Fonenantsoa Maurica
email: fonenantsoa.maurica@univ-reunion.fr

Frédéric Mesnard
email: frederic.mesnard@univ-reunion.fr

Étienne Payet
email: etienne.payet@univ-reunion.fr

On the linear ranking problem for simple floating-point loops

Keywords: Termination analysis, Linear ranking functions, Floatingpoint numbers

Termination of loops can be inferred from the existence of linear ranking functions. We already know that the existence of these functions is PTIME decidable for simple rational loops. Since very recently, we know that the problem is coNP-complete for simple integer loops. We continue along this path by investigating programs dealing with floating-point computations. First, we show that the problem is at least in coNP for simple floating-point loops. Then, in order to work around that theoretical limitation we present an algorithm which remains polynomial by sacrificing completeness. The algorithm, based on the Podelski-Rybalchenko algorithm, can also synthesize in polynomial time the linear ranking functions it detects. To our knowledge, our work is the first adaptation of this well-known algorithm to floating-points.

Introduction

Termination analysis of programs is a research topic that has already produced many remarkable results. This work is a continuation of a series of connected results concerning simple loops. [START_REF] Tiwari | Termination of linear programs[END_REF] first showed that termination of loops of the form while (Dx ≤ d) do x = V x + v done where the column vector of n variables x ranges over IR n×1 is decidable. Then, [START_REF] Braverman | Termination of integer linear programs[END_REF] showed that the problem is also decidable when x ∈ Q n×1 and even when x ∈ Z Z n×1 for the homogeneous case where d = 0. Followingly, [START_REF] Ben-Amram | On the termination of integer loops[END_REF] investigated the more general case of the nondeterministic loops of the form while (Dx ≤ d) do V x x T ≤ v done where x x T = x x denotes the column vector of 2n elements obtained by concatenating x with x . Termination of such loops was proved to be undecidable when x, x ∈ Z Z n×1 . The existence of linear ranking functions for such loops is however decidable and the problem is shown to be coNP-complete [START_REF] Ben-Amram | Ranking functions for linear-constraint loops[END_REF][START_REF] Ben-Amram | Ranking functions for linear-constraint loops[END_REF]. That result applies even when the variables range over a finite set E ⊂ Z Z with |E| ≥ 2, like the case of machine integers. We now study in this paper the case where rational x := 100; while(x >= 0) x := x -1;

Fig. 1. A simple program, P simple the variables are of floating-point type. In addition to being a prolongation of these previous works, ours can also be seen as a part of the current efforts in analyzing bit-vector programs instead of purely mathematical ones with error-free computations. Indeed, the rounding errors inherent to floating-point arithmetic render invalid most of the results obtained for programs using real or rational variables.

The paper is organized as follows. Section 2 briefly introduces the prerequisites. Sections 3 and 4 expose our contribution. We first show that there is no polynomial algorithm that can decide the existence of linear ranking functions for simple floating-point loops as the problem is at least in coNP. Then, we work around that theoretical limitation by presenting a sufficient but not necessary condition, thus incomplete but checkable in polynomial time, that ensures the existence of these functions. Section 5 presents the related work. Section 6 concludes.

Preliminaries

In this section we introduce the notions and notations we use in the paper.

Definition 1 (Programs as transition systems). We formalize a program P as a transition system X , I, R where X is a set of states, I ⊆ X is the set of initial states and R ⊆ X × X is a transition relation between a state and its possible successors.

Example 1. The program P simple presented in Figure 1 can be formalized as the transition system X simple , I simple , R simple where X simple = Q,

I simple = {100} and R simple = { x, x ∈ Q 2 |x ≥ 0 ∧ x = x -1}.
Definition 2 (Sequences). Given a set X of states X i , we say that s is an X -sequence if s = X 1 X 2 . . . A finite sequence will have a last index last(s).

Let R ⊆ X × X . A finite sequence s is said to be permitted by R if and only if ∀i ∈ 1 . . . last(s) -1 :

X i RX i+1 . An infinite sequence s is permitted by R if and only if ∀i : i > 0 =⇒ X i RX i+1 .
Proposition 1 (Termination characterization, ranking functions). A program P = X , I, R , where X is a set of states X i , terminates if and only if there exists a function f from (X , R) to a well-founded set (W, <) such that ∀i :

X i RX i+1 =⇒ f (X i) > f (X i+1).
The function f is called a ranking function for P.

By choosing (

Q, < δ0,δ), δ 0 ∈ Q, δ ∈ Q * + such that ∀x, x ∈ Q : x < δ0,δ x ⇐⇒ x ≥ δ 0 ∧ x ≥ δ + x as well-founded set, a ranking function f is a function such that: ∀X, X ∈ X : XRX =⇒ f (X) ≥ δ 0 ∧ f (X) ≥ δ + f (X).

Definition 3 (LRF).

A linear ranking function, that we shorten LRF, for a program having the column vector X ∈ Q n×1 as variables is a ranking function f of the form f (X) = CX where C ∈ Q 1×n is a constant row vector.

Definition 4 (IF β,p,emin,emax). A real number x ∈ IR is said to be approximated by the floating-point number x ∈ IF β,p,emin,emax if x = (-1) s mβ e and x = (-1) s mβ e where s ∈ {0, 1} is the sign, β ∈ IN such that β ≥ 2 is the radix, e ∈ IN such that e min ≤ e ≤ e max is the exponent and m is the mantissa. The mantissa m is a fractional number approximating in p ∈ IN * digits the real number m and is such that m = ♦(m β -p+1)β -p+1 where ♦ is an approximation function that is defined according to the rounding mode . The number p is called precision.

If |x| ≥ β emin , x is called a normal floating-point number and 1 ≤ m < β. Otherwise, x is called a subnormal floating-point number and 0 ≤ m < 1.

Example 2. The floating-point type IF simple = IF β=10,p=2,emin=-1,emax=2 is presented in Figure 2. Notice that the more we go away from zero, the more the distance between two consecutive floating-point numbers increases.

Using IF simple , the real number x = 10π = 31.4159 • • • = (-1) s mβ e where s = 0, m = π, β = 10 and e = 1 is represented by x = (-1) s mβ e where m = (π).

We are addressing floating-point types that can be freely parameterized. This allows our result to be applied not only to programs using the IEEE-754 floatingpoint types, but also to programs using personalized ones like with the MPFR library [START_REF] Fousse | MPFR: A multiple-precision binary floating-point library with correct rounding[END_REF].

Definition 5 (Rounding modes). Given a real number x and the two floatingpoint numbers x1 and x2 adjacent to x such that x1 ≤ x ≤ x2 , the rounding mode defines the choice to make between x1 and x2 when approximating x.

In the rounding mode to-nearest-ties-to-even, denoted o, we choose the one closest to x. In case of tie, we choose the one having the last digit in the mantissa even. In the rounding mode to-zero, denoted ↑ 0 , we choose the one closest to 0. Definition 6 (Correct rounding). Given a rounding mode , a real arithmetic operation , its floating-point equivalent and 2 floating-point numbers x1 , x2 , we say that is correctly rounded if x1 x2 = (x 1 x2).

More details on floating-point computations can be found in [START_REF] Goldberg | What every computer scientist should know about floating-point arithmetic[END_REF].

Definition 7 (Simple rational loops). We call simple rational loop a loop of the form while

(Dx ≤ d) do V x x T ≤ v. The column vector x = x 1 . . . x n T ∈ Q n×1
represents the variables at the beginning of an iteration. The primed equivalent x represents the variables at the end of an iteration, when they have been updated. D, d, V, v are rational matrices of appropriate dimensions. The operations are done in the rationals.

A simple rational loop can be viewed as the rational convex polyhedron described by the set of inequalities A x x T ≤ b obtained by conjuncting the loop condition with the update constraints.

Definition 8 (Simple floating-point loops). Similarly to simple rational loops, simple floating-point loops are loops described by the set of inequalities A • x x T ≤ b in which x and x are column vectors of floating-point variables. The floating-point matrix multiplication • is similar to the rational matrix multiplication with the difference that the operations are done within the set of the floating-point numbers, that is:

       a 11 • x 1 + a 12 • x 2 + . . . + a 1n • x n ≤ b 1 a 21 • x 1 + a 22 • x 2 + . . . + a 2n • x n ≤ b 2 . . . a m1 • x 1 + a m2 • x 2 + . . . + a mn • x n ≤ b m
where a ij , x i , x i and b i are respectively elements of A , x, x and b. In absence of parenthesis, the order of operations is such that floating-point multiplications are performed before floating-point additions. Then, additions are performed from left to right.

We would like to note that simple rational loops, as we defined them, are named in multiple ways in the literature. With only slight differences, they are for example designated as Single-path Linear-Constraints loops in [START_REF] Ben-Amram | Ranking functions for linear-constraint loops[END_REF][START_REF] Ben-Amram | Ranking functions for linear-constraint loops[END_REF], Linear Simple Loops in [START_REF] Chen | Termination proofs for linear simple loops[END_REF] and Linear Arithmetic Simple While loops in [START_REF] Podelski | A complete method for the synthesis of linear ranking functions[END_REF]. In an attempt to have a uniform naming for both the rational and the floating-point case, we chose the denomination simple loop as floating-point operations are non-linear, making all the previous names inappropriate.

We also find interesting to note that any unnested loop, using rational variables and rational arithmetic operations, having sequential assignments in its body, can be described by a simple rational loop of Definition 7, as explained in [START_REF] Chen | Program analysis: termination proofs for linear simple loops[END_REF]Section 3.1]. This result is not valid when dealing with floating-point numbers due to the non-associativity of the floating-point arithmetic operations. Generally, floating-point arithmetic expressions cannot be simplified like the rational ones and should be treated as-is. We chose to study the floating-point loops of Definition 8 to give general ideas that can be adapted to other form of floatingpoint loops.

Definition 9 (LinRF). The decision problem of the existence of a LRF, denoted LinRF , is defined as follows. Its instance is a simple loop. The question it tries to answer is whether there exists a LRF for the simple loop. The decision problem is denoted by LinRF (Q) and LinRF (IF) when the variables respectively range over rationals and floating-point numbers from any floating-point type IF β,p,emin,emax (and any rounding mode) that could be defined. More generally, we denote by LinRF (E) the decision problem when the variables range over E.

In the same way, we define the more general problem of universal termination.

Definition 10 (Halt). The decision problem of universal termination, denoted

Halt, is defined as follows. Its instance is a simple loop. The question it tries to answer is whether the simple loop terminates for every possible input. We denote by Halt(E) the decision problem when the variables range over E.

Complexity of LinRF (IF)

In this section, we show that there is no polynomial algorithm that can decide LinRF (IF). We start by studying the decidability of Halt(IF) and LinRF (IF).

Theorem 1. Halt(IF) is decidable.

Proof. A program P = X , I, R terminates if and only if every possible Xsequence permitted by R is finite. As the variables range over some finite set IF β,p,emin,emax , then for any given sequence s = X 1 X 2 . . . , we can check whether or not it is finite.

If the last element X last(s) of s has no more successor with respect to R, s is a finite sequence. If there exists an element X i that appears in s at index i and that already appeared at an index j, j < i, then there exists a subsequence X j . . . X i that will be repeated infinitely, causing s to be infinite.

Theorem 2. LinRF(IF) is decidable.

Proof. Recall the proof of Theorem 1. We reason similarly with the difference that in addition to checking the finiteness of all the sequences, we also check the existence of LRFs which are valid with respect to all of them.

We say that f (X) = CX is a valid LRF with respect to a sequence s = X 1 X 2 . . . X last(s) if and only if the following system of constraints Φ s is satisfiable:

               CX 1 ≥ δ 0 CX 1 ≥ δ + CX 2 . . . CX last(s)-1 ≥ δ 0 CX last(s)-1 ≥ δ + CX last(s) δ > 0 (1)
Φ = all s Φ s is the system of constraints of validity of f with respect to all the sequences. If Φ is satisfiable, the space of all the valid LRFs is described by f (X) = CX ∧ Φ. Otherwise, there is no valid LRF.

It is worth mentioning that the algorithms we just presented for deciding Halt(IF) and LinRF (IF) can be applied to any program using variables ranging over finite sets. In other words, they can be applied not only to simple loops using floating-point variables but also to any implementable program on machines. Indeed, machines all have a finite amount of memory forcing the variables to range over finite sets.

Let us now focus on LinRF (IF). We intuitively understand that the decision algorithm we proposed is highly costly. Indeed, if there are n variables in the program, that is X = IF n β,p,emin,emax , and if there are N floating-points numbers that can be taken as values, that is |IF β,p,emin,emax | = N , then in the very worst case, we need to build the system of constraints of validity Φ from the |X |! = n N ! possible X -sequences.

The question now arises whether we can have a more efficient algorithm for deciding LinRF (IF). Notably, we would like to know if a polynomial one exists. For that purpose, we rely on a result presented in [5, Theorem 3.1] regarding the complexity of LinRF (Z Z).

Lemma 1. LinRF(Z Z) is coNP-hard. Even for a finite set E ⊂ Z Z, LinRF (E) is still coNP-hard.
Proof. The proof consists in reducing LinRF (Z Z) to the well-known coNPhard problem of deciding whether a rational convex polyhedron contains integer points.

Theorem 3. LinRF(IF) is at least in coNP.

Proof. The proof consists in showing that for some specific floating-point types IF β,p,emin,emax and a rounding mode , the problem is at least in coNP. As we are studying the worst case complexity, that gives us a lower bound for the complexity of the generalization for any possible floating-point type.

Consider the finite set Hence,

Z M ⊂ Z Z defined as Z M = {z ∈ Z Z| -M ≤ z ≤ M }. For all M ∈ IN * ,
∀M ∈ IN * , LinRF (IF M) = LinRF (Z Z M). As LinRF (Z Z M) is at least in coNP by Lemma 1, so is LinRF (IF M).
As we already know [START_REF] Sipser | Introduction to the theory of computation[END_REF], the coNP class contains problems that are at least as hard as the NP class. Indeed, the complement of an NP-complete problem, which is in coNP, admits a polynomial decision algorithm only if P = NP, implying P = coNP. Thus, by conjecturing that P = NP, we derive the following corollary.

Corollary 1. There is no polynomial algorithm for deciding LinRF(IF).

Although that theoretical limitation may be discouraging, it is important to note that it applies to the problem of finding one general algorithm for all the possible instances of LinRF (IF). There may be special cases for which polynomial decision algorithms may exist. We could also have correct algorithms that are polynomial but not complete. In other words, we could have algorithms that detect in polynomial time only part of the space of the existing LRFs. We investigate this idea in the next section.

A sufficient condition for inferring LRFs in polynomial time

In this section, we present a novel technique for inferring in polynomial time the existence of LRFs for simple floating-point loops. The idea is to adapt to LinRF (IF) the well-known Podelski-Rybalchenko algorithm, that we shorten PR algorithm, which solves LinRF (Q) in polynomial time and which is complete. This is achieved by means of sound over-approximations, that we shorten approximations for simplicity. Firstly, section 4.1 studies from a termination analysis aspect the links between a program and its possible approximations. Secondly, section 4.2 presents a floating-point version of the PR algorithm obtained by using the approximation by maximal absolute error. Lastly, section 4.3 discusses the results obtained with other approximations.

Program approximation and termination

Definition 11 (Approximation). We say that the program

P # = X , I # , R # is an approximation of the program P = X , I, R if I ⊆ I # and R # is such that ∀X 1 , X 2 ∈ X : X 1 RX 2 =⇒ X 1 R # X 2 .
Example 3. Consider the program P simple presented in Example 1 and the program P # simple presented in Figure 3 in which :<= is a non-deterministic assignment. P # simple can be formalized as the transition system X simple , I # simple , R # simple where

I # simple = {x ∈ Q|x ≤ 1000} and R # simple = { x, x ∈ Q 2 |x ≥ -1 ∧ x ≤ x -0.5}.
We can easily verify that I simple ⊆ I # simple and ∀x, x ∈ X simple : xR simple x =⇒ xR # simple x . Hence, P # simple is an approximation of P simple .

We now study the link between the termination of a given program and the termination of one of its approximations.

Theorem 4. Given a program P and a corresponding approximation P # , if P # terminates, so does P. rational x :<= 1000; while(x >= -1) {

x :<= x -0.5; } Fig. 3. An approximation of P simple , P # simple Proof. Differently stated, if (X , R #) is well-founded, so is (X , R). In order to prove that, let us reason by contradiction.

Suppose (X , R #) is well-founded while (X , R) is not. There is an infinite Xsequence s ∞ permitted by R:

s ∞ = X 0 RX 1 R . . . By definition of approximation (Definition 11), X i RX i+1 =⇒ X i R # X i+1 . Consequently, there exists s # ∞ = X 0 R # X 1 R # .
. . corresponding to s ∞ which contradicts our hypothesis as an infinite sequence is permitted by R # .

Though Theorem 4 is already enough to infer termination of a program through one of its possible approximations, it gives no information about the termination argument. Notably, we would like to have the deeper knowledge of the link between the space of ranking functions, that we denote by SRF .

Theorem 5. Given a program P and a corresponding approximation P # , we have SRF (P #) ⊆ SRF (P).

Proof. Let us reason by contradiction. Suppose SRF (P #) ⊆ SRF (P) which means that there exists a ranking function f for P # which is not one for P.

As f is not a ranking function for P, ∃X 1 , X 2 ∈ X : X 1 RX 2 =⇒ f (X 1) > f (X 2). However, by definition of approximation (Definition 11), X 1 RX 2 =⇒ X 1 R # X 2 and as f is a ranking function for

P # , X 1 R # X 2 =⇒ f (X 1) > f (X 2)
which leads to a contradiction. Differently stated, Theorem 5 says that any ranking function for a given program is also a ranking function for any program it approximates. For our particular case of interest, we derive the following corollary regarding the space of LRFs, that we denote by SLRF .

Corollary 2. Given a program P and a corresponding approximation P # , we have SLRF (P #) ⊆ SLRF (P): if f is a LRF for P # , then f is also a LRF for P. We point out that it is a misunderstanding of the previous results to deduce from them that all termination analysis based on approximations are doomed to be incomplete. It would be indeed the case if SRF (P #) ⊂ SRF (P). However, it is always possible to refine the approximation until having SRF (P #) = SRF (P). A way to do so for the particular case of floating-point loops is for example presented in [START_REF] Maurica | Termination analysis of floating-point programs using parameterizable rational approximations[END_REF].

Thus, in our search for LRFs for simple floating-point loops, it is always possible to find approximations that are precise enough to ensure completeness. However, due to Corollary 1, it cannot be achieved by any polynomial algorithm. In the technique we will now present, we trade completeness for complexity: the algorithm may fail at detecting all the possible LRFs, but it answers in polynomial time.

A floating-point version of the Podelski-Rybalchenko algorithm

Our technique is based on the well-known PR algorithm [START_REF] Podelski | A complete method for the synthesis of linear ranking functions[END_REF] which provides sufficient and necessary conditions, hence making the algorithm complete, for the existence of LRFs for simple rational loops. In addition to deciding the existence of LRFs, the algorithm can also synthesize them. It proceeds by reducing the decision/synthesizing problem to a linear programming problem which is long known to be solvable in polynomial time [START_REF] Khachiyan | Polynomial algorithms in linear programming[END_REF].

Theorem 6 (Podelski-Rybalchenko [START_REF] Podelski | A complete method for the synthesis of linear ranking functions[END_REF]). Given a simple rational loop

L Q described by A x x T ≤ b such that A ∈ Q m×2n , b ∈ Q m×1 and x, x ∈ Q n×1 , let A = (A A) where A, A ∈ Q m×n . A LRF exists for L Q if and only if there exist λ 1 , λ 2 ∈ Q 1×m such that:            λ 1 , λ 2 ≥ 0 λ 1 A = 0 (λ 1 -λ 2)A = 0 λ 2 (A + A) = 0 λ 2 b < 0
The synthesized LRFs are of the form f (x) = µx with µ = λ 2 A and are such that for all x,x':

f (x) ≥ δ 0 , δ 0 = -λ 1 b f (x) ≥ f (x) + δ, δ = -λ 2 b, δ > 0
Proof. Omitted as there are already various papers discussing it in various ways. Interested readers can find in-depth study of the PR algorithm in [START_REF] Bagnara | A new look at the automatic synthesis of linear ranking functions[END_REF].

Example 5. Consider the program P ilog37q having n = 2 variables presented in Figure 4. The loop of P ilog37q can be expressed in the matrix form A q A q x x T ≤ b by letting The corresponding linear system given by PR is satisfiable and the row vectors

A q =         -1 0 0 -1 -1 0 1 0 0 1 0 -1         , A q =         0 0 0 0 37 0 -37 0 0 -1 0 1         , b =         -37 -1 0 0 -1 1         (2)
λ 1 = λ 1 1 λ 2 1 λ 3 1 λ 4 1 λ 5 1 λ 6 1 and λ 2 = λ 1 2 λ 2 2 λ 3 2 λ 4 2 λ 5 2 λ 6 2 are such that:                λ 1 1 = -λ 2 1 + λ 4 1 + λ 1 2 + λ 3 2 -λ 4 2 λ 2 1 = -λ 5 2 + λ 6 2 λ 3 1 = λ 4 1 λ 4 1 ≥ 0 λ 5 1 ≥ 0 λ 6 1 = λ 5 1 and                λ 1 2 = 36λ 3 2 -36λ 4 2 λ 2 2 = 0 λ 3 2 > 0 0 ≤ λ 4 2 < λ 3 2 λ 5 2 ≥ 0 λ 5 2 ≤ λ 6 2 < 1332λ 3 2 -1332λ 4 2 (3) Thus, SLRF (P ilog37q) is completely described by f (x 1 , x 2) = µ 1 x 1 + µ 2 x 2 such that µ 1 > 0 and 0 ≤ µ 2 < 36µ 1 .
Every time a LRF exists for a given simple rational loop, the PR algorithm does find it in polynomial time. Unfortunately, it cannot be applied to simple floating-point loops. Indeed, the rounding errors cause the floating-point operations to be non-associative, making invalid most of the mathematical results leading to the PR algorithm.

We work around that issue by means of rational approximations. These approximations must be linear and must be defined in a single piece so that the PR algorithm can be used. Detailed explanations for the need for these constraints are given in Section 4.3. An example of such approximation is the approximation by maximal absolute error, as used in various ways in various works [START_REF] Belaid | Boosting local consistency algorithms over floating-point numbers[END_REF], [START_REF] Miné | Relational abstract domains for the detection of floating-point run-time errors[END_REF].

Definition 12 (Absolute error). The absolute error A(x) of the approximation of x ∈ IR by x ∈ IF β,p,emin,emax using a rounding mode is defined as

A(x) = |x -x|.
Theorem 7 (Approximation by maximal absolute error). Given a real arithmetic operation , its floating-point equivalent and 2 floating-point numbers x1 , x2 ∈ IF β,p,emin,emax , if we use the rounding mode to-nearest-ties-to-even and if no overflow occurs then the following holds: From the definition of the absolute error given in Definition 12, it can be easily derived that t -A(t) ≤ t ≤ t + A(t). In the worst case, t is located right in the middle of t and the nearest floating-point number ta adjacent to t. Thus we have A(t) ≤ | t-ta| 2 . By writing t in standardized notation as presented in Definition 4, that is t = (-1) s mβ e , we have ta = (-1) s (m ± β -p+1)β e . Hence, in the worst case: A(t) ≤ β e-p+1

x1 x2 -A max ≤ x1 x2 ≤ x1 x2 + A max where A max = β emax -p+1

2

. As e ≤ e max , A(t) ≤ A max from which the theorem follows. We now present an adaptation of the PR algorithm using the approximation by maximal absolute error.

Theorem 8 (General floating-point version of Podelski-Rybalchenko).

Consider the floating-point type IF which has such parameters and which uses such rounding mode that A max is the maximal absolute error. Consider also the simple floating-point loop

L IF described by A • x x T ≤ b such that A ∈ IF m×2n , b ∈ IF m×1 and x, x ∈ IF n×1
. By letting A = (A A) where A, A ∈ IF m×n and if no overflow occurs, a LRF exists for L IF if there exist λ 1 , λ 2 ∈ Q 1×m such that:

           λ 1 , λ 2 ≥ 0 λ 1 A = 0 (λ 1 -λ 2)A = 0 λ 2 (A + A) = 0 λ 2 c < 0 where c ∈ Q m×1 and c = b + colvect m ((4n -1)A max).
Here, colvect m (e) denotes the column vector of m elements, all elements equaling e. The synthesized LRFs are of the form f (x) = µx with µ = λ 2 A and are such that for all x,x':

f (x) ≥ δ 0 , δ 0 = -λ 1 c f (x) ≥ f (x) + δ, δ = -λ 2 c, δ > 0
Proof. Let us call l k the first member of the k-th inequality, that is:

l k = a k1 • x 1 + a k2 • x 2 + . . . + a kn • x n (4)
l k ≤ b k (5)
By approximating by below each operation using the approximation by maximal absolute error (Theorem 7) we get a linear lower bound for l k :

(a k1 x 1 -A max) + a k2 • x 2 + . . . + a kn • x n ≤ l k a k1 x 1 + (a k2 x 2 -A max) + . . . + a kn • x n -A max ≤ l k (a k1 x 1 + a k2 x 2 -A max) + . . . + a kn • x n -2A max ≤ l k . . . a k1 x 1 + a k2 x 2 + • • • + a kn x n -(4n -1)A max ≤ l k (6)
Combining that result with the upper bound b k of l k as shown in (5), we get:

a k1 x 1 + a k2 x 2 + . . . + a kn x n -(4n -1)A max ≤ l k ≤ b k a k1 x 1 + a k2 x 2 + . . . + a kn x n -(4n -1)A max ≤ b k a k1 x 1 + a k2 x 2 + . . . + a kn x n ≤ b k + (4n -1)A max (7)
Hence, the floating-point loop

L IF described by A • x x T ≤ b is ap- proximated by the rational loop L Q described by A x x T ≤ c where c = b + colvect m ((4n -1)A max).
By applying the PR algorithm presented in Theorem 6 on L Q , if a LRF f is found, then f is also a LRF for L IF by Corollary 2.

Example 7. Consider the program P ilog37q presented in Example 5. We are interested in its floating-point version P ilog37f in which variables are from the type IF simple presented in Example 2. The rounding mode used is to-nearest-ties-toeven.

As presented in Example 6, the maximal absolute error for any arithmetic floating-point operation done in IF simple is A max = 5. Thus, P ilog37f is approximated by the rational loop P # ilog37f described by A f A f x x T ≤ c such that:

A f = A q , A f = A q , c = b + colvect 6 (35) = c 2 = -
By applying the PR algorithm, LRFs for P ilog37f exist and are of the form f (x 1 , x 2) = µ 1 x 1 + µ 2 x 2 such that µ 1 > 0 and 0 ≤ µ 2 < µ1 36 .

It is important to observe that this floating-point version of the PR algorithm applies only if no overflow occurs during the computation. Indeed, by using the approximation by maximal absolute error, we assumed that the results of the operations all laid in the authorized range. Thus, the initial ranges of the values of the variables that do not eventually lead to an overflow should be determined beforehand. It can be achieved for example using techniques from the framework of Abstract Interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF].

As we already discussed in the Preliminaries section of the paper, floatingpoint expressions are to be studied as-is and our results are only general. For example, we can have a better approximation of P ilog37f by noticing that there are less than (4n -1) operations per line. Moreover, by only approximating the operations that are not known to be exactly computed, we get the approximation P # ilog37f 2 described by A f 2 A f 2 x x T ≤ c 2 such that:

A f 2 = A q , A f 2 = A q , c 2 = -37 -1 10 10 4 6 T (9)
By applying the PR algorithm, LRFs for P ilog37f 2 exist and are of the form f (x 1 , x 2) = µ 1 x 1 + µ 2 x 2 such that µ 1 > 0 and 0 ≤ µ 2 < 661µ1 111 . We easily verify that SLRF (P # ilog37f) ⊂ SLRF (P # ilog37f 2), that is we detect a wider range of LRFs with P # ilog37f 2 .

Other approximations

At this point of the paper, the reader may wonder why we specifically chose the approximation by maximal absolute error instead of another approximation. Indeed, the justification we proposed was that the approximation needed to be linear and defined in a single piece but we gave no further explanation. Now, we give more details.

Recall the proof for the general floating-point version of the PR algorithm (Theorem 8). It consisted in transforming the simple floating-point loop into a simple rational loop. Indeed, the PR algorithm works on loops described by linear systems, making the linearity of the approximation straightforward.

It remains to justify why the approximation needs to be defined in one piece. Indeed, we can have piecewise linear approximations having precisions that increase with the number of pieces, as shown in [START_REF] Maurica | Termination analysis of floating-point programs using parameterizable rational approximations[END_REF]. For example, the approximation defined in 3 pieces presented in Theorem 9 is better than the approximation by maximal absolute error. Indeed, the surface of the area enclosed between the upper and lower approximation functions is smaller in the approximation in 3 pieces, as illustrated in Figure 4.3.

Theorem 9 (Approximation in 3 pieces). Given a real arithmetic operation , its floating-point equivalent and 2 floating-point numbers x1 , x2 ∈ IF β,p,emin,emax , if we use the rounding mode to-nearest-ties-to-even and if no overflow occurs then the following holds:

   (1 -R n max)t ≤ x1 x2 ≤ (1 + R n max)t if n min < t ≤ n max t -A s max ≤ x1 x2 ≤ t + A s max if -n min ≤ t ≤ n min 1 + R n max)t ≤ x1 x2 ≤ 1 -R n max)t if -n max ≤ t < -n min where t = x1 x2 , n min = β emin is the smallest positive normal number, n max = (β -β -p+1)β emax is the biggest positive normal number, A s max = β e min -p+1 2
is the maximal absolute error for the subnormal numbers and R n max = β -p+1 2+β -p+1 is the maximal relative error for the normal numbers.

Proof. For the case where -n min ≤ t ≤ n min , that is t is a subnormal number, the proof is similar to that for the approximation with maximal absolute error (Theorem 7). Only the value of the maximal absolute error differs. For the case where n min ≤ |t| ≤ n max , that is t is a normal number, we use an approximation based on the maximal relative error. The relative error of the approximation of t is R(t) = |t-t| |t| . From that definition, it can be easily derived that

(1 -R(t))|t| ≤ | t| ≤ (1 + R(t))|t|. As R(t) ≤ β -p+1
2+β -p+1 for the case of the normal numbers, as shown in [START_REF] Jeannerod | On relative errors of floating-point operations: optimal bounds and applications[END_REF], the theorem follows.

As another example of approximation, we can combine the bound for the absolute error for the subnormals with the bound for the relative error for the normals. It results in using approximation functions defined in 2 pieces as it distinguishes the positives from the negatives [START_REF] Maurica | Termination analysis of floating-point programs using parameterizable rational approximations[END_REF].

Using these piecewise linear approximations, a simple floating-point loop will be transformed into a set of simple rational loops, designated as Multi-path Linear-Constraint loops or MLC loops in [START_REF] Ben-Amram | Ranking functions for linear-constraint loops[END_REF][START_REF] Ben-Amram | Ranking functions for linear-constraint loops[END_REF]. The existence of LRFs in MLC loops are known to be also decidable in polynomial time [START_REF] Feautrier | Some efficient solutions to the affine scheduling problem. I. Onedimensional time[END_REF], [START_REF] Mesnard | Recurrence with affine level mappings is p-time decidable for CLP(R)[END_REF]. However, the size of the obtained MLC loop is an exponential function in the size of the simple floating-point loop it approximates, as shown in the following theorem. If we use a linear approximation defined in k pieces, then L IF is approximated by a MLC loop composed of k (4n-1)m simple rational loops.

Proof. The proof is similar to that for the general floating-point version of the PR algorithm (Theorem 8). The difference is that when approximating by below one operation, there are k cases to take into account. As there are (4n -1)m operations, the theorem follows.

Thus, only linear approximations defined in one piece preserve the transformations from becoming exponential. Without any information on the range of the variables, the approximation by maximal absolute error is the best approximation having these properties. That motivated our choice.

Related work

To the best of our knowledge, there is only limited work on the termination of floating-point programs. One of the first work addressing that problem is [START_REF] Serebrenik | Termination of floating-point computations[END_REF] which is an extension of the adornments-based approach. It consists in transforming the logic program to analyze in a way that we can use techniques originally developed for analysis of numerical computations.

Recently, techniques have been developed for treating the case of bit-vector programs. These techniques belong to the family of Model Checking [START_REF] Baier | Principles of model checking[END_REF]. [START_REF] Cook | Ranking function synthesis for bit-vector relations[END_REF] presents several novel algorithms to generate ranking functions for relations over machine integers: a method based on a reduction to Presburger arithmetic, and a template-matching approach for predefined classes of ranking functions based on reduction to SAT-and QBF-solving. In a similar way, [START_REF] David | Unrestricted termination and nontermination arguments for bit-vector programs[END_REF] reduces the termination problem for programs using machine integers or floating-point numbers to a second-order satisfiability problem. Both methods are complete but are highly costly.

A different approach is presented in [START_REF] Maurica | Termination analysis of floating-point programs using parameterizable rational approximations[END_REF]. It consists in translating the floatingpoint programs into rational ones by means of sound approximations. Hence, it bridges the gap between termination analysis of floating-point loops and rational loops. The floating-point expressions are approximated using piecewise linear functions that can be parameterized depending on the precision desired/required.

Conclusion

We have studied the hardness of termination proofs for simple loops when the variables are of floating-point type. We have focused on termination inferred from the existence of linear ranking functions and showed that the problem is at least in coNP. This is a very valuable information as it dissuades us from looking for a decision algorithm that is both polynomial and complete. The problem of deciding the existence of linear ranking functions for simple integer and machine integer loops was studied in depth very recently and was shown to be coNP-complete. To the best of our knowledge, our work is the first attempt at providing a similar result for the floating-points.

To design a polynomial algorithm, we have traded completeness for complexity. We have proposed the first adaptation of the Podelski-Rybalchenko algorithm for simple floating-point loops. This is achieved by means of linear approximations defined in one piece. We have suggested the use of the approximation by maximal absolute error. A possible improvement would be to use more precise linear approximations defined in one piece based on the ranges of the variables. As we have provided a sufficient but not necessary condition for inferring the existence of linear ranking functions, experimentations have yet to be conducted in order to get a practical evaluation of the technique.

Fig. 2 .

 2 Fig. 2. A personalized floating-point type, IF simple . Symmetry to the origin for the negatives.

 we can construct the floating-point type IF M defined by the parameters β = M , p = 1, e min = 0 and e max = 1 for which Z M = IF M . Both Z M and IF M have the same elements. Moreover, if the rounding mode for the operations in IF M is to-zero, that is if =↑ 0 , then the operations in both Z M and IF M are performed identically.

Example 4 .

 4 Consider the program P simple presented in Example 1 and the corresponding approximation P # simple presented in Example 3. The space of LRFs of P # simple is described by ρ(x) = ax, a > 0. By Corollary 2, ρ also describes LRFs for P simple .

Fig. 4 .

 4 Fig.4. A program that computes and stores in x2 the integer base-37 logarithm of x1, P ilog37q . A similar program with variables ranging over the integers is studied in[START_REF] Bagnara | A new look at the automatic synthesis of linear ranking functions[END_REF].

2

 is the maximal absolute error. Proof. Recall that by property of correct rounding, as presented in Definition 6, x1 x2 = o(x 1 x2). Let t = x1 x2 and t = o(t) = x1 x2 , t ∈ IR and t ∈ IF β,p,emin,emax .

Example 6 .

 6 Consider the floating-point type IF simple presented in Example 2. If the rounding mode to-nearest-ties-to-even is used, then for any arithmetic operation , its floating-point equivalent and 2 floating-point numbers x1 , x2 ∈ IF simple , the following holds: x1 x2 -5 ≤ x1 x2 ≤ x1 x2 + 5.

 (a) Approximation in 1 piece or approximation by maximal absolute error (b) Approximation in 3 pieces. The partitioning chosen here separates the normals from the subnormals.

Fig. 5 .

 5 Fig. 5. Piecewise linear approximations of x zoomed around the origin

Theorem 10 (

 10 From simple floating-point loop to MLC loop). Consider the floating-point type IF. Consider also the simple floating-point loop L IF described by A • x x T ≤ b such that A ∈ IF m×2n , b ∈ IF m×1 and x, x ∈ IF n×1 .

 2 34 35 35 34 36

	T