
HAL Id: hal-01451688
https://hal.univ-reunion.fr/hal-01451688

Submitted on 5 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Linear Ranking Problem for Simple
Floating-Point Loops

Etienne Payet, Fonenantsoa Maurica Andrianampoizinimaro, Frédéric
Mesnard

To cite this version:
Etienne Payet, Fonenantsoa Maurica Andrianampoizinimaro, Frédéric Mesnard. On the Linear Rank-
ing Problem for Simple Floating-Point Loops. 23rd International Symposium on Static Analysis (SAS),
Sep 2016, Edinburgh, United Kingdom. pp.300-316, �10.1007/978-3-662-53413-7_15�. �hal-01451688�

https://hal.univ-reunion.fr/hal-01451688
https://hal.archives-ouvertes.fr

On the linear ranking problem for simple
floating-point loops

Fonenantsoa Maurica, Frédéric Mesnard, and Étienne Payet

Université de La Réunion,
Laboratoire d’Informatique et de Mathématiques,

97490 Sainte Clotilde, La Réunion, France
{fonenantsoa.maurica,frederic.mesnard,etienne.payet}@univ-reunion.fr

Abstract. Termination of loops can be inferred from the existence of
linear ranking functions. We already know that the existence of these
functions is PTIME decidable for simple rational loops. Since very re-
cently, we know that the problem is coNP-complete for simple integer
loops. We continue along this path by investigating programs dealing
with floating-point computations. First, we show that the problem is at
least in coNP for simple floating-point loops. Then, in order to work
around that theoretical limitation we present an algorithm which re-
mains polynomial by sacrificing completeness. The algorithm, based on
the Podelski-Rybalchenko algorithm, can also synthesize in polynomial
time the linear ranking functions it detects. To our knowledge, our work
is the first adaptation of this well-known algorithm to floating-points.

Keywords: Termination analysis, Linear ranking functions, Floating-
point numbers

1 Introduction

Termination analysis of programs is a research topic that has already produced
many remarkable results. This work is a continuation of a series of connected
results concerning simple loops. [24] first showed that termination of loops of
the form while (Dx ≤ d) do x′ = V x + v done where the column vector of n
variables x ranges over IRn×1 is decidable. Then, [7] showed that the problem is
also decidable when x ∈ Qn×1 and even when x ∈ ZZn×1 for the homogeneous
case where d = 0. Followingly, [6] investigated the more general case of the non-

deterministic loops of the form while (Dx ≤ d) do V
(
x x′

)T ≤ v done where(
x x′

)T
=

(
x
x′

)
denotes the column vector of 2n elements obtained by concate-

nating x with x′. Termination of such loops was proved to be undecidable when
x, x′ ∈ ZZn×1. The existence of linear ranking functions for such loops is how-
ever decidable and the problem is shown to be coNP-complete [4, 5]. That result
applies even when the variables range over a finite set E ⊂ ZZ with |E| ≥ 2,
like the case of machine integers. We now study in this paper the case where

rational x := 100;

while(x >= 0)

x := x - 1;

Fig. 1. A simple program, Psimple

the variables are of floating-point type. In addition to being a prolongation of
these previous works, ours can also be seen as a part of the current efforts in an-
alyzing bit-vector programs instead of purely mathematical ones with error-free
computations. Indeed, the rounding errors inherent to floating-point arithmetic
render invalid most of the results obtained for programs using real or rational
variables.

The paper is organized as follows. Section 2 briefly introduces the prerequi-
sites. Sections 3 and 4 expose our contribution. We first show that there is no
polynomial algorithm that can decide the existence of linear ranking functions
for simple floating-point loops as the problem is at least in coNP. Then, we
work around that theoretical limitation by presenting a sufficient but not neces-
sary condition, thus incomplete but checkable in polynomial time, that ensures
the existence of these functions. Section 5 presents the related work. Section 6
concludes.

2 Preliminaries

In this section we introduce the notions and notations we use in the paper.

Definition 1 (Programs as transition systems). We formalize a program
P as a transition system 〈X , I,R〉 where X is a set of states, I ⊆ X is the set
of initial states and R ⊆ X × X is a transition relation between a state and its
possible successors.

Example 1. The program Psimple presented in Figure 1 can be formalized as the
transition system 〈Xsimple, Isimple,Rsimple〉 where Xsimple = Q, Isimple = {100}
and Rsimple = {〈x, x′〉 ∈ Q2|x ≥ 0 ∧ x′ = x− 1}.

Definition 2 (Sequences). Given a set X of states Xi, we say that s is an
X -sequence if s = X1X2 . . . A finite sequence will have a last index last(s).

Let R ⊆ X ×X . A finite sequence s is said to be permitted by R if and only
if ∀i ∈ 1 . . . last(s)− 1 : XiRXi+1. An infinite sequence s is permitted by R if
and only if ∀i : i > 0 =⇒ XiRXi+1.

Proposition 1 (Termination characterization, ranking functions). A pro-
gram P = 〈X , I,R〉, where X is a set of states Xi, terminates if and only if
there exists a function f from (X ,R) to a well-founded set (W, <) such that
∀i : XiRXi+1 =⇒ f(Xi) > f(Xi+1). The function f is called a ranking func-
tion for P.

0 0.1

step*: 0.1

*difference between two consecutive floating-point numbers

1 1.1

step: 0.1

10 11

step: 1

100 110

step: 10

990

Fig. 2. A personalized floating-point type, IFsimple. Symmetry to the origin for the
negatives.

By choosing (Q, <δ0,δ), δ0 ∈ Q, δ ∈ Q∗+ such that ∀x, x′ ∈ Q : x′ <δ0,δ x ⇐⇒
x ≥ δ0 ∧ x ≥ δ + x′ as well-founded set, a ranking function f is a function such
that: ∀X,X ′ ∈ X : XRX ′ =⇒ f(X) ≥ δ0 ∧ f(X) ≥ δ + f(X ′).

Definition 3 (LRF). A linear ranking function, that we shorten LRF, for a
program having the column vector X ∈ Qn×1 as variables is a ranking function
f of the form f(X) = CX where C ∈ Q1×n is a constant row vector.

Definition 4 (IFβ,p,emin,emax). A real number x ∈ IR is said to be approximated
by the floating-point number x̂ ∈ IFβ,p,emin,emax

if x = (−1)smβe and x̂ =
(−1)sm̂βe where s ∈ {0, 1} is the sign, β ∈ IN such that β ≥ 2 is the radix,
e ∈ IN such that emin ≤ e ≤ emax is the exponent and m̂ is the mantissa.
The mantissa m̂ is a fractional number approximating in p ∈ IN∗ digits the real
number m and is such that m̂ = ♦(m

β−p+1)β−p+1 where ♦ is an approximation
function that is defined according to the rounding mode �. The number p is
called precision.

If |x| ≥ βemin , x̂ is called a normal floating-point number and 1 ≤ m̂ < β.
Otherwise, x̂ is called a subnormal floating-point number and 0 ≤ m̂ < 1.

Example 2. The floating-point type IFsimple = IFβ=10,p=2,emin=−1,emax=2 is pre-
sented in Figure 2. Notice that the more we go away from zero, the more the
distance between two consecutive floating-point numbers increases.

Using IFsimple, the real number x = 10π = 31.4159 · · · = (−1)smβe where
s = 0,m = π, β = 10 and e = 1 is represented by x̂ = (−1)sm̂βe where
m̂ = �(π).

We are addressing floating-point types that can be freely parameterized. This
allows our result to be applied not only to programs using the IEEE-754 floating-
point types, but also to programs using personalized ones like with the MPFR
library [14].

Definition 5 (Rounding modes). Given a real number x and the two floating-
point numbers x̂1 and x̂2 adjacent to x such that x̂1 ≤ x ≤ x̂2, the rounding mode
� defines the choice to make between x̂1 and x̂2 when approximating x.

In the rounding mode to-nearest-ties-to-even, denoted o, we choose the one
closest to x. In case of tie, we choose the one having the last digit in the mantissa
even. In the rounding mode to-zero, denoted ↑0, we choose the one closest to 0.

Definition 6 (Correct rounding). Given a rounding mode �, a real arith-
metic operation ?, its floating-point equivalent ?© and 2 floating-point numbers
x̂1, x̂2, we say that ?© is correctly rounded if x̂1 ?©x̂2 = �(x̂1 ? x̂2).

More details on floating-point computations can be found in [15].

Definition 7 (Simple rational loops). We call simple rational loop a loop of

the form while (Dx ≤ d) do V
(
x x′

)T ≤ v. The column vector x =
(
x1 . . . xn

)T
∈ Qn×1 represents the variables at the beginning of an iteration. The primed
equivalent x′ represents the variables at the end of an iteration, when they have
been updated. D, d, V, v are rational matrices of appropriate dimensions. The
operations are done in the rationals.

A simple rational loop can be viewed as the rational convex polyhedron de-

scribed by the set of inequalities A′′
(
x x′

)T ≤ b obtained by conjuncting the
loop condition with the update constraints.

Definition 8 (Simple floating-point loops). Similarly to simple rational
loops, simple floating-point loops are loops described by the set of inequalities

A′′ ·©
(
x x′

)T ≤ b in which x and x′ are column vectors of floating-point vari-
ables. The floating-point matrix multiplication ·© is similar to the rational matrix
multiplication with the difference that the operations are done within the set of
the floating-point numbers, that is:

a11 ·©x1 +© a12 ·©x2 +© . . . +© a′1n ·©x′n ≤ b1
a21 ·©x1 +© a22 ·©x2 +© . . . +© a′2n ·©x′n ≤ b2
. . .
am1 ·©x1 +© am2 ·©x2 +© . . . +© a′mn ·©x′n ≤ bm

where aij , xi, x
′
i and bi are respectively elements of A′′, x, x′ and b. In absence

of parenthesis, the order of operations is such that floating-point multiplications
are performed before floating-point additions. Then, additions are performed from
left to right.

We would like to note that simple rational loops, as we defined them, are
named in multiple ways in the literature. With only slight differences, they are
for example designated as Single-path Linear-Constraints loops in [4, 5], Linear
Simple Loops in [9] and Linear Arithmetic Simple While loops in [21]. In an
attempt to have a uniform naming for both the rational and the floating-point
case, we chose the denomination simple loop as floating-point operations are
non-linear, making all the previous names inappropriate.

We also find interesting to note that any unnested loop, using rational vari-
ables and rational arithmetic operations, having sequential assignments in its
body, can be described by a simple rational loop of Definition 7, as explained in
[8, Section 3.1]. This result is not valid when dealing with floating-point numbers
due to the non-associativity of the floating-point arithmetic operations. Gener-
ally, floating-point arithmetic expressions cannot be simplified like the rational

ones and should be treated as-is. We chose to study the floating-point loops of
Definition 8 to give general ideas that can be adapted to other form of floating-
point loops.

Definition 9 (LinRF). The decision problem of the existence of a LRF, de-
noted LinRF , is defined as follows. Its instance is a simple loop. The question it
tries to answer is whether there exists a LRF for the simple loop. The decision
problem is denoted by LinRF (Q) and LinRF (IF) when the variables respec-
tively range over rationals and floating-point numbers from any floating-point
type IFβ,p,emin,emax

(and any rounding mode �) that could be defined. More gen-
erally, we denote by LinRF (E) the decision problem when the variables range
over E.

In the same way, we define the more general problem of universal termination.

Definition 10 (Halt). The decision problem of universal termination, denoted
Halt, is defined as follows. Its instance is a simple loop. The question it tries to
answer is whether the simple loop terminates for every possible input. We denote
by Halt(E) the decision problem when the variables range over E.

3 Complexity of LinRF (IF)

In this section, we show that there is no polynomial algorithm that can decide
LinRF (IF). We start by studying the decidability of Halt(IF) and LinRF (IF).

Theorem 1. Halt(IF) is decidable.

Proof. A program P = 〈X , I,R〉 terminates if and only if every possible X -
sequence permitted by R is finite. As the variables range over some finite set
IFβ,p,emin,emax , then for any given sequence s = X1X2 . . . , we can check whether
or not it is finite.

If the last element Xlast(s) of s has no more successor with respect to R, s
is a finite sequence. If there exists an element Xi that appears in s at index i
and that already appeared at an index j, j < i, then there exists a subsequence
Xj . . . Xi that will be repeated infinitely, causing s to be infinite. ut
Theorem 2. LinRF(IF) is decidable.

Proof. Recall the proof of Theorem 1. We reason similarly with the difference
that in addition to checking the finiteness of all the sequences, we also check the
existence of LRFs which are valid with respect to all of them.

We say that f(X) = CX is a valid LRF with respect to a sequence s =
X1X2 . . . Xlast(s) if and only if the following system of constraints Φs is satisfiable:

CX1 ≥ δ0
CX1 ≥ δ + CX2

. . .
CXlast(s)−1 ≥ δ0
CXlast(s)−1 ≥ δ + CXlast(s)

δ > 0

(1)

Φ =
∧

all s Φs is the system of constraints of validity of f with respect to all
the sequences. If Φ is satisfiable, the space of all the valid LRFs is described by
f(X) = CX ∧ Φ. Otherwise, there is no valid LRF. ut

It is worth mentioning that the algorithms we just presented for deciding
Halt(IF) and LinRF (IF) can be applied to any program using variables ranging
over finite sets. In other words, they can be applied not only to simple loops using
floating-point variables but also to any implementable program on machines.
Indeed, machines all have a finite amount of memory forcing the variables to
range over finite sets.

Let us now focus on LinRF (IF). We intuitively understand that the decision
algorithm we proposed is highly costly. Indeed, if there are n variables in the
program, that is X = IFnβ,p,emin,emax

, and if there are N floating-points numbers
that can be taken as values, that is |IFβ,p,emin,emax

| = N , then in the very worst
case, we need to build the system of constraints of validity Φ from the |X |! = nN !
possible X -sequences.

The question now arises whether we can have a more efficient algorithm for
deciding LinRF (IF). Notably, we would like to know if a polynomial one exists.
For that purpose, we rely on a result presented in [5, Theorem 3.1] regarding the
complexity of LinRF (ZZ).

Lemma 1. LinRF(ZZ) is coNP-hard. Even for a finite set E ⊂ ZZ, LinRF (E)
is still coNP-hard.

Proof. The proof consists in reducing LinRF (ZZ) to the well-known coNP-
hard problem of deciding whether a rational convex polyhedron contains integer
points.

Theorem 3. LinRF(IF) is at least in coNP.

Proof. The proof consists in showing that for some specific floating-point types
IFβ,p,emin,emax

and a rounding mode �, the problem is at least in coNP. As we
are studying the worst case complexity, that gives us a lower bound for the
complexity of the generalization for any possible floating-point type.

Consider the finite set ZM ⊂ ZZ defined as ZM = {z ∈ ZZ| −M ≤ z ≤ M}.
For all M ∈ IN∗, we can construct the floating-point type IFM defined by the
parameters β = M , p = 1, emin = 0 and emax = 1 for which ZM = IFM . Both
ZM and IFM have the same elements. Moreover, if the rounding mode for the
operations in IFM is to-zero, that is if � =↑0, then the operations in both ZM
and IFM are performed identically.

Hence, ∀M ∈ IN∗, LinRF (IFM) = LinRF (ZZM). As LinRF (ZZM) is at least
in coNP by Lemma 1, so is LinRF (IFM). ut

As we already know [23], the coNP class contains problems that are at least as
hard as the NP class. Indeed, the complement of an NP-complete problem, which
is in coNP, admits a polynomial decision algorithm only if P = NP, implying P
= coNP. Thus, by conjecturing that P 6= NP, we derive the following corollary.

Corollary 1. There is no polynomial algorithm for deciding LinRF(IF).

Although that theoretical limitation may be discouraging, it is important to
note that it applies to the problem of finding one general algorithm for all the
possible instances of LinRF (IF). There may be special cases for which poly-
nomial decision algorithms may exist. We could also have correct algorithms
that are polynomial but not complete. In other words, we could have algorithms
that detect in polynomial time only part of the space of the existing LRFs. We
investigate this idea in the next section.

4 A sufficient condition for inferring LRFs in polynomial
time

In this section, we present a novel technique for inferring in polynomial time
the existence of LRFs for simple floating-point loops. The idea is to adapt to
LinRF (IF) the well-known Podelski-Rybalchenko algorithm, that we shorten
PR algorithm, which solves LinRF (Q) in polynomial time and which is com-
plete. This is achieved by means of sound over-approximations, that we shorten
approximations for simplicity.

Firstly, section 4.1 studies from a termination analysis aspect the links be-
tween a program and its possible approximations. Secondly, section 4.2 presents
a floating-point version of the PR algorithm obtained by using the approxima-
tion by maximal absolute error. Lastly, section 4.3 discusses the results obtained
with other approximations.

4.1 Program approximation and termination

Definition 11 (Approximation). We say that the program P# = 〈X , I#,
R#〉 is an approximation of the program P = 〈X , I,R〉 if I ⊆ I# and R# is
such that ∀X1, X2 ∈ X : X1RX2 =⇒ X1R#X2.

Example 3. Consider the program Psimple presented in Example 1 and the pro-

gram P#
simple presented in Figure 3 in which :<= is a non-deterministic as-

signment. P#
simple can be formalized as the transition system 〈Xsimple, I#simple,

R#
simple〉 where I#simple = {x ∈ Q|x ≤ 1000} and R#

simple = {〈x, x′〉 ∈ Q2|x ≥
−1 ∧ x′ ≤ x − 0.5}. We can easily verify that Isimple ⊆ I#simple and ∀x, x′ ∈
Xsimple : xRsimplex′ =⇒ xR#

simplex
′. Hence, P#

simple is an approximation of
Psimple.

We now study the link between the termination of a given program and the
termination of one of its approximations.

Theorem 4. Given a program P and a corresponding approximation P#, if P#

terminates, so does P.

rational x :<= 1000;

while(x >= -1) {

x :<= x - 0.5;

}

Fig. 3. An approximation of Psimple, P#
simple

Proof. Differently stated, if (X ,R#) is well-founded, so is (X ,R). In order to
prove that, let us reason by contradiction.

Suppose (X ,R#) is well-founded while (X ,R) is not. There is an infinite X -
sequence s∞ permitted byR: s∞ = X0RX1R . . . By definition of approximation
(Definition 11), XiRXi+1 =⇒ XiR#Xi+1. Consequently, there exists s#∞ =
X0R#X1R# . . . corresponding to s∞ which contradicts our hypothesis as an
infinite sequence is permitted by R#. ut

Though Theorem 4 is already enough to infer termination of a program
through one of its possible approximations, it gives no information about the
termination argument. Notably, we would like to have the deeper knowledge of
the link between the space of ranking functions, that we denote by SRF .

Theorem 5. Given a program P and a corresponding approximation P#, we
have SRF (P#) ⊆ SRF (P).

Proof. Let us reason by contradiction. Suppose SRF (P#) 6⊆ SRF (P) which
means that there exists a ranking function f for P# which is not one for P.

As f is not a ranking function for P, ∃X1, X2 ∈ X : X1RX2 =⇒ f(X1) 6>
f(X2). However, by definition of approximation (Definition 11), X1RX2 =⇒
X1R#X2 and as f is a ranking function for P#, X1R#X2 =⇒ f(X1) > f(X2)
which leads to a contradiction. ut

Differently stated, Theorem 5 says that any ranking function for a given
program is also a ranking function for any program it approximates. For our
particular case of interest, we derive the following corollary regarding the space
of LRFs, that we denote by SLRF .

Corollary 2. Given a program P and a corresponding approximation P#, we
have SLRF (P#) ⊆ SLRF (P): if f is a LRF for P#, then f is also a LRF for
P.

Example 4. Consider the program Psimple presented in Example 1 and the cor-

responding approximation P#
simple presented in Example 3. The space of LRFs

of P#
simple is described by ρ(x) = ax, a > 0. By Corollary 2, ρ also describes

LRFs for Psimple.

We point out that it is a misunderstanding of the previous results to deduce
from them that all termination analysis based on approximations are doomed
to be incomplete. It would be indeed the case if SRF (P#) ⊂ SRF (P). How-
ever, it is always possible to refine the approximation until having SRF (P#) =

SRF (P). A way to do so for the particular case of floating-point loops is for
example presented in [18].

Thus, in our search for LRFs for simple floating-point loops, it is always
possible to find approximations that are precise enough to ensure completeness.
However, due to Corollary 1, it cannot be achieved by any polynomial algorithm.
In the technique we will now present, we trade completeness for complexity:
the algorithm may fail at detecting all the possible LRFs, but it answers in
polynomial time.

4.2 A floating-point version of the Podelski-Rybalchenko algorithm

Our technique is based on the well-known PR algorithm [21] which provides
sufficient and necessary conditions, hence making the algorithm complete, for the
existence of LRFs for simple rational loops. In addition to deciding the existence
of LRFs, the algorithm can also synthesize them. It proceeds by reducing the
decision/synthesizing problem to a linear programming problem which is long
known to be solvable in polynomial time [17].

Theorem 6 (Podelski-Rybalchenko [21]). Given a simple rational loop LQ

described by A′′
(
x x′

)T ≤ b such that A′′ ∈ Qm×2n, b ∈ Qm×1 and x, x′ ∈ Qn×1,

let A′′ = (A A′) where A,A′ ∈ Qm×n. A LRF exists for LQ if and only if

there exist λ1, λ2 ∈ Q1×m such that:
λ1, λ2 ≥ 0
λ1A

′ = 0
(λ1 − λ2)A = 0
λ2(A+A′) = 0

λ2b < 0

The synthesized LRFs are of the form f(x) = µx with µ = λ2A
′ and are such

that for all x,x’: {
f(x) ≥ δ0, δ0 = −λ1b
f(x) ≥ f(x′) + δ, δ = −λ2b, δ > 0

Proof. Omitted as there are already various papers discussing it in various ways.
Interested readers can find in-depth study of the PR algorithm in [1].

Example 5. Consider the program Pilog37q having n = 2 variables presented in

Figure 4. The loop of Pilog37q can be expressed in the matrix form
(
Aq A

′
q

) (
x x′

)T
≤ b by letting

Aq =

−1 0

0 −1
−1 0

1 0
0 1
0 −1

 , A′q =

0 0
0 0

37 0
−37 0

0 −1
0 1

 , b =

−37
−1

0
0
−1

1

 (2)

rational x1 = input(), x2 = 1;

while(x1 >= 37 & x2 >=1) {

x1 := x1 / 37;

x2 := x2 + 1;

}

Fig. 4. A program that computes and stores in x2 the integer base-37 logarithm of x1,
Pilog37q. A similar program with variables ranging over the integers is studied in [1].

The corresponding linear system given by PR is satisfiable and the row vec-
tors λ1 =

(
λ11 λ

2
1 λ

3
1 λ

4
1 λ

5
1 λ

6
1

)
and λ2 =

(
λ12 λ

2
2 λ

3
2 λ

4
2 λ

5
2 λ

6
2

)
are such that:

λ11 = −λ21 + λ41 + λ12 + λ32 − λ42
λ21 = −λ52 + λ62
λ31 = λ41
λ41 ≥ 0
λ51 ≥ 0
λ61 = λ51

and

λ12 = 36λ32 − 36λ42
λ22 = 0
λ32 > 0
0 ≤ λ42 < λ32
λ52 ≥ 0
λ52 ≤ λ62 < 1332λ32 − 1332λ42

(3)

Thus, SLRF (Pilog37q) is completely described by f(x1, x2) = µ1x1 + µ2x2
such that µ1 > 0 and 0 ≤ µ2 < 36µ1.

Every time a LRF exists for a given simple rational loop, the PR algorithm
does find it in polynomial time. Unfortunately, it cannot be applied to simple
floating-point loops. Indeed, the rounding errors cause the floating-point oper-
ations to be non-associative, making invalid most of the mathematical results
leading to the PR algorithm.

We work around that issue by means of rational approximations. These ap-
proximations must be linear and must be defined in a single piece so that the PR
algorithm can be used. Detailed explanations for the need for these constraints
are given in Section 4.3. An example of such approximation is the approximation
by maximal absolute error, as used in various ways in various works [3],[20].

Definition 12 (Absolute error). The absolute error A(x) of the approxima-
tion of x ∈ IR by x̂ ∈ IFβ,p,emin,emax

using a rounding mode � is defined as
A(x) = |x− x̂|.

Theorem 7 (Approximation by maximal absolute error). Given a real
arithmetic operation ?, its floating-point equivalent ?© and 2 floating-point num-
bers x̂1, x̂2 ∈ IFβ,p,emin,emax

, if we use the rounding mode to-nearest-ties-to-even
and if no overflow occurs then the following holds:

x̂1 ? x̂2 −Amax ≤ x̂1 ?©x̂2 ≤ x̂1 ? x̂2 +Amax

where Amax = βemax−p+1

2 is the maximal absolute error.

Proof. Recall that by property of correct rounding, as presented in Definition
6, x̂1 ?©x̂2 = o(x̂1 ? x̂2). Let t = x̂1 ? x̂2 and t̂ = o(t) = x̂1 ?©x̂2, t ∈ IR and
t̂ ∈ IFβ,p,emin,emax

.

From the definition of the absolute error given in Definition 12, it can be
easily derived that t−A(t) ≤ t̂ ≤ t+A(t). In the worst case, t is located right
in the middle of t̂ and the nearest floating-point number t̂a adjacent to t̂. Thus

we have A(t) ≤ |t̂−t̂a|
2 . By writing t̂ in standardized notation as presented in

Definition 4, that is t̂ = (−1)sm̂βe, we have t̂a = (−1)s(m̂ ± β−p+1)βe. Hence,

in the worst case: A(t) ≤ βe−p+1

2 . As e ≤ emax, A(t) ≤ Amax from which the
theorem follows. ut

Example 6. Consider the floating-point type IFsimple presented in Example 2.
If the rounding mode to-nearest-ties-to-even is used, then for any arithmetic
operation ?, its floating-point equivalent ?© and 2 floating-point numbers x̂1, x̂2 ∈
IFsimple, the following holds: x̂1 ? x̂2 − 5 ≤ x̂1 ?©x̂2 ≤ x̂1 ? x̂2 + 5.

We now present an adaptation of the PR algorithm using the approximation
by maximal absolute error.

Theorem 8 (General floating-point version of Podelski-Rybalchenko).
Consider the floating-point type IF which has such parameters and which uses
such rounding mode that Amax is the maximal absolute error. Consider also the

simple floating-point loop LIF described by A′′ ·©
(
x x′

)T ≤ b such that A′′ ∈
IFm×2n, b ∈ IFm×1 and x, x′ ∈ IFn×1. By letting A′′ = (A A′) where A,A′ ∈
IFm×n and if no overflow occurs, a LRF exists for LIF if there exist λ1, λ2 ∈
Q1×m such that:

λ1, λ2 ≥ 0
λ1A

′ = 0
(λ1 − λ2)A = 0
λ2(A+A′) = 0

λ2c < 0

where c ∈ Qm×1 and c = b+colvectm((4n−1)Amax). Here, colvectm(e) denotes
the column vector of m elements, all elements equaling e.

The synthesized LRFs are of the form f(x) = µx with µ = λ2A
′ and are such

that for all x,x’: {
f(x) ≥ δ0, δ0 = −λ1c
f(x) ≥ f(x′) + δ, δ = −λ2c, δ > 0

Proof. Let us call lk the first member of the k-th inequality, that is:

lk = ak1 ·©x1 +© ak2 ·©x2 +© . . . +© a′kn ·©x′n (4)

lk ≤ bk (5)

By approximating by below each operation using the approximation by max-
imal absolute error (Theorem 7) we get a linear lower bound for lk:

(ak1x1 −Amax) +© ak2 ·©x2 +© . . . +© a′kn ·©x′n ≤ lk
ak1x1 +© (ak2x2 −Amax) +© . . . +© a′kn ·©x′n −Amax ≤ lk
(ak1x1 + ak2x2 −Amax) +© . . . +© a′kn ·©x′n − 2Amax ≤ lk

. . .

ak1x1 + ak2x2 + · · ·+ a′knx
′
n − (4n− 1)Amax ≤ lk (6)

Combining that result with the upper bound bk of lk as shown in (5), we get:

ak1x1 + ak2x2 + . . .+ a′knx
′
n − (4n− 1)Amax ≤ lk ≤ bk

ak1x1 + ak2x2 + . . .+ a′knx
′
n − (4n− 1)Amax ≤ bk

ak1x1 + ak2x2 + . . .+ a′knx
′
n ≤ bk + (4n− 1)Amax (7)

Hence, the floating-point loop LIF described by A′′ ·©
(
x x′

)T ≤ b is ap-

proximated by the rational loop LQ described by A′′
(
x x′

)T ≤ c where c =
b+ colvectm((4n− 1)Amax).

By applying the PR algorithm presented in Theorem 6 on LQ, if a LRF f is
found, then f is also a LRF for LIF by Corollary 2. ut

Example 7. Consider the program Pilog37q presented in Example 5. We are in-
terested in its floating-point version Pilog37f in which variables are from the type
IFsimple presented in Example 2. The rounding mode used is to-nearest-ties-to-
even.

As presented in Example 6, the maximal absolute error for any arithmetic
floating-point operation ?© done in IFsimple is Amax = 5. Thus, Pilog37f is ap-

proximated by the rational loop P#
ilog37f described by

(
Af A

′
f

) (
x x′

)T ≤ c such
that:

Af = Aq, A
′
f = A′q, c = b+ colvect6(35) = c2 =

(
−2 34 35 35 34 36

)T
(8)

By applying the PR algorithm, LRFs for Pilog37f exist and are of the form
f(x1, x2) = µ1x1 + µ2x2 such that µ1 > 0 and 0 ≤ µ2 <

µ1

36 .

It is important to observe that this floating-point version of the PR algorithm
applies only if no overflow occurs during the computation. Indeed, by using the
approximation by maximal absolute error, we assumed that the results of the
operations all laid in the authorized range. Thus, the initial ranges of the values
of the variables that do not eventually lead to an overflow should be determined
beforehand. It can be achieved for example using techniques from the framework
of Abstract Interpretation [11].

As we already discussed in the Preliminaries section of the paper, floating-
point expressions are to be studied as-is and our results are only general. For
example, we can have a better approximation of Pilog37f by noticing that there

are less than (4n− 1) operations per line. Moreover, by only approximating the
operations that are not known to be exactly computed, we get the approximation

P#
ilog37f2 described by

(
Af2 A

′
f2

) (
x x′

)T ≤ c2 such that:

Af2 = Aq, A
′
f2 = A′q, c2 =

(
−37 −1 10 10 4 6

)T
(9)

By applying the PR algorithm, LRFs for Pilog37f2 exist and are of the form
f(x1, x2) = µ1x1 + µ2x2 such that µ1 > 0 and 0 ≤ µ2 <

661µ1

111 . We easily verify

that SLRF (P#
ilog37f) ⊂ SLRF (P#

ilog37f2), that is we detect a wider range of

LRFs with P#
ilog37f2.

4.3 Other approximations

At this point of the paper, the reader may wonder why we specifically chose
the approximation by maximal absolute error instead of another approximation.
Indeed, the justification we proposed was that the approximation needed to be
linear and defined in a single piece but we gave no further explanation. Now, we
give more details.

Recall the proof for the general floating-point version of the PR algorithm
(Theorem 8). It consisted in transforming the simple floating-point loop into
a simple rational loop. Indeed, the PR algorithm works on loops described by
linear systems, making the linearity of the approximation straightforward.

It remains to justify why the approximation needs to be defined in one piece.
Indeed, we can have piecewise linear approximations having precisions that in-
crease with the number of pieces, as shown in [18]. For example, the approxima-
tion defined in 3 pieces presented in Theorem 9 is better than the approximation
by maximal absolute error. Indeed, the surface of the area enclosed between the
upper and lower approximation functions is smaller in the approximation in 3
pieces, as illustrated in Figure 4.3.

Theorem 9 (Approximation in 3 pieces). Given a real arithmetic oper-
ation ?, its floating-point equivalent ?© and 2 floating-point numbers x̂1, x̂2 ∈
IFβ,p,emin,emax

, if we use the rounding mode to-nearest-ties-to-even and if no
overflow occurs then the following holds: (1−Rnmax)t ≤ x̂1 ?©x̂2 ≤ (1 +Rnmax)t if nmin < t ≤ nmax

t−Asmax ≤ x̂1 ?©x̂2 ≤ t+Asmax if −nmin ≤ t ≤ nmin
1 +Rnmax)t ≤ x̂1 ?©x̂2 ≤ 1−Rnmax)t if −nmax ≤ t < −nmin

where t = x̂1 ? x̂2, nmin = βemin is the smallest positive normal number, nmax =

(β − β−p+1)βemax is the biggest positive normal number, Asmax = βemin−p+1

2 is

the maximal absolute error for the subnormal numbers and Rnmax = β−p+1

2+β−p+1 is
the maximal relative error for the normal numbers.

Proof. For the case where −nmin ≤ t ≤ nmin, that is t is a subnormal number,
the proof is similar to that for the approximation with maximal absolute error
(Theorem 7). Only the value of the maximal absolute error differs.

(a) Approximation in 1 piece or ap-
proximation by maximal absolute error

(b) Approximation in 3 pieces. The
partitioning chosen here separates the
normals from the subnormals.

Fig. 5. Piecewise linear approximations of x̂ zoomed around the origin

For the case where nmin ≤ |t| ≤ nmax, that is t is a normal number, we use
an approximation based on the maximal relative error. The relative error of the

approximation of t is R(t) = |t−t̂|
|t| . From that definition, it can be easily derived

that (1 − R(t))|t| ≤ |t̂| ≤ (1 +R(t))|t|. As R(t) ≤ β−p+1

2+β−p+1 for the case of the

normal numbers, as shown in [16], the theorem follows. ut

As another example of approximation, we can combine the bound for the
absolute error for the subnormals with the bound for the relative error for the
normals. It results in using approximation functions defined in 2 pieces as it
distinguishes the positives from the negatives [18].

Using these piecewise linear approximations, a simple floating-point loop will
be transformed into a set of simple rational loops, designated as Multi-path
Linear-Constraint loops or MLC loops in [4, 5]. The existence of LRFs in MLC
loops are known to be also decidable in polynomial time [13],[19]. However, the
size of the obtained MLC loop is an exponential function in the size of the simple
floating-point loop it approximates, as shown in the following theorem.

Theorem 10 (From simple floating-point loop to MLC loop). Consider
the floating-point type IF. Consider also the simple floating-point loop LIF de-

scribed by A′′ ·©
(
x x′

)T ≤ b such that A′′ ∈ IFm×2n, b ∈ IFm×1 and x, x′ ∈ IFn×1.
If we use a linear approximation defined in k pieces, then LIF is approximated
by a MLC loop composed of k(4n−1)m simple rational loops.

Proof. The proof is similar to that for the general floating-point version of the
PR algorithm (Theorem 8). The difference is that when approximating by below
one operation, there are k cases to take into account. As there are (4n − 1)m
operations, the theorem follows. ut

Thus, only linear approximations defined in one piece preserve the transfor-
mations from becoming exponential. Without any information on the range of
the variables, the approximation by maximal absolute error is the best approxi-
mation having these properties. That motivated our choice.

5 Related work

To the best of our knowledge, there is only limited work on the termination of
floating-point programs. One of the first work addressing that problem is [22]
which is an extension of the adornments-based approach. It consists in transform-
ing the logic program to analyze in a way that we can use techniques originally
developed for analysis of numerical computations.

Recently, techniques have been developed for treating the case of bit-vector
programs. These techniques belong to the family of Model Checking [2]. [10]
presents several novel algorithms to generate ranking functions for relations over
machine integers: a method based on a reduction to Presburger arithmetic, and
a template-matching approach for predefined classes of ranking functions based
on reduction to SAT- and QBF-solving. In a similar way, [12] reduces the termi-
nation problem for programs using machine integers or floating-point numbers to
a second-order satisfiability problem. Both methods are complete but are highly
costly.

A different approach is presented in [18]. It consists in translating the floating-
point programs into rational ones by means of sound approximations. Hence, it
bridges the gap between termination analysis of floating-point loops and rational
loops. The floating-point expressions are approximated using piecewise linear
functions that can be parameterized depending on the precision desired/required.

6 Conclusion

We have studied the hardness of termination proofs for simple loops when the
variables are of floating-point type. We have focused on termination inferred
from the existence of linear ranking functions and showed that the problem is
at least in coNP. This is a very valuable information as it dissuades us from
looking for a decision algorithm that is both polynomial and complete. The
problem of deciding the existence of linear ranking functions for simple integer
and machine integer loops was studied in depth very recently and was shown to
be coNP-complete. To the best of our knowledge, our work is the first attempt
at providing a similar result for the floating-points.

To design a polynomial algorithm, we have traded completeness for complex-
ity. We have proposed the first adaptation of the Podelski-Rybalchenko algorithm
for simple floating-point loops. This is achieved by means of linear approxima-
tions defined in one piece. We have suggested the use of the approximation by
maximal absolute error. A possible improvement would be to use more precise
linear approximations defined in one piece based on the ranges of the variables.
As we have provided a sufficient but not necessary condition for inferring the

existence of linear ranking functions, experimentations have yet to be conducted
in order to get a practical evaluation of the technique.

References

1. R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. A new look at the auto-
matic synthesis of linear ranking functions. Information and Computation, 215:47–
67, 2012.

2. C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

3. M. S. Belaid, C. Michel, and M. Rueher. Boosting local consistency algorithms over
floating-point numbers. In M. Milano, editor, Proc. of the 18th International Con-
ference on Principles and Practice of Constraint Programming (CP’12), volume
7514 of Lecture Notes in Computer Science, pages 127–140. Springer, 2012.

4. A. M. Ben-Amram. Ranking functions for linear-constraint loops. In A. Lisitsa and
A. P. Nemytykh, editors, Proc. of the 1st International Workshop on Verification
and Program Transformation (VPT’13), volume 16 of EPiC Series, pages 1–8.
EasyChair, 2013.

5. A. M. Ben-Amram and S. Genaim. Ranking functions for linear-constraint loops.
Journal of the ACM, 61(4):26:1–26:55, 2014.

6. A. M. Ben-Amram, S. Genaim, and A. N. Masud. On the termination of integer
loops. ACM Transactions on Programming Languages and Systems, 34(4):16, 2012.

7. M. Braverman. Termination of integer linear programs. In T. Ball and R. B. Jones,
editors, Proc. of the 18th International Conference on Computer Aided Verification
(CAV’06), volume 4144 of Lecture Notes in Computer Science, pages 372–385.
Springer, 2006.

8. H. Y. Chen. Program analysis: termination proofs for linear simple loops. PhD
thesis, Louisiana State University, 2012.

9. H. Y. Chen, S. Flur, and S. Mukhopadhyay. Termination proofs for linear simple
loops. Software Tools for Technology Transfer, 17(1):47–57, 2015.

10. B. Cook, D. Kroening, P. Rümmer, and C. M. Wintersteiger. Ranking function
synthesis for bit-vector relations. Formal Methods in System Design, 43(1):93–120,
2013.

11. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In R. M.
Graham, M. A. Harrison, and R. Sethi, editors, Proc. of the 4th ACM Symposium
on Principles of Programming Languages (POPL’77), pages 238–252. ACM, 1977.

12. C. David, D. Kroening, and M. Lewis. Unrestricted termination and non-
termination arguments for bit-vector programs. In J. Vitek, editor, Proc. of the
24th European Symposium on Programming (ESOP’15), volume 9032 of Lecture
Notes in Computer Science, pages 183–204. Springer, 2015.

13. P. Feautrier. Some efficient solutions to the affine scheduling problem. I. One-
dimensional time. International Journal of Parallel Programming, 21(5):313–347,
1992.

14. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans-
actions on Mathematical Software, 33(2):13, 2007.

15. D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

16. C.-P. Jeannerod and S. M. Rump. On relative errors of floating-point operations:
optimal bounds and applications. Preprint, 2014.

17. L. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53 – 72, 1980.

18. F. Maurica, F. Mesnard, and E. Payet. Termination analysis of floating-point
programs using parameterizable rational approximations. In Proc. of the 31st
ACM Symposium on Applied Computing (SAC’16), 2016.

19. F. Mesnard and A. Serebrenik. Recurrence with affine level mappings is p-time
decidable for CLP(R). Theory and Practice of Logic Programming, 8(1):111–119,
2008.

20. A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. Computing Research Repository, abs/cs/0703077, 2007.

21. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In B. Steffen and G. Levi, editors, Proc. of the 5th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI’04), volume 2937 of Lecture Notes in Computer Science, pages 239–251.
Springer, 2004.

22. A. Serebrenik and D. D. Schreye. Termination of floating-point computations.
Journal of Automated Reasoning, 34(2):141–177, 2005.

23. M. Sipser. Introduction to the theory of computation. PWS Publishing Company,
1997.

24. A. Tiwari. Termination of linear programs. In R. Alur and D. A. Peled, ed-
itors, Proc. of the 16th International Conference on Computer Aided Verifica-
tion (CAV’04), volume 3114 of Lecture Notes in Computer Science, pages 70–82.
Springer, 2004.

