
HAL Id: hal-01451692
https://hal.univ-reunion.fr/hal-01451692

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-termination of Dalvik bytecode via compilation to
CLP

Etienne Payet, Frédéric Mesnard

To cite this version:
Etienne Payet, Frédéric Mesnard. Non-termination of Dalvik bytecode via compilation to CLP. 14th
International Workshop on Termination (WST), Jul 2014, Vienne, Austria. pp.65-69. �hal-01451692�

https://hal.univ-reunion.fr/hal-01451692
https://hal.archives-ouvertes.fr

Non-termination of Dalvik bytecode via
compilation to CLP

Étienne Payet and Fred Mesnard

Université de La Réunion, EA2525-LIM
Saint-Denis de La Réunion, F-97490, France
{etienne.payet,frederic.mesnard}@univ-reunion.fr

Abstract
We present a set of rules for compiling a Dalvik bytecode program into a logic program with array
constraints. Non-termination of the resulting program entails that of the original one, hence the
techniques we have presented before for proving non-termination of constraint logic programs
can be used for proving non-termination of Dalvik programs.

Keywords and phrases Non-Termination, Android, Dalvik, Constraint Logic Programming

1 Introduction

Android is currently the most widespread operating system for mobile devices. Applica-
tions running on this system can be downloaded from anywhere, hence reliability is a major
concern for its users. In this paper, we consider applications that may run into an infinite
loop, which may cause a resource exhaustion, for instance the battery if the loop continu-
ously uses a sensor as the GPS. Android programs are written in Java and compiled to
the Google’s Dalvik Virtual Machine (DVM) bytecode format [3] before installation on a
device. We provide a set of rules for compiling a Dalvik bytecode program into a constraint
logic program [5]. Non-termination of the resulting program entails that of the original one,
hence the technique we have presented before [6] for proving non-termination of constraint
logic programs can be used for proving non-termination of Dalvik programs. We model the
memory and the objects it contains with arrays, so we compile Dalvik programs to logic
programs with array constraints and we consider the theory of arrays presented in [1].

2 The Dalvik Virtual Machine

We briefly describe the operational semantics of the DVM (see [3] for a complete description).
Unlike the JVM which is stack-based, the DVM is register-based. Each method uses its own
array of registers and invoked methods do not affect the registers of invoking methods.
The number of registers used by a method is statically known. At the beginning of an
execution, the N arguments to a method land in its last N registers and the other registers
are initialized to 0. Many Dalvik bytecode instructions are similar, so we concentrate on a
restricted set which exemplifies the operations that the DVM performs.

const d, c Move constant c into register d (i.e., the register at index d in the array of
registers of the method where this instruction occurs).
move d, s Move the content of register s into register d.
add d, s, c Store the sum of the content of register s and constant c into register d.

2 Non-termination of Dalvik bytecode

if -lt i, j, q If the content of register i is less than the content of register j then jump to
program point q, otherwise execute the immediately following instruction.
goto q Jump to program point q.
invoke S,m where S = s0, s1, . . . , sp is a sequence of register indexes and m is a method.
The content rs0 of register s0, . . . , rsp of register sp are the actual parameters of the
call. Value rs0 is called receiver of the call and must be 0 (the equivalent of null in
Java) or a reference to an object o. In the former case, the computation stops with an
exception. Otherwise, a lookup procedure is started from the class of o upwards along
the superclass chain, looking for a method with the same signature as m. That method
is run from a state where its last registers are bound to rs0 , rs1 , . . . , rsp .
return Return from a void method.
new-instance d, κ Move a reference to a new object of class κ into register d.
iget d, i, f (resp. iput s, i, f) The content ri of register i must be 0 or a reference to an
object o. If ri is 0, the computation stops with an exception. Otherwise, o(f) (the value
of field f of o) is stored into register d (resp. the content of register s is stored into o(f)).

3 Compilation to CLP clauses

We model a memory as a pair (a, i) where a is an array of objects and i is the index into
this array where the next insertion will take place. An object o is an array of terms of the
form [w, f1(v1), . . . , fn(vn)] where w is the name of the class of o, f1, . . . , fn are the names
of the fields defined in this class and v1, . . . , vn are the current values of these fields in o.
So, the first component of a memory is an array of arrays of terms and a memory location is
an index into this array. Memory locations start at 1 and 0 corresponds to the null value.

Our compilation rules are given in Fig. 1–3. We associate a predicate symbol pq to
each program point q of the Dalvik program P under consideration. We generate clauses
with constraints on integer and array terms. Our constraint theory combines the theory
of integers with that of arrays defined in [1]. Our CLP domain of computation D (values
interpreting constraints) is the union of Z with the set Obj of arrays of terms of the form
f(i) where i is an integer and with the set of arrays of elements of Obj. The read a[i] returns
the value stored at position i of the array a and the write a{i ← e} is a modified so that
position i has value e. For multidimensional arrays, we abbreviate a[i] · · · [j] with a[i, . . . , j].

Each rule considers an instruction ins occurring at a program point q. We let Ṽ =
V0, . . . , Vr−1 and Ṽ ′ = V ′0 , . . . , V

′
r−1 be sequences of distinct variables where r is the number

of registers used by the method where ins occurs. For each i ∈ [0, r − 1], variable Vi

(resp. V ′i) models the content of register i before (resp. after) executing ins. We let M
denote the input memory and M ′ the output memory. So, Ṽ and M (or [A, I]) in the head
of the clauses are input parameters while M ′ is an output parameter. We let id denote
the sequence (V ′0 = V0, . . . , V

′
r−1 = Vr−1) and id−i (where i ∈ [0, r − 1]) the sequence

(V ′0 = V0, . . . , V
′

i−1 = Vi−1, V
′

i+1 = Vi+1 . . . , V
′

r−1 = Vr−1). By |X̃| we mean the length of
sequence X̃. For any method m, qm is the program point where m starts, reg(m) is the
number of registers used by m and sign(m) is the set of all the methods with the same
signature as m.

Some compilation rules are rather straightforward. For instance, const d, c moves con-
stant c into register d, so in Fig. 1 the output register variable V ′d is set to c while the other
register variables remain unchanged (modelled with id−d). Rules for move, add and goto
are similar. In Fig. 2, we consider method calls. The instruction invoke s0, . . . , sp,m is
compiled into a set of clauses (one for each method with the same signature as m) which

É. Payet and F. Mesnard 3

const d, c
pq(Ṽ ,M,M ′)← {V ′d = c} ∪ id−d, pq+1(Ṽ ′,M,M ′)

(1a)

if -lt i, j, q′

{ pq(Ṽ ,M,M ′)← {Vi < Vj} ∪ id, pq′(Ṽ ′,M,M ′),
pq(Ṽ ,M,M ′)← {Vi ≥ Vj} ∪ id, pq+1(Ṽ ′,M,M ′) }

(1b)

Figure 1 Compilation of some simple Dalvik instructions.

invoke s0, . . . , sp,m
pq(Ṽ ,M,M ′)← {Vs0 > 0} ∪ id,

lookupP (M,Vs0 ,m, qm′),
pqm′ (X̃m′ ,M,M1),
pq+1(Ṽ ′,M1,M

′)

m′ ∈ sign(m)
and X̃m′ = 0, . . . , 0, Vs0 , . . . , Vsp

with |X̃m′ | = reg(m′)

(2a)

return
pq(Ṽ ,M,M ′)← {M ′ = M}

(2b)

Figure 2 Compilation of some Dalvik instructions related to method calls.

impose that Vs0 (the receiver of the call) is a non-null location (i.e., Vs0 > 0). Therefore, if
Vs0 ≤ 0, the execution of the generated CLP program fails, as the original Dalvik program.
If Vs0 > 0, the lookup procedure begins. For each m′ ∈ sign(m), this is modelled with
the call lookupP (M,Vs0 ,m, qm′) which starts from the class of the object at location Vs0 in
memory M and searches for the closest method m′′ with the same signature as m upwards
along the superclass chain. If m′′ = m′, this call succeeds, otherwise it fails. Then, m′ is
executed, modelled with pqm′ (X̃m′ ,M,M1), with some registers X̃m′ initialized as expec-
ted. When the execution of m′ has finished, control jumps to the following instruction (i.e.,
pq+1(Ṽ ′,M1,M

′)). In Fig. 3, we consider some memory-related instructions that we compile
to clauses with array constraints.

I Theorem 1. Let P be a Dalvik bytecode program and PCLP its CLP compilation. If there
is a computation pq0pq1 . . . in PCLP then there is an execution q0q1 . . . of P .

More precisely, if there is a finite (resp. infinite) computation in PCLP starting from a query
pq0(ṽ, [a, i],M ′) (where ṽ, a and i are values in D andM ′ is an output variable), then there is
a finite (resp. infinite) execution of P , using the same program points, starting from values
corresponding to ṽ and a in the DVM registers and memory.

4 Non-termination inference

The following proposition is a CLP reformulation of a result presented in [4].

I Proposition 2. Let r = p(x̃)← c, p(ỹ) and r′ = p′(x̃′)← c′, p(ỹ′) be some clauses. Suppose
there exists a set G such that formulæ

[
∀x̃∃ỹ x̃ ∈ G ⇒ (c ∧ ỹ ∈ G)

]
and

[
∃x̃′∃ỹ′ c′ ∧ ỹ′ ∈ G

]
are true. Then, p′ has an infinite computation in {r, r′}.

4 Non-termination of Dalvik bytecode

new-instance d, κ
w is the name of class κ and f1, . . . , fn are the names of the fields defined in κ
pq(Ṽ , [A, I],M ′)

{
O[0] = w, O[1] = f1(0), . . . , O[n] = fn(0),

A1 = A{I O}, V ′d = I, I1 = I + 1
}
∪ id−d, pq+1(Ṽ ′, [A1, I1],M ′)

(3a)

iget d, i, f
pq(Ṽ , [A, I],M ′)

{
Vi > 0, A[Vi, F] = f(V ′d)

}
∪ id−d, pq+1(Ṽ ′, [A, I],M ′)

(3b)

iput s, i, f
pq(Ṽ , [A, I],M ′)

{
Vi > 0, O = A[Vi], O[F] = f(X), O1 = O{F ← f(Vs)},

A1 = A{Vi ← O1}
}
∪ id, pq+1(Ṽ ′, [A1, I],M ′)

(3c)

Figure 3 Compilation of some memory-related instructions.

Consider the Android program in Fig. 4, with the Java syntax on the left and the
corresponding Dalvik bytecode P on the right, where v0, v1, . . . denote registers 0, 1, . . .
Method loop in class MyActivity is called when the user taps a button displayed by the
application. Execution of this method does not terminate because in the call to m, the
objects o1 and o2 are aliased and therefore by decrementing x.i we are also decrementing
this.i in the loop of method m. We get the following clauses for program points 0 and 14:

p0(Ṽ , [A, I],M ′)← {A[V1, F] = i(V ′0)} ∪ id−0, p1(Ṽ ′, [A, I],M ′)

p14(Ṽ ,M,M ′)← {V0 > 0} ∪ id, lookupP (M,V0, Loops->m(ILoops)V, 0),
p0(0, V0, V2, V1,M,M1), p15(Ṽ ′,M1,M

′)

Let PCLP denote the CLP program resulting from the compilation of P . The set of
binary unfoldings [2] of PCLP contains the following clauses

r : p0(Ṽ , [A, I],M ′)
{
V1 > 0, O = A[V1], O[F] = i(X), X < V2,

O1 = O{F ← i(X + 1)}, A1 = A{V1 ← O1},

V3 > 0, O′ = A1[V3], O′[F ′] = i(X ′), V ′0 = X ′ − 1,

O′1 = O′{F ′ ← i(V ′0)}, A2 = A1{V3 ← O′1}
}
∪ id−0, p0(Ṽ ′, [A2, I],M ′)

r′ : p10(Ṽ , [A, I],M ′)← {O[0] = loops, O[1] = i(0), A1 = A{I ← O},

I1 = I + 1, I > 0}, p0(0, I, 2, I, [A1, I1],M1)

where r corresponds to the path 0 → 1 → 3 → 4 → · · · → 9 → 0 and r′ to the path
10 → 11 → 12 → 13 → 14 → 0 in P . In r′, O corresponds to both o1 and o2, which
expresses that o1 and o2 are aliased. Note that I, the address of O, is passed to p0 both
as second and fourth parameter, which corresponds in r to V1 (this in method m) and V3
(x in m). Moreover, when V1 = V3 in r, we have O′ = O1, F ′ = F and X ′ = X + 1,
hence V ′0 = X ′ − 1 = X. Therefore, we have O′1 = O, so A2 = A. The logical formulæ
of Proposition 2 are true for the set G = {(ṽ,mem,mem′) ∈ D3|v1 = v3}. Hence, p10 has
an infinite computation in {r, r′}, which implies [2] that p10 has an infinite computation in
PCLP . So by Theorem 1, P has an infinite execution from program point 10.

É. Payet and F. Mesnard 5

public class Loops { .method public m(ILoops)V
int i; .registers 4
public void m(int n, Loops x) { 0: iget v0, v1, Loops->i:I

while (this.i < n) { 1: if-lt v0, v2, 3
this.i++; 2: return-void
x.i--; 3: iget v0, v1, Loops->i:I

} 4: add-int/lit8 v0, v0, 0x1
} 5: iput v0, v1, Loops->i:I

} 6: iget v0, v3, Loops->i:I
7: add-int/lit8 v0, v0, -0x1
8: iput v0, v3, Loops->i:I
9: goto 0
.end method

public class MyActivity extends Activity {
... .method public loop(Landroid/view/View;)V
public void loop(View v) { .registers 5

Loops o1 = new Loops(); 10: new-instance v0, Loops
Loops o2 = o1; 11: invoke-direct {v0}, Loops-><init>()V
o1.m(2, o2); 12: move-object v1, v0

} 13: const/16 v2, 0x2
... 14: invoke-virtual {v0, v2, v1}, Loops->m(ILoops)V

} 15: return-void
.end method

Figure 4 The non-terminating method loop is called when the user taps a button.

5 Future Work

We plan to implement the technique described above and to write a solver for array con-
straints. Currently, our compilation rules only consider the operational semantics of Dalvik,
a part of the Android platform. We also plan to extend them by considering the operational
semantics of other components of Android, for instance activities that we have studied in [7].

References
1 A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In E. A.

Emerson and K. S. Namjoshi, editors, Proc. of VMCAI’06, volume 3855 of LNCS, pages
427–442. Springer, 2006.

2 M. Codish and C. Taboch. A semantic basis for the termination analysis of logic programs.
Journal of Logic Programming, 41(1):103–123, 1999.

3 Dalvik docs mirror. http://www.milk.com/kodebase/dalvik-docs-mirror/.
4 A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving non-

termination. In G. C. Necula and P. Wadler, editors, Proc. of POPL’08, pages 147–158.
ACM Press, 2008.

5 J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint logic
programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

6 É. Payet and F. Mesnard. A non-termination criterion for binary constraint logic programs.
Theory and Practice of Logic Programming, 9(2):145–164, 2009.

7 É. Payet and F. Spoto. An operational semantics for Android activities. In W.-N. Chin
and J. Hage, editors, Proc. of PEPM’14, pages 121–132. ACM, 2014.

http://www.milk.com/kodebase/dalvik-docs-mirror/

	Introduction
	The Dalvik Virtual Machine
	Compilation to CLP clauses
	Non-termination inference
	Future Work

