecode is verified. For instance, in-
structions accessing a field may only occur over 0 or over a receiver
that actually contains that field. As for Java bytecode, real Dalvik
bytecode must pass a verification check before being run on the
DVM [6].

5. An Operational Semantics
We define here our operational semantics for Dalvik. The main
point is that each bytecode or block of code is modelled as a state
transformer. This is important to pave the way to static analysis
and in particular to abstract interpretation, since there will be only
a single concrete domain to abstract, that of states, in order to get
an abstract semantics of Dalvik. State transformers are partially
defined maps, that we write through the λ-notation. They are un-
defined when the DVM cannot proceed, for instance because of a
null-pointer exception; they are also undefined for conditional byte-
codes, expressing the fact that the computation continues only on
the right branch.

DEFINITION 8. In Fig. 8 and Fig. 9, each instruction or macro
instruction ins different from call, move-result, return-void and
return, occurring at a program point q, is associated with its
semantics insq : Σri → Σro at q, where ri, ro are the number
of registers defined at q and at the subsequent program point(s),
respectively (this information is statically known [6]).

EXAMPLE 2. Consider the state

σ = 〈[0 7→ 5, 1 7→ `2, 2 7→ `3] ||C :: A ||µ〉 ∈ Σ3

of Example 1. We have

(const 0, 3)(σ) = 〈[0 7→ 3, 1 7→ `2, 2 7→ `3] ||C :: A ||µ〉 ∈ Σ3

(iget 0, 1, f)(σ) = 〈[0 7→ `1, 1 7→ `2, 2 7→ `3] ||C :: A ||µ〉 ∈ Σ3

(iput 1, 2, g)(σ) = 〈[0 7→ 5, 1 7→ `2, 2 7→ `3] ||C :: A ||µ′〉 ∈ Σ3

with µ′ = [`1 7→ o1, `2 7→ o2, `3 7→ o′3] and o′3 = [g 7→ `2, h 7→
3]. We also have

(move 6, 2)(σ) =

〈[0 7→ 5, 1 7→ `2, 2 7→ `3, 6 7→ `3] ||C :: A ||µ〉 ∈ Σ4

(startActivityForResult B)(σ) =

〈[0 7→ 5, 1 7→ `2, 2 7→ `3] ||B :: C :: A ||µ〉 ∈ Σ3 .

5.1 Method Invocation and Execution
The state transformers of Definition 8 define the operational seman-
tics of each single instruction and macro instruction different from
call, move-result, return-void and return. The semantics of call is
more difficult to define, since it performs many operations:

1. creation of a new state for the callee, copying the content of the
registers of the caller that hold the actual arguments of the call
into the last registers of the callee;
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constq d, c = λ〈r ||π ||µ〉.〈r[d 7→ c] ||π ||µ〉
moveq d, s = λ〈r ||π ||µ〉.〈r[d 7→ rs] ||π ||µ〉

new -instanceq d, κ = λ〈r ||π ||µ〉.〈r[d 7→ `] ||π ||µ[` 7→ o]〉
where ` is a fresh location and o is an object of class κ whose fields hold 0

addq d, s1, s2 = λ〈r ||π ||µ〉.〈r[d 7→ rs1 + rs2 ] ||π ||µ〉

igetq d, i, f = λ〈r ||π ||µ〉.
{
〈r[d 7→ µ(ri)(f)] ||π ||µ〉 if ri 6= 0

undefined otherwise

iputq s, i, f = λ〈r ||π ||µ〉.
{
〈r ||π ||µ[ri 7→ µ(ri)[f 7→ rs]]〉 if ri 6= 0

undefined otherwise

if -eqzq i = λ〈r ||π ||µ〉.
{
〈r ||π ||µ〉 if ri = 0

undefined otherwise

if -nezq i = λ〈r ||π ||µ〉.
{
〈r ||π ||µ〉 if ri 6= 0

undefined otherwise

Figure 8. Semantics of the Dalvik bytecode instructions that we consider.

setContentViewq xml = λ〈r ||π ||µ〉.〈r ||π ||µ[` 7→ µ(`)[root 7→ {vx | x ∈ xml}]]〉
where xml is a set of view descriptions

and κx is the class tag in a view description x

and vx is a new instance of κx whose fields are set according to x

findViewByIdq d, i = λ〈r ||π ||µ〉.


〈r[d 7→ `v ] ||π ||µ〉 if there exists a view v in µ(`)(root)

held at location `v in µ and v(id) = i

〈r[d 7→ 0] ||π ||µ〉 otherwise

startActivityForResultq A = λ〈r ||π ||µ〉.〈r ||A :: π ||µ〉

setResultq i = λ〈r ||π ||µ〉.
{
〈r ||π ||µ〉 if µ(`)(finished) = true

〈r ||π ||µ[` 7→ µ(`)[result 7→ i]]〉 otherwise

finishq = λ〈r ||π ||µ〉.〈r ||π ||µ[` 7→ µ(`)[finished 7→ true]]〉

Figure 9. Semantics of the macro instructions that we consider. Location ` is a reference to the current activity.

2. lookup of the dynamic target method on the basis of the run-
time class of the receiver;

3. execution of the dynamic target method and return.

We model (1) and (2) as state transformers, and (3) as the creation
of a new frame for the callee, followed by the rehabilitation of the
frame of the caller.

The first operation is formalised as follows.

DEFINITION 9. Let q be a program point where a call to a method
κ.m(t1, . . . , tp) : t occurs. Let rq be the number of registers at q
and rm be the number of registers used by κ.m(t1, . . . , tp) : t. Let
S = s0, s1, . . . , sp be a sequence of register indexes. We define

argsq,S,κ.m(t1,...,tp):t ∈ Σrq → Σp+1

as

argsq,S,κ.m(t1,...,tp):t =

λ〈r ||π ||µ〉.〈[i 7→ rsi−k | k ≤ i < rm] ||π ||µ〉

where k = rm − (p+ 1).

EXAMPLE 3. Consider m = onActivityResult defined in
Fig. 6. We have p = 3 and rm = 6. If q is a program point
where a call to onActivityResult occurs and S = 3, 0, 0, 2,

argsq,S,onActivityResult =

λ〈r ||π ||µ〉.〈[2 7→ r3, 3 7→ r0, 4 7→ r0, 5 7→ r2] ||π ||µ〉 .

The second operation is formalised as a filter state transformer,
put at the beginning of the code of each method κi.m(t1, . . . , tp) :
t. It checks if that method is actually selected at run-time, on the
basis of the dynamic class of the receiver and of the method lookup
procedure of the language.

DEFINITION 10. Let κ.m(t1, . . . , tp) : t be a method. We define

selectκ.m(t1,...,tp):t : Σp+1 → Σp+1
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as

λ〈r ||π ||µ〉.



〈r ||π ||µ〉 if rmin 6= 0 and the lookup procedure
of a method m(t1, . . . , tp) : t

from the class of µ(rmin)

selects its implementation in class κ

undefined otherwise.

We do not specify the detail of the lookup procedure used
in Definition 10 since it would only complicate the definition of
our concrete semantics. Note that we have already assumed that
call sites are decorated with an overapporoximation of the set
of their possible targets, hence any abstraction of our concrete
semantics will not use a formal definition of the lookup procedure
but will overapproximate the concrete execution paths by using the
decoration available at call sites.

DEFINITION 11. A method frame (or frame) is a pair 〈b || r〉 of a
block b of the program and registers r. It represents the fact that
the DVM is going to execute b with registers r. A method stack is a
stack c1 :: c2 :: · · · :: cn of method frames.

DEFINITION 12. A method configuration (or configuration) is a
triple α � π � µ of a method stack α, pending activities stack π
and memory µ. The (small step) operational semantics for method
execution in a program P is the binary relation P (P is usually
omitted) over configurations defined by the rules in Fig. 10.

In Fig. 10, rule (1a) executes an instruction or macro instruction
ins, different from call, move-result, return-void and return, by
calling its semantics ins . The DVM moves then forward to run the
rest of the instructions. Rule (1b) calls a method. It chooses one of
the possible callees, looks for the block bmi where the latter starts
and builds its initial state σ′ = 〈r′ ||π′ ||µ′〉, by using the functions
args and select . It creates a new current frame containing bmi and
r′. It removes the call from the instructions still to be executed at
return time. The choice of the possible callee, as expressed in our
semantics, is non-deterministic. However, only one possible callee
will be selected at run-time and only one non-deterministic choice
will continue, since the select function of the method lookup rules
of the language is deterministic in the case of Dalvik. For all other
callees, σ′ does not exist (select is a partial function). Control
returns to the caller by rules (1c) and (1d), that rehabilitate the
frame of the caller. Rule (1c) corresponds to the situation when the
call instruction is followed by a move-result; the return value of
the callee is stored in the specified register of the caller. In contrast,
rule (1d) corresponds to the situation when no move-result follows
the call instruction; the return value of the callee, if any, is lost.
Rule (1e) applies when all instructions inside a block have been
executed; it runs one of its immediate successors, if any. This rule
is normally deterministic, since if a block of the Dalvik bytecode
has two or more immediate successors then they start with mutually
exclusive conditional instructions and only one thread of control is
actually followed.

We state now the usual preservation and progress theorems for
the semantics of Fig. 10.

THEOREM 1 (Preservation). If α�π�µ is well-formed and α�π�
µ α′ � π′ � µ′, then α′ � π′ � µ′ is well-formed.

Successful configurations correspond to the situations when the end
of a callback method is reached. This happens when the method
stack has the form 〈 ret || 〉 :: ε i.e., consists of exactly one
frame whose block has no successor and contains just a single ret
instruction. None of the rules in Fig. 10 applies to such stacks:
in rules (1a) and (1b) the block of the topmost frame does not

start with a ret instruction, in rules (1c) and (1d) the method stack
consists of at least two elements and in rule (1e) the block of
the topmost frame is empty. Note that the semantics of Fig. 10 is
partial: the program may get stuck. Some of this partiality is related
to well-formedness of the Android programs that we consider. For
instance, iget d, i, f is not defined if the content of the ith register
is not 0 nor a reference to an object. This kind of errors is ruled out
by the static well-formedness constraints imposed in Section 4. In
other cases, partiality stands for certain failure modes for which
the DVM specification says that the behavior of the program is
undefined, for instance an iget d, i, f instruction where ri = 0
(access to a field over a null reference); we model these events by
stuck configurations.

DEFINITION 13. We let α, α′, α1, . . . denote method stacks of the
form 〈 ret || 〉 :: ε. A method configuration is successful if it has
the form α�π�µ. A method configuration is stuck if it has the form

〈 ins
rest ⇒

b1
···
bx
|| r〉 :: α � π � µ

with ins(〈r ||π ||µ〉) = undefined (see Fig. 8).

THEOREM 2 (Progress). If α � π � µ is well-formed, then either it
is successful, or it is stuck (hence in an erroneous configuration) or
there exists α′ � π′ � µ′ such that α � π � µ α′ � π′ � µ′.

5.2 Activities
Activities can be in any of the states depicted in Fig. 1.

DEFINITION 14. An activity state is an element of the set

{ constructor , onCreate, onStart , onRestart ,
onResume, running , onActivityResult ,
onPause, onStop, onDestroy } .

We let Lifecycle be the binary relation over activity states consist-
ing of the pairs:

(constructor , onCreate),
(onCreate, onStart), (onRestart , onStart),
(onStart , onResume), (onStart , onStop),
(onResume, onPause), (onResume, running),
(running , onPause), (running , running),
(onPause, onResume), (onPause, onStop),
(onStop, onRestart), (onStop, onDestroy) .

Let a be an activity at memory location `. For any activity state
s different from constructor and running , we let `.s denote
the implementation of the callback method s found by method
lookup from the class of a. For instance, `.onCreate denotes the
method onCreate found by method lookup from the class of a.
We let `.constructor denote the default constructor of a. We let
`.running denote any callback method, different from those in
Fig. 1 and from onActivityResult, found by method lookup
from the class of a. For instance, if a is an object of the class
Caller shown in Fig. 2, then `.running may denote the method
launchActivity defined in Caller. If a is an object of the class
Callee shown in Fig. 4, then `.running may denote the method
returnOk or returnCancel defined in Callee.

DEFINITION 15. Let ` be the memory location of an activity and s
be an activity state. We let α`.s denote a method stack of the form
〈b`.s || r〉 :: ε where

r = [r`.s − (p+ 1) 7→ `, r`.s − p 7→ u1, . . . , r`.s − 1 7→ up]

and r`.s is the number of registers used by the method `.s, p+ 1 is
the number of parameters of `.s (including this) and u1, . . . up is
a sequence of values that the system passes to `.s.

We will use α`.s in the rules defining our operational semantics for
modelling a callback method invocation: `.s is a callback method,
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ins 6∈ {call,move-result, return-void, return} 〈r′ ||π′ ||µ′〉 = ins(〈r ||π ||µ〉)

〈 ins
rest ⇒

b1
···
bx
|| r〉 :: α � π � µ 〈 rest ⇒

b1
···
bx
|| r′〉 :: α � π′ � µ′

(1a)

b = call S,m1,...,mn
rest ⇒

b1
···
bx

b′ = rest ⇒
b1
···
bx

the call instruction occurs at program point q
〈r′ ||π′ ||µ′〉 = selectmi(argsq,S,mi

(〈r ||π ||µ〉))
〈b || r〉 :: α � π � µ 〈bmi || r′〉 :: 〈b′ || r〉 :: α � π′ � µ′ (1b)

b = move-result d
rest ⇒

b1
···
bx

b′ = rest ⇒
b1
···
bx

〈 return s || r〉 :: 〈b || r′〉 :: α � π � µ 〈b′ ||〈r′[d 7→ rs]〉 :: α � π � µ
(1c)

b does not start with a move-result

〈 ret || r〉 :: 〈b || r′〉 :: α � π � µ 〈b || r′〉 :: α � π � µ
(1d)

1 ≤ i ≤ x

〈 ⇒
b1
···
bx
|| r〉 :: α � π � µ 〈bi || r〉 :: α � π � µ

(1e)

Figure 10. Operational semantics of Dalvik.

b`.s is the block where `.s starts and the last p + 1 registers of `.s
are bound to ` (the receiver of the call) followed by some values
passed by the Android system to the method.

The next definition models the notion of an activity stack used
by the Android system for managing activities.

DEFINITION 16. An activity frame is a tuple 〈` || s ||π ||α〉 where `
is a memory location, s is an activity state, π is a stack of pending
activities and α is a method stack. An activity stack is a stack
ϕ1 :: ϕ2 :: · · · :: ϕn of activity frames where at most one frame is
underlined.

An activity frame 〈` || s ||π ||α〉 is a data structure used to manage
an activity a in an activity stack; ` is the location of a in the heap,
s is the current state of a, π contains the activities that are waiting
to be launched from a and α is a method stack used for managing
the execution of a callback method corresponding to s. We will use
underlined frames for denoting situations when the execution of a
callback method has to be given high priority.

We can define now the operational semantics of a program.

DEFINITION 17. An activity configuration (or configuration) is a
pair Ω � µ of an activity stack Ω and memory µ. The (small
step) operational semantics of an Android program P is the binary
relation⇒P (P is usually omitted) over configurations defined in
Fig. 11–12.

An activity stack Ω in Definition 16 is meant to contain only
activities of the program P under analysis. Hence, Ω corresponds
to the portions of the DVM activity stack that consist of activities
of P . Therefore, although the topmost activity of the DVM stack is
always in state running (it is visible to the user and has focus), the
topmost element of Ω may for instance be in state onPause . This
corresponds to the situation when an activity of another program
has come into the foreground: it does not appear in Ω because it is
not an activity of P . Moreover, each Android program P runs in its
own process within its own virtual machine, in isolation from other
applications. Consequently, P has its own heap memory which is
not shared with other applications. In a step Ω � µ ⇒P Ω′ � µ′

of the operational semantics, µ represents the state of the memory
assigned to the process of P and µ′ is the state of this memory
after performing the step. Note that µ cannot be affected by other
applications.

The following preservation and progress theorems hold for the
semantics of Fig. 11–12.

THEOREM 3 (Preservation). If Ω � µ is well-formed and Ω � µ⇒
Ω′ � µ′, then Ω′ � µ′ is well-formed.

Successful configurations correspond to the situations when the
program terminates successfully. This happens when all the activ-
ities of the program have run and been removed from the activity
stack, which has become empty. Stuck configurations correspond to
the situations when the program is stuck in the middle of a method
because the next instruction to be executed is undefined on the cur-
rent state (Definition 13).

DEFINITION 18. An activity configuration is successful if it has
the form ε � µ. An activity configuration is stuck if it has the form
Ω :: 〈` || s ||π ||α〉 :: Ω′ � µ where α � π � µ is stuck.

THEOREM 4 (Progress). If Ω � µ is well-formed, then either it is
successful, or it is stuck (hence in an erroneous configuration) or
there exists Ω′ � µ′ such that Ω � µ⇒ Ω′ � µ′.

5.3 Lifecycle Moves
Our rules for modelling the lifecyle of an activity are presented
in Fig. 11. We do not model the situations when, in order to save
memory space, the system decides to kill an entire application
process or an individual, non-finished, activity. In such cases, the
killed application, or single activity, is restarted when needed and
restored to its previously saved state. The destruction of a single
activity is an extremely rare situation which may happen when the
application process has a large number of activities running in it.
Modulo this restriction, the rules of Fig. 11 are intended to model
a superset of the possible concrete traces of an Android program.

Rule (2a) models the execution of a callback method in the
frame which is underlined. It cannot be used when the callback
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α � π � µ α′ � π′ � µ′

Ω :: 〈` || s ||π ||α〉 :: Ω′ � µ⇒ Ω :: 〈` || s ||π′ ||α′〉 :: Ω′ � µ′ (2a)

Ω :: 〈` || s ||π ||α〉 :: Ω′ � µ⇒ Ω :: 〈` || s ||π ||α〉 :: Ω′ � µ (2b)

(s, s′) ∈ Lifecycle π 6= ε⇒ (s, s′) = (running , onPause)
µ(`)(finished) = true ⇒ (s, s′) ∈ {(running , onPause), (onPause, onStop), (onStop, onDestroy)}

〈` || s ||π ||α〉 :: Ω � µ⇒ 〈` || s′ ||π ||α`.s′〉 :: Ω � µ (2c)

µ(`)(finished) = true

Ω :: 〈` || onDestroy || ||α〉 :: Ω′ � µ⇒ Ω :: Ω′ � µ (2d)

µ′ = µ[` 7→ µ(`)[finished 7→ true]]

〈` || running || ε ||α〉 :: Ω � µ⇒ 〈` || running || ε ||α〉 :: Ω � µ′ (2e)

`′ is a fresh location and o is a new object of class µ(`)(κ) µ′ = µ[`′ 7→ o]

〈` || onDestroy ||π ||α〉 :: Ω � µ⇒ 〈`′ || constructor ||π ||α`′.constructor 〉 :: Ω � µ′ (2f)

ϕ = 〈` || s ||π ||α〉 s ∈ {onResume, onPause} (s′, s′1) ∈ {(onPause, onStop), (onStop, onDestroy)}
ϕ :: Ω :: 〈`′ || s′ ||π′ ||α′〉 :: Ω′ � µ⇒ ϕ :: Ω :: 〈`′ || s′1 ||π′ ||α`′.s′1〉 :: Ω′ � µ (2g)

Figure 11. Lifecycle moves. In rules (2c)–(2g), it is supposed that the activity stack on the left of⇒ contains no underlined frame.

method has been run to completion i.e., when the activity stack has
the form Ω :: 〈` || s ||π ||α〉 :: Ω′, because no rule in Fig. 10 applies
to α. Rule (2b) models the situation when the callback method in
the underlined frame has been run to completion: the frame is not
given high priority anymore (it loses its underline) and one of the
rules (2c)–(2g) can now be applied. Rule (2c) models the transition
from a state s to one of its successors s′ in Lifecycle . The end of a
callback method corresponding to s has been reached and now it is
possible to jump to a successor state and execute a corresponding
callback method (the topmost activity frame gets underlined). Note
that if pending activities exist (resulting from the execution of a
startActivityForResult instruction in state running), then the only
possibility is to switch to state onPause; the pending activities then
have to be launched, which is modelled by the rules in Sect. 5.4.
Moreover, if the activity is finished (due to the execution of a finish
instruction in state running), then the only possible ways are those
leading to state onDestroy . Rule (2d) models the removal of a
finished activity from the stack. Rule (2e) models the situation
when the activity is running and the user hits the back button of
the device. Then, the activity gets finished. It will reach its state
onPause with (2a)–(2c) and will transfer control to its parent with
the rules in Sect. 5.4. Rule (2f) models a configuration change,
such as for instance a screen orientation switch. The foreground
activity has reached its state onDestroy with (2a)–(2c); now, it
gets destroyed and replaced by a new activity. Rule (2g) models the
situation when a new activity (represented by the frame ϕ) has been
started, has come into the foreground and now completely hides a
previous activity (represented by the frame 〈`′ || s′ ||π′ ||α′〉) which
is no longer visible. The hidden activity switches state and is ready
to execute the callback method corresponding to its new state i.e.,
onStop or onDestroy.

Note that different rules may apply to the same stack e.g., (2c)
and (2g), or the same rule may apply to different portions of the
same stack e.g., (2d), or the same rule may be applied differently to
the same stack e.g., (2c) allows one to switch from state running
to itself starting any allowed callback method, or to switch from
running to onPause . Hence, the choice and the application of
the rules is highly non-deterministic. This reflects the event-driven
nature of Android applications and their tight, intricate interactions
with the system.

EXAMPLE 4. Consider the program in Fig. 2–5. Suppose that the
activity described in Fig. 2 appears in the launcher screen of the
device. When the user taps the corresponding icon, the application
starts with a memory µ and an activity stack

Ω = 〈` || constructor || ε ||α`.constructor 〉

where µ(`) is an object of class Caller. Then, using (2a)–(2c) as
many times as necessary, one gets

Ω � µ⇒∗ 〈` || onResume || ε ||α1〉︸ ︷︷ ︸
Ω1

�µ1

i.e., the default constructor in class Caller and the callback meth-
ods onCreate, onStart and onResume have been run to comple-
tion. Let

α2 = 〈bCaller.launchActivity(View):void || r〉 :: ε

where r = [#r − 2 7→ `,#r − 1 7→ v], #r is the number of
registers used by Caller .launchActivity(View) : void and v is
the location of a view. We have α2 ∈ α`.running , hence, using (2c),

Ω1 � µ1 ⇒

Ω2︷ ︸︸ ︷
〈` || running || ε ||α2〉 �µ2
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and, using (2a)–(2b),

Ω2 � µ2 ⇒∗ 〈` || running ||Callee ||α3〉︸ ︷︷ ︸
Ω3

�µ3

i.e., the method launchActivity is run, which contains an occur-
rence of startActivityForResult for invoking an instance of class
Callee. The derivation Ω � µ⇒∗ Ω3 � µ3 corresponds to the sit-
uation when an instance of Caller has started and then the user
has tapped the Launch activity button.

5.4 Starting and Returning from an Activity
Let P be an Android program. We assume that each activity a of
P has a field parent that stores 0 if a was created from another
program or stores a reference to the activity that started a otherwise.
The rules for modelling the invocation of an activity are presented
in Fig. 12.

Rule (3a) corresponds to the launch of a pending activity. The
parent activity, represented by 〈` || s ||A :: π ||α〉, is losing fo-
cus, hence it has run its method onPause . The new activity, rep-
resented by 〈`′ || constructor || ε ||α`′.constructor 〉, comes into the
foreground, so it lays on top of the activity stack and its default
constructor is about to be run.

When an activity a′ of the program P under analysis finishes,
the next situations may occur.

• Either a′ was started from another program P ′. Then, it returns
its result to P ′ which is out of the scope of the analysis. This
situation is handled by (2c) and (2d): first, a′ reaches the state
onDestroy , then it is removed from the activity stack.
• Or a′ was started from an activity a of P . Then, a lies in the

activity stack, just below a′. This situation is handled by (3b)
and (3c) where a (resp. a′) is represented by the frame ϕ (resp.
ϕ′). In (3b), there are still some pending activities in a, waiting
to be launched; therefore, ϕ is back to the top of the stack,
so that (3a) can be used. In (3c), there are no more pending
activities in a. Hence, a runs its onActivityResult method and
comes into the foreground. Both in (3b) and (3c), the finishing
activity a′ goes into the background; there, it can reach its
onDestroy state with (2g) and then it is removed from the stack
with (2d).

EXAMPLE 5 (Example 4 continued). At step Ω3 �µ3, the user has
tapped the Launch activity button and the callback method
launchActivity has run. This method invokes a new instance of
class Callee, which now has to be created and launched. First, as
the current instance of Caller is about to lose focus, its method
onPause is run. Using (2c) and then (2a)–(2b), one gets

Ω3 � µ3 ⇒∗ 〈` || onPause ||Callee ||α4〉︸ ︷︷ ︸
Ω4

�µ4

which models the execution of onPause. Then, an instance of
Callee is created. Using (3a), one gets

Ω4 � µ4 ⇒ ϕ′5 :: ϕ5 � µ4[`′ 7→ o]

where

ϕ′5 = 〈`′ || constructor || ε ||α`′.constructor 〉,
ϕ5 = 〈` || onPause || ε ||α4〉,

with `′ a fresh location, o a new object of class Callee and
o(parent) = `.

5.5 Saving and Restoring the State
The relation Lifecycle that we consider in Definition 14 is intended
to model the lifecyle of an activity as presented in Fig. 1. Note that

other callback methods than those shown in Fig. 1 may be called
by the system before or after the running state of an activity. For
instance, onSaveInstanceState is called by the system before
placing in a background state an activity that may be killed for
memory reasons; it is called between states running and onStop
and is used to save away any dynamic data in an activity, to be
later retrieved if the activity needs to be re-created. The callback
method onRestoreInstanceState is called after onStart when
the activity is being re-initialized from a previously saved state. A
possibility for modelling the calls to onRestoreInstanceState
is to define the activity state onRestoreInstanceState , add the
pairs of states

(onStart , onRestoreInstanceState)
(onRestoreInstanceState, onResume)

to Lifecycle and use (2c). On the other hand, the calls to method
onSaveInstanceState can be handled by defining the activity
state onSaveInstanceState and by adding the pairs

(running , onSaveInstanceState)
(onSaveInstanceState, onPause)
(onPause, onSaveInstanceState)
(onSaveInstanceState, onStop)

to Lifecycle . Then, in order to avoid infinite loops of the form

onSaveInstanceState →onPause

→onSaveInstanceState

→ . . .

a field paused with boolean type has to be added to activities,
indicating whether state onPause has been met already. Moreover,
rule (2c) has to be modified so that any move between states
onPause and onSaveInstanceState is only allowed if paused
holds false; such a move also sets field paused to true .

5.6 Validation of the Semantics
We are in the process of developing a symbolic executor for Dalvik
that implements the operational semantics presented in this paper.
Although yet incomplete, our tool is able to run small Android ap-
plications that fall within the scope of our framework (Section 3.2).
We have tested the current version on a large set of small programs
that we have written ourselves and verified successfully that it pro-
duces the same output as the emulator provided by the official An-
droid SDK.

6. Conclusion
We have defined an operational semantics for a fragment of An-
droid that includes its Dalvik bytecode and the lifecycle and inter-
communication mechanism of the activities. This provides the basis
for further developments, towards the inclusion of more Android
components. In particular, similar lifecycles exist for other compo-
nents as well, such as services and broadcast receivers. However,
the lifecycle of activities is the most complex, since it involves an
intercomponents communication mechanism and scheduling, that
is what we have formalised. Our semantics is meant to be the ba-
sis for static analyses that take the lifecycle of the activities into
account to provide more precise results than other analyses that ab-
stract away that aspect of Android.
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